1
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2024. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
2
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Cogan DP, Soohoo AM, Chen M, Liu Y, Brodsky KL, Khosla C. Structural basis for intermodular communication in assembly-line polyketide biosynthesis. Nat Chem Biol 2024:10.1038/s41589-024-01709-y. [PMID: 39179672 DOI: 10.1038/s41589-024-01709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
Assembly-line polyketide synthases (PKSs) are modular multi-enzyme systems with considerable potential for genetic reprogramming. Understanding how they selectively transport biosynthetic intermediates along a defined sequence of active sites could be harnessed to rationally alter PKS product structures. To investigate functional interactions between PKS catalytic and substrate acyl carrier protein (ACP) domains, we employed a bifunctional reagent to crosslink transient domain-domain interfaces of a prototypical assembly line, the 6-deoxyerythronolide B synthase, and resolved their structures by single-particle cryogenic electron microscopy (cryo-EM). Together with statistical per-particle image analysis of cryo-EM data, we uncovered interactions between ketosynthase (KS) and ACP domains that discriminate between intra-modular and inter-modular communication while reinforcing the relevance of conformational asymmetry during the catalytic cycle. Our findings provide a foundation for the structure-based design of hybrid PKSs comprising biosynthetic modules from different naturally occurring assembly lines.
Collapse
Affiliation(s)
- Dillon P Cogan
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Alexander M Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Yan Liu
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | | | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Stanford ChEM-H, Stanford, CA, USA.
| |
Collapse
|
4
|
Bagde SR, Kim CY. Architecture of full-length type I modular polyketide synthases revealed by X-ray crystallography, cryo-electron microscopy, and AlphaFold2. Nat Prod Rep 2024; 41:1219-1234. [PMID: 38501175 PMCID: PMC11324418 DOI: 10.1039/d3np00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.
Collapse
Affiliation(s)
- Saket R Bagde
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Chu-Young Kim
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Zhang B, Ge HM. Recent progresses in the cyclization and oxidation of polyketide biosynthesis. Curr Opin Chem Biol 2024; 81:102507. [PMID: 39098210 DOI: 10.1016/j.cbpa.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China.
| |
Collapse
|
6
|
Na H, Zheng YY, Jia Y, Feng J, Huang J, Huang J, Wang CY, Yao G. Screening and genetic engineering of marine-derived Aspergillus terreus for high-efficient production of lovastatin. Microb Cell Fact 2024; 23:134. [PMID: 38724934 PMCID: PMC11084141 DOI: 10.1186/s12934-024-02396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Lovastatin has widespread applications thanks to its multiple pharmacological effects. Fermentation by filamentous fungi represents the major way of lovastatin production. However, the current lovastatin productivity by fungal fermentation is limited and needs to be improved. RESULTS In this study, the lovastatin-producing strains of Aspergillus terreus from marine environment were screened, and their lovastatin productions were further improved by genetic engineering. Five strains of A. terreus were isolated from various marine environments. Their secondary metabolites were profiled by metabolomics analysis using Ultra Performance Liquid Chromatography-Mass spectrometry (UPLC-MS) with Global Natural Products Social Molecular Networking (GNPS), revealing that the production of secondary metabolites was variable among different strains. Remarkably, the strain of A. terreus MJ106 could principally biosynthesize the target drug lovastatin, which was confirmed by High Performance Liquid Chromatography (HPLC) and gene expression analysis. By one-factor experiment, lactose was found to be the best carbon source for A. terreus MJ106 to produce lovastatin. To improve the lovastatin titer in A. terreus MJ106, genetic engineering was applied to this strain. Firstly, a series of strong promoters was identified by transcriptomic and green fluorescent protein reporter analysis. Then, three selected strong promoters were used to overexpress the transcription factor gene lovE encoding the major transactivator for lov gene cluster expression. The results revealed that compared to A. terreus MJ106, all lovE over-expression mutants exhibited significantly more production of lovastatin and higher gene expression. One of them, LovE-b19, showed the highest lovastatin productivity at a titer of 1512 mg/L, which represents the highest production level reported in A. terreus. CONCLUSION Our data suggested that combination of strain screen and genetic engineering represents a powerful tool for improving the productivity of fungal secondary metabolites, which could be adopted for large-scale production of lovastatin in marine-derived A. terreus.
