1
|
Kario K, Williams B, Tomitani N, McManus RJ, Schutte AE, Avolio A, Shimbo D, Wang JG, Khan NA, Picone DS, Tan I, Charlton PH, Satoh M, Mmopi KN, Lopez-Lopez JP, Bothe TL, Bianchini E, Bhandari B, Lopez-Rivera J, Charchar FJ, Tomaszewski M, Stergiou G. Innovations in blood pressure measurement and reporting technology: International Society of Hypertension position paper endorsed by the World Hypertension League, European Society of Hypertension, Asian Pacific Society of Hypertension, and Latin American Society of Hypertension. J Hypertens 2024; 42:1874-1888. [PMID: 39246139 DOI: 10.1097/hjh.0000000000003827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 09/10/2024]
Abstract
Blood pressure (BP) is a key contributor to the lifetime risk of preclinical organ damage and cardiovascular disease. Traditional clinic-based BP readings are typically measured infrequently and under standardized/resting conditions and therefore do not capture BP values during normal everyday activity. Therefore, current hypertension guidelines emphasize the importance of incorporating out-of-office BP measurement into strategies for hypertension diagnosis and management. However, conventional home and ambulatory BP monitoring devices use the upper-arm cuff oscillometric method and only provide intermittent BP readings under static conditions or in a limited number of situations. New innovations include technologies for BP estimation based on processing of sensor signals supported by artificial intelligence tools, technologies for remote monitoring, reporting and storage of BP data, and technologies for BP data interpretation and patient interaction designed to improve hypertension management ("digital therapeutics"). The number and volume of data relating to new devices/technologies is increasing rapidly and will continue to grow. This International Society of Hypertension position paper describes the new devices/technologies, presents evidence relating to new BP measurement techniques and related indices, highlights standard for the validation of new devices/technologies, discusses the reliability and utility of novel BP monitoring devices, the association of these metrics with clinical outcomes, and the use of digital therapeutics. It also highlights the challenges and evidence gaps that need to be overcome before these new technologies can be considered as a user-friendly and accurate source of novel BP data to inform clinical hypertension management strategies.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Bryan Williams
- University College London (UCL) and National Insitute for Health Research UCL Hospitals Biomedical Research Centre, London, United Kingdom
| | - Naoko Tomitani
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Richard J McManus
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Aletta E Schutte
- School of Population Health, University of New South Wales; The George Institute for Global Health, Sydney, Australia
| | - Alberto Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Daichi Shimbo
- Hypertension Lab, Columbia University Irving Medical Center, New York, NY, USA
| | - Ji-Guang Wang
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, The Shanghai Institute of Hypertension, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nadia A Khan
- Center for Advancing Health Outcomes, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Dean S Picone
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Isabella Tan
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Michihiro Satoh
- Division of Public Health, Hygiene and Epidemiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Keneilwe Nkgola Mmopi
- Department of Biomedical Sciences, Faculty of Medicine. University of Botswana, Gaborone, Botswana
| | - Jose P Lopez-Lopez
- Masira Research Institute, Medical School, Universidad de Santander, Bucaramanga, Colombia
| | - Tomas L Bothe
- Charité - Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Elisabetta Bianchini
- Institute of Clinical Physiology, Italian National Research Council, Pisa, Italy
| | - Buna Bhandari
- Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Jesús Lopez-Rivera
- Unidad de Hipertension arterial, V departamento, Hospital Central San Cristobal, Tachira, Venezuela
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat
- Department of Physiology, University of Melbourne, Melbourne, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester
- Manchester Royal Infirmary, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - George Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| |
Collapse
|
2
|
Ulusoy-Gezer HG, Rakıcıoğlu N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr Nutr Rep 2024; 13:455-477. [PMID: 38806863 PMCID: PMC11327204 DOI: 10.1007/s13668-024-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW: The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
Collapse
Affiliation(s)
- Hande Gül Ulusoy-Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye
| | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
| |
Collapse
|
3
|
Qiu Y, Ma X, Li X, Fan S, Deng Z, Huang X. Non-Contact Blood Pressure Estimation From Radar Signals by a Stacked Deformable Convolution Network. IEEE J Biomed Health Inform 2024; 28:4553-4564. [PMID: 38743528 DOI: 10.1109/jbhi.2024.3400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study introduces a contactless blood pressure monitoring approach that combines conventional radar signal processing with novel deep learning architectures. During the preprocessing phase, datasets suitable for synchronization are created by integrating Kalman filtering, multiscale bandpass filters, and a periodic extraction method in the time domain. These data comprise data on chest micro variations, encapsulating a complex array of physiological and biomedical information reflective of cardiac micromotions. The Radar-based Stacked Deformable convolution Network (RSD-Net) integrates channel and spatial self attention mechanisms within a deformable convolutional framework to enhance feature extraction from radar signals. The network architecture systematically employs deformable convolutions for initial deep feature extraction from individual signals. Subsequently, continuous blood pressure estimation is conducted using self attention mechanisms on feature map from single source coupled with multi-feature map channel attention. The performance of model is corroborated via the open-source dataset procured using a non-invasive 24 GHz six-port continuous wave radar system. The dataset, encompassing readings from 30 healthy individuals subjected to diverse conditions including rest, the Valsalva maneuver, apnea, and tilt-table examinations. It serves to substantiate the validity and resilience of the proposed method in the non-contact assessment of continuous blood pressure. Evaluation metrics reveal Pearson correlation coefficients of 0.838 for systolic and 0.797 for diastolic blood pressure predictions. The Mean Error (ME) and Standard Deviation (SD) for systolic and diastolic blood pressure measurements are -0.32 ±6.14 mmHg and -0.20 ±5.50 mmHg, respectively. The ablation study assesses the contribution of different structural components of the RSD-Net, validating their significance in the overall of model performance.
Collapse
|
4
|
Kouz K, Thiele R, Michard F, Saugel B. Haemodynamic monitoring during noncardiac surgery: past, present, and future. J Clin Monit Comput 2024; 38:565-580. [PMID: 38687416 PMCID: PMC11164815 DOI: 10.1007/s10877-024-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
During surgery, various haemodynamic variables are monitored and optimised to maintain organ perfusion pressure and oxygen delivery - and to eventually improve outcomes. Important haemodynamic variables that provide an understanding of most pathophysiologic haemodynamic conditions during surgery include heart rate, arterial pressure, central venous pressure, pulse pressure variation/stroke volume variation, stroke volume, and cardiac output. A basic physiologic and pathophysiologic understanding of these haemodynamic variables and the corresponding monitoring methods is essential. We therefore revisit the pathophysiologic rationale for intraoperative monitoring of haemodynamic variables, describe the history, current use, and future technological developments of monitoring methods, and finally briefly summarise the evidence that haemodynamic management can improve patient-centred outcomes.
Collapse
Affiliation(s)
- Karim Kouz
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Robert Thiele
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | | | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
5
|
Noh SA, Kim HS, Kang SH, Yoon CH, Youn TJ, Chae IH. History and evolution of blood pressure measurement. Clin Hypertens 2024; 30:9. [PMID: 38556854 PMCID: PMC10983645 DOI: 10.1186/s40885-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Hypertension is the leading cause of morbidity and mortality worldwide. Hypertension mostly accompanies no symptoms, and therefore blood pressure (BP) measurement is the only way for early recognition and timely treatment. Methods for BP measurement have a long history of development and improvement. Invasive method via arterial cannulation was first proven possible in the 1800's. Subsequent scientific progress led to the development of the auscultatory method, also known as Korotkoff' sound, and the oscillometric method, which enabled clinically available BP measurement. However, hypertension management status is still poor. Globally, less than half of adults are aware of their hypertension diagnosis, and only one-third of them being treated are under control. Novel methods are actively investigated thanks to technological advances such as sensors and machine learning in addition to the clinical needs for easier and more convenient BP measurement. Each method adopts different technologies with its own specific advantages and disadvantages. Promises of novel methods include comprehensive information on out-of-office BP capturing dynamic short-term and long-term fluctuations. However, there are still pitfalls such as the need for regular calibration since most novel methods capture relative BP changes rather than an absolute value. In addition, there is growing concern on their accuracy and precision as conventional validation protocols are inappropriate for cuffless continuous methods. In this article, we provide a comprehensive overview of the past and present of BP measurement methods. Novel and emerging technologies are also introduced with respect to their potential applications and limitations.
Collapse
Affiliation(s)
- Su A Noh
- Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Hwang-Soo Kim
- Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Si-Hyuck Kang
- Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea.