Collapse
Affiliation(s)
- Han Na
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yao-Yao Zheng
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yaoning Jia
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jingzhao Feng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jizi Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jihao Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
7
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
8
|
Dell M, Tran MA, Capper MJ, Sundaram S, Fiedler J, Koehnke J, Hellmich UA, Hertweck C. Trapping of a Polyketide Synthase Module after C-C Bond Formation Reveals Transient Acyl Carrier Domain Interactions. Angew Chem Int Ed Engl 2024; 63:e202315850. [PMID: 38134222 DOI: 10.1002/anie.202315850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.
Collapse
Affiliation(s)
- Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Mai Anh Tran
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael J Capper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Srividhya Sundaram
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jesko Koehnke
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institute of Food Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
9
|
Buyachuihan L, Stegemann F, Grininger M. How Acyl Carrier Proteins (ACPs) Direct Fatty Acid and Polyketide Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202312476. [PMID: 37856285 DOI: 10.1002/anie.202312476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Megasynthases, such as type I fatty acid and polyketide synthases (FASs and PKSs), are multienzyme complexes responsible for producing primary metabolites and complex natural products. Fatty acids (FAs) and polyketides (PKs) are built by assembling and modifying small acyl moieties in a stepwise manner. A central aspect of FA and PK biosynthesis involves the shuttling of substrates between the domains of the multienzyme complex. This essential process is mediated by small acyl carrier proteins (ACPs). The ACPs must navigate to the different catalytic domains within the multienzyme complex in a particular order to guarantee the fidelity of the biosynthesis pathway. However, the precise mechanisms underlying ACP-mediated substrate shuttling, particularly the factors contributing to the programming of the ACP movement, still need to be fully understood. This Review illustrates the current understanding of substrate shuttling, including concepts of conformational and specificity control, and proposes a confined ACP movement within type I megasynthases.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Franziska Stegemann
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Fraley AE. A mechanistic blueprint for enzymatic reduction by a modular polyketide synthase. Structure 2023; 31:1013-1015. [PMID: 37683617 DOI: 10.1016/j.str.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
In this issue of Structure, McCullough et al. describe linker peptides that serve as a "hydrophobic glue" to arrange the domains within the reducing region of a modular polyketide synthase. Comparisons to structural data from other megasynthases identified features that are unique to modular systems.
Collapse
Affiliation(s)
- Amy E Fraley
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| |
Collapse
|
13
|
McCullough TM, Dhar A, Akey DL, Konwerski JR, Sherman DH, Smith JL. Structure of a modular polyketide synthase reducing region. Structure 2023; 31:1109-1120.e3. [PMID: 37348494 PMCID: PMC10527585 DOI: 10.1016/j.str.2023.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.
Collapse
Affiliation(s)
- Tyler M McCullough
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anya Dhar
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Duan Y, Tan Y, Chen X, Pei X, Li M. Modular and Flexible Molecular Device for Simultaneous Cytosine and Adenine Base Editing at Random Genomic Loci in Filamentous Fungi. ACS Synth Biol 2023. [PMID: 37428865 DOI: 10.1021/acssynbio.3c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Random base editing is regarded as a fundamental method for accelerating the genomic evolution in both scientific research and industrial applications. In this study, we designed a modular interaction-based dual base editor (MIDBE) that assembled a DNA helicase and various base editors through dockerin/cohesin-mediated protein-protein interactions, resulting in a self-assembled MIDBE complex capable of editing bases at any locus in the genome. The base editing type of MIDBE can be readily controlled by the induction of cytidine or/and adenine deaminase gene expression. MIDBE exhibited the highest editing efficiency 2.3 × 103 times greater than the native genomic mutation rate. To evaluate the potential of MIDBE in genomic evolution, we developed a removable plasmid-based MIDBE tool, which led to a remarkable 977.1% increase of lovastatin production in Monascus purpureus HJ11. MIDBE represents the first biological tool for generating and accumulating base mutations in Monascus chromosome and also offers a bottom-up strategy for designing the base editor.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xizhu Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
15
|
Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. Structure 2023:S0969-2126(23)00095-3. [PMID: 37059096 DOI: 10.1016/j.str.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
Collapse
Affiliation(s)
- Sarah Bonhomme
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Pauline Macheboeuf
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France.