- Department of Internal Medicine, Seoul National University, Seoul, South Korea.
| | - Chang-Hwan Yoon
- Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
- Department of Internal Medicine, Seoul National University, Seoul, South Korea
| | - Tae-Jin Youn
- Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
- Department of Internal Medicine, Seoul National University, Seoul, South Korea
| | - In-Ho Chae
- Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
- Department of Internal Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Gunasekaran D, Turner JM. Current and Developing Technologies for BP Monitoring. Curr Cardiol Rep 2023; 25:1151-1156. [PMID: 37698819 DOI: 10.1007/s11886-023-01956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE OF REVIEW To discuss new and emerging technologies for blood pressure measurement and monitoring, including the limitations of current blood pressure measurement techniques, hopes for new device technologies, and the current barriers impeding change in this space. RECENT FINDINGS A number of new cuffless devices are being developed and poised to emerge on the marketplace in coming years. There are several different types of technologies and sensors currently under study. New guidelines for validation of cuffless blood pressure devices have recently been developed in anticipation of this change. The current standards for blood pressure device validation are specific to cuff-based technology and are insufficient for validating devices with cuffless-based technologies. In anticipation of a number of new cuffless technologies coming to market in the coming years, three sets of standards have been developed and published in recent years to address this gap.
Collapse
Affiliation(s)
| | - Jeffrey M Turner
- Section of Nephrology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Yoon YH, Kim J, Lee KJ, Cho D, Oh JK, Kim M, Roh JH, Park HW, Lee JH. Blood Pressure Measurement Based on the Camera and Inertial Measurement Unit of a Smartphone: Instrument Validation Study. JMIR Mhealth Uhealth 2023; 11:e44147. [PMID: 37694382 PMCID: PMC10503482 DOI: 10.2196/44147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/13/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Background Even though several mobile apps that can measure blood pressure have been developed, the data about the accuracy of these apps are limited. Objective We assessed the accuracy of AlwaysBP (test) in blood pressure measurement compared with the standard, cuff-based, manual method of brachial blood pressure measurement (reference). Methods AlwaysBP is a smartphone software that estimates systolic blood pressure (SBP) and diastolic blood pressure (DBP) based on pulse transit time (PTT). PTT was calculated with a finger photoplethysmogram and seismocardiogram using, respectively, the camera and inertial measurement unit sensor of a commercially available smartphone. After calculating PTT, SBP and DBP were estimated via the Bramwell-Hill and Moens-Korteweg equations. A calibration process was carried out 3 times for each participant to determine the input parameters of the equations. This study was conducted from March to August 2021 at Chungnam National University Sejong Hospital with 87 participants aged between 19 and 70 years who met specific conditions. The primary analysis aimed to evaluate the accuracy of the test method compared with the reference method for the entire study population. The secondary analysis was performed to confirm the stability of the test method for up to 4 weeks in 15 participants. At enrollment, gender, arm circumference, and blood pressure distribution were considered according to current guidelines. Results Among the 87 study participants, 45 (52%) individuals were male, and the average age was 35.6 (SD 10.4) years. Hypertension was diagnosed in 14 (16%) participants before this study. The mean test and reference SBPs were 120.0 (SD 18.8) and 118.7 (SD 20.2) mm Hg, respectively (difference: mean 1.2, SD 7.1 mm Hg). The absolute differences between the test and reference SBPs were <5, <10, and <15 mm Hg in 57.5% (150/261), 84.3% (220/261 ), and 94.6% (247/261) of measurements. The mean test and reference DBPs were 80.1 (SD 12.6) and 81.1 (SD 14.4) mm Hg, respectively (difference: mean -1.0, SD 6.0 mm Hg). The absolute differences between the test and reference DBPs were <5, <10, and <15 mm Hg in 75.5% (197/261), 93.9% (245/261), and 97.3% (254/261) of measurements, respectively. The secondary analysis showed that after 4 weeks, the differences between SBP and DBP were 0.1 (SD 8.8) and -2.4 (SD 7.6) mm Hg, respectively. Conclusions AlwaysBP exhibited acceptable accuracy in SBP and DBP measurement compared with the standard measurement method, according to the Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization protocol criteria. However, further validation studies with a specific validation protocol designed for cuffless blood pressure measuring devices are required to assess clinical accuracy. This technology can be easily applied in everyday life and may improve the general population's awareness of hypertension, thus helping to control it.