| |
Collapse
|
16
|
Multifunctional Enzymes in Microbial Secondary Metabolic Processes. Catalysts 2023. [DOI: 10.3390/catal13030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Microorganisms possess a strong capacity for secondary metabolite synthesis, which is represented by tightly controlled networks. The absence of any enzymes leads to a change in the original metabolic pathway, with a decrease in or even elimination of a synthetic product, which is not permissible under conditions of normal life activities of microorganisms. In order to improve the efficiency of secondary metabolism, organisms have evolved multifunctional enzymes (MFEs) that can catalyze two or more kinds of reactions via multiple active sites. However, instead of interfering, the multifunctional catalytic properties of MFEs facilitate the biosynthetic process. Among the numerous MFEs considered of vital importance in the life activities of living organisms are the synthases involved in assembling the backbone of compounds using different substrates and modifying enzymes that confer the final activity of compounds. In this paper, we review MFEs in terms of both synthetic and post-modifying enzymes involved in secondary metabolic biosynthesis, focusing on polyketides, non-ribosomal peptides, terpenoids, and a wide range of cytochrome P450s(CYP450s), and provide an overview and describe the recent progress in the research on MFEs.
Collapse
|
17
|
Enzymology of assembly line synthesis by modular polyketide synthases. Nat Chem Biol 2023; 19:401-415. [PMID: 36914860 DOI: 10.1038/s41589-023-01277-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
Modular polyketide synthases (PKSs) run catalytic reactions over dozens of steps in a highly orchestrated manner. To accomplish this synthetic feat, they form megadalton multienzyme complexes that are among the most intricate proteins on earth. Polyketide products are of elaborate chemistry with molecular weights of usually several hundred daltons and include clinically important drugs such as erythromycin (antibiotic), rapamycin (immunosuppressant) and epothilone (anticancer drug). The term 'modular' refers to a hierarchical structuring of modules and domains within an overall assembly line arrangement, in which PKS organization is colinearly translated into the polyketide structure. New structural information obtained during the past few years provides substantial direct insight into the orchestration of catalytic events within a PKS module and leads to plausible models for synthetic progress along assembly lines. In light of these structural insights, the PKS engineering field is poised to enter a new era of engineering.
Collapse
|
18
|
Wang J, Wang X, Li X, Kong L, Du Z, Li D, Gou L, Wu H, Cao W, Wang X, Lin S, Shi T, Deng Z, Wang Z, Liang J. C-N bond formation by a polyketide synthase. Nat Commun 2023; 14:1319. [PMID: 36899013 PMCID: PMC10006239 DOI: 10.1038/s41467-023-36989-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Assembly-line polyketide synthases (PKSs) are molecular factories that produce diverse metabolites with wide-ranging biological activities. PKSs usually work by constructing and modifying the polyketide backbone successively. Here, we present the cryo-EM structure of CalA3, a chain release PKS module without an ACP domain, and its structures with amidation or hydrolysis products. The domain organization reveals a unique "∞"-shaped dimeric architecture with five connected domains. The catalytic region tightly contacts the structural region, resulting in two stabilized chambers with nearly perfect symmetry while the N-terminal docking domain is flexible. The structures of the ketosynthase (KS) domain illustrate how the conserved key residues that canonically catalyze C-C bond formation can be tweaked to mediate C-N bond formation, revealing the engineering adaptability of assembly-line polyketide synthases for the production of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular Biology, Shanghai Jikaixing Biotech Inc., Shanghai, 200131, China
| | - Xixi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - LiangLiang Kong
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Zhai G, Zhu Y, Sun G, Zhou F, Sun Y, Hong Z, Dong C, Leadlay PF, Hong K, Deng Z, Zhou F, Sun Y. Insights into azalomycin F assembly-line contribute to evolution-guided polyketide synthase engineering and identification of intermodular recognition. Nat Commun 2023; 14:612. [PMID: 36739290 PMCID: PMC9899208 DOI: 10.1038/s41467-023-36213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
Modular polyketide synthase (PKS) is an ingenious core machine that catalyzes abundant polyketides in nature. Exploring interactions among modules in PKS is very important for understanding the overall biosynthetic process and for engineering PKS assembly-lines. Here, we show that intermodular recognition between the enoylreductase domain ER1/2 inside module 1/2 and the ketosynthase domain KS3 inside module 3 is required for the cross-module enoylreduction in azalomycin F (AZL) biosynthesis. We also show that KS4 of module 4 acts as a gatekeeper facilitating cross-module enoylreduction. Additionally, evidence is provided that module 3 and module 6 in the AZL PKS are evolutionarily homologous, which makes evolution-oriented PKS engineering possible. These results reveal intermodular recognition, furthering understanding of the mechanism of the PKS assembly-line, thus providing different insights into PKS engineering. This also reveals that gene duplication/conversion and subsequent combinations may be a neofunctionalization process in modular PKS assembly-lines, hence providing a different case for supporting the investigation of modular PKS evolution.