Collapse
Affiliation(s)
- Yong-Hoon Yoon
- Chungnam National University Sejong Hospital, Sejong-Si, Republic of Korea
| | - Jongin Kim
- Deepmedi Research Institute of Technology, Seoul, Republic of Korea
| | - Kwang Jin Lee
- Deepmedi Research Institute of Technology, Seoul, Republic of Korea
| | - Dongrae Cho
- Deepmedi Research Institute of Technology, Seoul, Republic of Korea
| | - Jin Kyung Oh
- Chungnam National University Sejong Hospital, Sejong-Si, Republic of Korea
| | - Minsu Kim
- Chungnam National University Sejong Hospital, Sejong-Si, Republic of Korea
| | - Jae-Hyung Roh
- Chungnam National University Sejong Hospital, Sejong-Si, Republic of Korea
| | - Hyun Woong Park
- Chungnam National University Sejong Hospital, Sejong-Si, Republic of Korea
| | - Jae-Hwan Lee
- Chungnam National University Sejong Hospital, Sejong-Si, Republic of Korea
| |
Collapse
|
8
|
Wang H, Han M, Zhong C, Wang C, Chen R, Zhang G, Wang J, Wei R. Non-invasive continuous blood pressure prediction based on ECG and PPG fusion map. Med Eng Phys 2023; 119:104037. [PMID: 37634908 DOI: 10.1016/j.medengphy.2023.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
To achieve real-time blood pressure monitoring, a novel non-invasive method is proposed in this article. Electrocardiographic (ECG) and pulse wave signals (PPG) are fused from a multi-omics signal-level perspective. A physiological signal fusion matrix and fusion map, which can estimate the blood pressure of blood loss(BPBL), are constructed. The results demonstrate the efficacy of the fusion map model, with correlation values of 0.988 and 0.991 between the estimated BPBL and the true systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively. The root mean square errors for SBP and DBP were 3.21 mmHg and 3.00 mmHg, respectively. The model validation showed that the fusion map method is capable of simultaneous highlighting of the respective characteristics of ECG and PPG and their correlation, improving the utilization of the information and the accuracy of BPBL. This article validates that physiological signal fusion map can effectively improve the accuracy of BPBL estimation and provides a new perspective for the field of physiological information fusion.
Collapse
Affiliation(s)
- Huiquan Wang
- School of Life Sciences, TianGong University, Tianjin 300387, China; Tianjin Key Laboratory of Quality Control and Evaluation Technology for Medical Devices, Tianjin 300384, China
| | - Mengting Han
- School of Life Sciences, TianGong University, Tianjin 300387, China
| | - Chuwei Zhong
- School of Life Sciences, TianGong University, Tianjin 300387, China
| | - Cong Wang
- School of Life Sciences, TianGong University, Tianjin 300387, China
| | - Ruijuan Chen
- School of Life Sciences, TianGong University, Tianjin 300387, China; Tianjin Key Laboratory of Quality Control and Evaluation Technology for Medical Devices, Tianjin 300384, China
| | - Guang Zhang
- Institute of Medical Support, Academy of Military Sciences, Tianjin 300361, China
| | - Jinhai Wang
- School of Life Sciences, TianGong University, Tianjin 300387, China; Tianjin Key Laboratory of Quality Control and Evaluation Technology for Medical Devices, Tianjin 300384, China
| | - Ran Wei
- Beijing College of Social Administration (Training Center of the Ministry of Civil Affairs), Beijing 101601, China.
| |
Collapse
|
9
|
Bergholz A, Greiwe G, Kouz K, Saugel B. Continuous Blood Pressure Monitoring in Patients Having Surgery: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1299. [PMID: 37512110 PMCID: PMC10385393 DOI: 10.3390/medicina59071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/11/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Hypotension can occur before, during, and after surgery and is associated with postoperative complications. Anesthesiologists should thus avoid profound and prolonged hypotension. A crucial part of avoiding hypotension is accurate and tight blood pressure monitoring. In this narrative review, we briefly describe methods for continuous blood pressure monitoring, discuss current evidence for continuous blood pressure monitoring in patients having surgery to reduce perioperative hypotension, and expand on future directions and innovations in this field. In summary, continuous blood pressure monitoring with arterial catheters or noninvasive sensors enables clinicians to detect and treat hypotension immediately. Furthermore, advanced hemodynamic monitoring technologies and artificial intelligence-in combination with continuous blood pressure monitoring-may help clinicians identify underlying causes of hypotension or even predict hypotension before it occurs.
Collapse
Affiliation(s)
- Alina Bergholz
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gillis Greiwe
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Karim Kouz
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Kondo M, Yoshimoto S, Yamamoto A. Influence of Excitation Frequency on the Performance of Peripheral Blood Flow Imaging using Electrical Impedance Tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082592 DOI: 10.1109/embc40787.2023.10340141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This paper presents a method for selecting the efficient excitation frequency of Electrical Impedance Tomography (EIT) for imaging peripheral blood flow with high spatial-temporal performance. Using a simulation study, we selected the excitation frequency of 16 kHz to visualize the pulsation of arteries with a high sensitivity. We then conducted a subjective study using 16 electrodes and showed that the conductivity distribution is similar to the anatomical structure of the forearm. Moreover, the integrated conductivity spectrum showed a peak corresponding to a heart rate measurement obtained using a PPG sensor at the fingertip. Therefore, we conclude that this system can capture the spatial-temporal signals related to peripheral artery blood flow by using the selected excitation frequency.
Collapse
|
11
|
Seo S, Jo H, Kim J, Lee B, Bien F. An ultralow power wearable vital sign sensor using an electromagnetically reactive near field. Bioeng Transl Med 2023; 8:e10502. [PMID: 37206201 PMCID: PMC10189444 DOI: 10.1002/btm2.10502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Despite coronavirus disease 2019, cardiovascular disease, the leading cause of global death, requires timely detection and treatment for a high survival rate, underscoring the 24 h monitoring of vital signs. Therefore, telehealth using wearable devices with vital sign sensors is not only a fundamental response against the pandemic but a solution to provide prompt healthcare for the patients in remote sites. Former technologies which measured a couple of vital signs had features that disturbed practical applications to wearable devices, such as heavy power consumption. Here, we suggest an ultralow power (100 μW) sensor that collects all cardiopulmonary vital signs, including blood pressure, heart rate, and the respiration signal. The small and lightweight (2 g) sensor designed to be easily embedded in the flexible wristband generates an electromagnetically reactive near field to monitor the contraction and relaxation of the radial artery. The proposed ultralow power sensor measuring noninvasively continuous and accurate cardiopulmonary vital signs at once will be one of the most promising sensors for wearable devices to bring telehealth to our lives.
Collapse
Affiliation(s)
- Seoktae Seo
- Department of Electrical EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Hyunkyeong Jo
- Department of Electrical EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Jungho Kim
- Department of Electrical EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Bonyoung Lee
- Department of Electrical EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Franklin Bien
- Department of Electrical EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| |
Collapse
|
12
|
Yin J, Xu J, Ren TL. Recent Progress in Long-Term Sleep Monitoring Technology. BIOSENSORS 2023; 13:395. [PMID: 36979607 PMCID: PMC10046225 DOI: 10.3390/bios13030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Sleep is an essential physiological activity, accounting for about one-third of our lives, which significantly impacts our memory, mood, health, and children's growth. Especially after the COVID-19 epidemic, sleep health issues have attracted more attention. In recent years, with the development of wearable electronic devices, there have been more and more studies, products, or solutions related to sleep monitoring. Many mature technologies, such as polysomnography, have been applied to clinical practice. However, it is urgent to develop wearable or non-contacting electronic devices suitable for household continuous sleep monitoring. This paper first introduces the basic knowledge of sleep and the significance of sleep monitoring. Then, according to the types of physiological signals monitored, this paper describes the research progress of bioelectrical signals, biomechanical signals, and biochemical signals used for sleep monitoring. However, it is not ideal to monitor the sleep quality for the whole night based on only one signal. Therefore, this paper reviews the research on multi-signal monitoring and introduces systematic sleep monitoring schemes. Finally, a conclusion and discussion of sleep monitoring are presented to propose potential future directions and prospects for sleep monitoring.