Collapse
Affiliation(s)
- Guifa Zhai
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yan Zhu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Fan Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yangning Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Zhou Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Chuan Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Kui Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China. .,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, 430071, Wuhan, People's Republic of China.
| |
Collapse
|
20
|
Cox RJ. Curiouser and curiouser: progress in understanding the programming of iterative highly-reducing polyketide synthases. Nat Prod Rep 2023; 40:9-27. [PMID: 35543313 DOI: 10.1039/d2np00007e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 1996-2022Investigations over the last 2 decades have begun to reveal how fungal iterative highly-reducing polyketide synthases are programmed. Both in vitro and in vivo experiments have revealed the interplay of intrinsic and extrinsic selectivity of the component catalytic domains of these systems. Structural biology has begun to provide high resolution structures of hr-PKS that can be used as the basis for their engineering and reprogramming, but progress to-date remains rudimentary. However, significant opportunities exist for translating the current level of understanding into the ability to rationally re-engineer these highly efficient systems for the production of important biologically active compounds through biotechnology.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany.
| |
Collapse
|
21
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
22
|
Tittes YU, Herbst DA, Martin SFX, Munoz-Hernandez H, Jakob RP, Maier T. The structure of a polyketide synthase bimodule core. SCIENCE ADVANCES 2022; 8:eabo6918. [PMID: 36129979 PMCID: PMC9491710 DOI: 10.1126/sciadv.abo6918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Polyketide synthases (PKSs) are predominantly microbial biosynthetic enzymes. They assemble highly potent bioactive natural products from simple carboxylic acid precursors. The most versatile families of PKSs are organized as assembly lines of functional modules. Each module performs one round of precursor extension and optional modification, followed by directed transfer of the intermediate to the next module. While enzymatic domains and even modules of PKSs are well understood, the higher-order modular architecture of PKS assembly lines remains elusive. Here, we visualize a PKS bimodule core using cryo-electron microscopy and resolve a two-dimensional meshwork of the bimodule core formed by homotypic interactions between modules. The sheet-like organization provides the framework for efficient substrate transfer and for sequestration of trans-acting enzymes required for polyketide production.
Collapse
|
23
|
Dickinson MS, Miyazawa T, McCool RS, Keatinge-Clay AT. Priming enzymes from the pikromycin synthase reveal how assembly-line ketosynthases catalyze carbon-carbon chemistry. Structure 2022; 30:1331-1339.e3. [PMID: 35738283 PMCID: PMC9444953 DOI: 10.1016/j.str.2022.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
The first domain of modular polyketide synthases (PKSs) is most commonly a ketosynthase (KS)-like enzyme, KSQ, that primes polyketide synthesis. Unlike downstream KSs that fuse α-carboxyacyl groups to growing polyketide chains, it performs an extension-decoupled decarboxylation of these groups to generate primer units. When Pik127, a model triketide synthase constructed from modules of the pikromycin synthase, was studied by cryoelectron microscopy (cryo-EM), the dimeric didomain comprised of KSQ and the neighboring methylmalonyl-selective acyltransferase (AT) dominated the class averages and yielded structures at 2.5- and 2.8-Å resolution, respectively. Comparisons with ketosynthases complexed with their substrates revealed the conformation of the (2S)-methylmalonyl-S-phosphopantetheinyl portion of KSQ and KS substrates prior to decarboxylation. Point mutants of Pik127 probed the roles of residues in the KSQ active site, while an AT-swapped version of Pik127 demonstrated that KSQ can also decarboxylate malonyl groups. Mechanisms for how KSQ and KS domains catalyze carbon-carbon chemistry are proposed.
Collapse
Affiliation(s)
- Miles S Dickinson
- Sauer Structural Biology Lab, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA
| | - Ryan S McCool
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
25
|
Li F, Lin Z, Torres JP, Hill EA, Li D, Townsend CA, Schmidt EW. Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments. J Am Chem Soc 2022; 144:9363-9371. [PMID: 35588530 DOI: 10.1021/jacs.2c01416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric A Hill
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
27
|
Guzman KM, Khosla C. Fragment antigen binding domains (F abs) as tools to study assembly-line polyketide synthases. Synth Syst Biotechnol 2022; 7:506-512. [PMID: 34977395 PMCID: PMC8683866 DOI: 10.1016/j.synbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
The crystallization of proteins remains a bottleneck in our fundamental understanding of their functions. Therefore, discovering tools that aid crystallization is crucial. In this review, the versatility of fragment-antigen binding domains (Fabs) as protein crystallization chaperones is discussed. Fabs have aided the crystallization of membrane-bound and soluble proteins as well as RNA. The ability to bind three Fabs onto a single protein target has demonstrated their potential for crystallization of challenging proteins. We describe a high-throughput workflow for identifying Fabs to aid the crystallization of a protein of interest (POI) by leveraging phage display technologies and differential scanning fluorimetry (DSF). This workflow has proven to be especially effective in our structural studies of assembly-line polyketide synthases (PKSs), which harbor flexible domains and assume transient conformations. PKSs are of interest to us due to their ability to synthesize an unusually broad range of medicinally relevant compounds. Despite years of research studying these megasynthases, their overall topology has remained elusive. One Fab in particular, 1B2, has successfully enabled X-ray crystallographic and single particle cryo-electron microscopic (cryoEM) analyses of multiple modules from distinct assembly-line PKSs. Its use has not only facilitated multidomain protein crystallization but has also enhanced particle quality via cryoEM, thereby enabling the visualization of intact PKS modules at near-atomic (3-5 Å) resolution. The identification of PKS-binding Fabs can be expected to continue playing a key role in furthering our knowledge of polyketide biosynthesis on assembly-line PKSs.
Collapse
Affiliation(s)
- Katarina M. Guzman
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain. Nat Commun 2022; 13:592. [PMID: 35105906 PMCID: PMC8807600 DOI: 10.1038/s41467-022-28284-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are modular assembly-line megaenzymes that synthesize diverse metabolites with wide-ranging biological activities. The structural dynamics of synthetic elongation has remained unclear. Here, we present cryo-EM structures of PchE, an NRPS elongation module, in distinct conformations. The domain organization reveals a unique “H”-shaped head-to-tail dimeric architecture. The capture of both aryl and peptidyl carrier protein-tethered substrates and intermediates inside the heterocyclization domain and l-cysteinyl adenylate in the adenylation domain illustrates the catalytic and recognition residues. The multilevel structural transitions guided by the adenylation C-terminal subdomain in combination with the inserted epimerase and the conformational changes of the heterocyclization tunnel are controlled by two residues. Moreover, we visualized the direct structural dynamics of the full catalytic cycle from thiolation to epimerization. This study establishes the catalytic trajectory of PchE and sheds light on the rational re-engineering of domain-inserted dimeric NRPSs for the production of novel pharmaceutical agents. The catalytic domains in nonribosomal peptide synthetases (NRPSs) are responsible for a choreography of events that elongates substrates into natural products. Here, the authors present cryo-EM structures of a siderophore-producing dimeric NRPS elongation module in multiple distinct conformations, which provides insight into the mechanisms of catalytic trajectory.
Collapse
|
29
|
Klaus M, Rossini E, Linden A, Paithankar KS, Zeug M, Ignatova Z, Urlaub H, Khosla C, Köfinger J, Hummer G, Grininger M. Solution Structure and Conformational Flexibility of a Polyketide Synthase Module. JACS AU 2021; 1:2162-2171. [PMID: 34977887 PMCID: PMC8717363 DOI: 10.1021/jacsau.1c00043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 05/28/2023]
Abstract
Polyketide synthases (PKSs) are versatile C-C bond-forming enzymes that are broadly distributed in bacteria and fungi. The polyketide compound family includes many clinically useful drugs such as the antibiotic erythromycin, the antineoplastic epothilone, and the cholesterol-lowering lovastatin. Harnessing PKSs for custom compound synthesis remains an open challenge, largely because of the lack of knowledge about key structural properties. Particularly, the domains-well characterized on their own-are poorly understood in their arrangement, conformational dynamics, and interplay in the intricate quaternary structure of modular PKSs. Here, we characterize module 2 from the 6-deoxyerythronolide B synthase by small-angle X-ray scattering and cross-linking mass spectrometry with coarse-grained structural modeling. The results of this hybrid approach shed light on the solution structure of a cis-AT type PKS module as well as its inherent conformational dynamics. Supported by a directed evolution approach, we also find that acyl carrier protein (ACP)-mediated substrate shuttling appears to be steered by a nonspecific electrostatic interaction network.
Collapse
Affiliation(s)
- Maja Klaus
- Institute
of Organic Chemistry and Chemical Biology, Buchmann Institute for
Molecular Life Sciences, Goethe University
Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Emanuele Rossini
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue
Strasse 3, Frankfurt am Main 60438, Germany
| | - Andreas Linden
- Max
Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
- Institute
for Clinical Chemistry, University Medical
Center Göttingen, Robert Koch Strasse 40, Goettingen 37075, Germany
| | - Karthik S. Paithankar
- Institute
of Organic Chemistry and Chemical Biology, Buchmann Institute for
Molecular Life Sciences, Goethe University
Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Matthias Zeug
- Institute
of Organic Chemistry and Chemical Biology, Buchmann Institute for
Molecular Life Sciences, Goethe University
Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Zoya Ignatova
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Notkestrasse 85, Hamburg 22607, Germany
| | - Henning Urlaub
- Max
Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
- Institute
for Clinical Chemistry, University Medical
Center Göttingen, Robert Koch Strasse 40, Goettingen 37075, Germany
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford University, Stanford, California 94305, United States
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue
Strasse 3, Frankfurt am Main 60438, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue
Strasse 3, Frankfurt am Main 60438, Germany
- Institute
of Biophysics, Goethe University Frankfurt, Max-von-Laue Strasse 1, Frankfurt am Main 60438, Germany
| | - Martin Grininger
- Institute
of Organic Chemistry and Chemical Biology, Buchmann Institute for
Molecular Life Sciences, Goethe University
Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| |
Collapse
|
30
|
Cogan DP, Zhang K, Li X, Li S, Pintilie GD, Roh SH, Craik CS, Chiu W, Khosla C. Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science 2021; 374:729-734. [PMID: 34735239 DOI: 10.1126/science.abi8358] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dillon P Cogan
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kaiming Zhang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiuyuan Li
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Shanshan Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Grigore D Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Korea
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Stanford ChEM-H, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Miyazawa T, Fitzgerald BJ, Keatinge-Clay AT. Preparative production of an enantiomeric pair by engineered polyketide synthases. Chem Commun (Camb) 2021; 57:8762-8765. [PMID: 34378565 DOI: 10.1039/d1cc03073f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using the updated module boundary of polyketide assembly lines, modules from the pikromycin synthase were recombined into engineered synthases that furnish an enantiomeric pair of 2-stereocenter triketide lactones at >99% ee with yields up to 0.39 g per liter of E. coli K207-3 in shake flasks.
Collapse
Affiliation(s)
- Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | | | | |
Collapse
|
32
|
|
33
|
Guzman KM, Yuet KP, Lynch SR, Liu CW, Khosla C. Properties of a "Split-and-Stuttering" Module of an Assembly Line Polyketide Synthase. J Org Chem 2021; 86:11100-11106. [PMID: 33755455 DOI: 10.1021/acs.joc.1c00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Notwithstanding the "one-module-one-elongation-cycle" paradigm of assembly line polyketide synthases (PKSs), some PKSs harbor modules that iteratively elongate their substrates through a defined number of cycles. While some insights into module iteration, also referred to as "stuttering", have been derived through in vivo and in vitro analysis of a few PKS modules, a general understanding of the mechanistic principles underlying module iteration remains elusive. This report serves as the first interrogation of a stuttering module from a trans-AT subfamily PKS that is also naturally split across two polypeptides. Previous work has shown that Module 5 of the NOCAP (nocardiosis associated polyketide) synthase iterates precisely three times in the biosynthesis of its polyketide product, resulting in an all-trans-configured triene moiety in the polyketide product. Here, we describe the intrinsic catalytic properties of this NOCAP synthase module. Through complementary experiments in vitro and in E. coli, the "split-and-stuttering" module was shown to catalyze up to five elongation cycles, although its dehydratase domain ceased to function after three cycles. Unexpectedly, the central olefinic group of this truncated product had a cis configuration. Our findings set the stage for further in-depth analysis of a structurally and functionally unusual PKS module with contextual biosynthetic plasticity.
Collapse
|
34
|
Qin Y, Yuan Z, Yang F, Yu Y. Development of a new type of Anhua black tea and its application: Black tea wine. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yang Qin
- College of Food and Chemical Engineering Shao Yang University Shao Yang Hunan Province China
| | - Zi‐jie Yuan
- College of Food and Chemical Engineering Shao Yang University Shao Yang Hunan Province China
| | - Feng‐ying Yang
- College of Food and Chemical Engineering Shao Yang University Shao Yang Hunan Province China
| | - You‐gui Yu
- College of Food and Chemical Engineering Shao Yang University Shao Yang Hunan Province China
| |
Collapse
|