Collapse
Affiliation(s)
- Jiaju Yin
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiandong Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Hu B, Kang X, Xu S, Zhu J, Yang L, Jiang C. Multiplex Chroma Response Wearable Hydrogel Patch: Visual Monitoring of Urea in Body Fluids for Health Prognosis. Anal Chem 2023; 95:3587-3595. [PMID: 36753619 DOI: 10.1021/acs.analchem.2c03806] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Visual wearable devices can rapid intuitively monitor biomarkers in body fluids to indicate the human health status and provide valuable reference for further medical diagnosis. However, unavoidable interference factors such as skin color, natural light, and background luminescence can interfere with the visualization accuracy of flexible wearable devices, limiting their practical sensing application. Here, we designed a wearable sensing patch via an embedded upconversion optical probe in a 3D porous polyacrylamide hydrogel, exhibiting a multiplex chroma response to urea based on the inner filter effect, which overcomes the susceptibility to external conditions due to its near-infrared excited luminescence and improves the resolution and accuracy of visual sensing. Furthermore, a highly compatible portable sensing platform combined with a smartphone was designed to achieve in situ rapid quantitative analysis of urea. The limit of detection values of the upconversion optical probe and hydrogel sensor are as low as 1.4 and 30 μM respectively, exhibiting the practicality in different scenarios. The designed sensing patch provides a convenient and accurate sensing strategy for the detection of biomarkers in body fluids and has the potential to be developed into a point-of-care device to provide disease early warning and clinical diagnosis.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Kang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiawei Zhu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
15
|
Huang Q, Wu C, Hou S, Yao K, Sun H, Wang Y, Chen Y, Law J, Yang M, Chan H, Roy VAL, Zhao Y, Wang D, Song E, Yu X, Lao L, Sun Y, Li WJ. Mapping of Spatiotemporal Auricular Electrophysiological Signals Reveals Human Biometric Clusters. Adv Healthc Mater 2022; 11:e2201404. [PMID: 36217916 PMCID: PMC11469291 DOI: 10.1002/adhm.202201404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/09/2022] [Indexed: 01/28/2023]
Abstract
Underneath the ear skin there are rich vascular network and sensory nerve branches. Hence, the 3D mapping of auricular electrophysiological signals can provide new biomedical perspectives. However, it is still extremely challenging for current sensing techniques to cover the entire ultra-curved auricle. Here, a 3D graphene-based ear-conformable sensing device with embedded and distributed 3D electrodes for full-auricle physiological monitoring is reported. As a proof-of-concept, spatiotemporal auricular electrical skin resistance (AESR) mapping is demonstrated for the first time, and human subject-specific AESR distributions are observed. From the data of more than 30 ears (both right and left ears), the auricular region-specific AESR changes after cycling exercise are observed in 98% of the tests and are clustered into four groups via machine learning-based data analyses. Correlations of AESR with heart rate and blood pressure are also studied. This 3D electronic platform and AESR-based biometrical findings show promising biomedical applications.
Collapse
Affiliation(s)
- Qingyun Huang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077P. R. China
- Department of Industrial Engineering and ManagementSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Cong Wu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077P. R. China
- Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE)Hong Kong Science ParkNew TerritoriesHong Kong999077P. R. China
| | - Senlin Hou
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Kuanming Yao
- Department of Biomedical EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Hui Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Yufan Wang
- Department of Industrial Engineering and ManagementSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yikai Chen
- Department of Industrial Engineering and ManagementSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Junhui Law
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoM5S 3G8Canada
| | - Mingxiao Yang
- Bendheim Integrative Medicine CenterMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Ho‐yin Chan
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077P. R. China
| | | | - Yuliang Zhao
- School of Control EngineeringNortheastern University at QinhuangdaoQinhuangdao066004P. R. China
| | - Dong Wang
- Department of Industrial Engineering and ManagementSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200438P. R. China
| | - Xinge Yu
- Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE)Hong Kong Science ParkNew TerritoriesHong Kong999077P. R. China
- Department of Biomedical EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Lixing Lao
- Virginia University of Integrative MedicineViennaVA22182USA
| | - Yu Sun
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoM5S 3G8Canada
| | - Wen Jung Li
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077P. R. China
- Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE)Hong Kong Science ParkNew TerritoriesHong Kong999077P. R. China
| |
Collapse
|
16
|
Caillat M, Degott J, Wuerzner A, Proençain M, Bonnier G, Knebel JF, Stoll C, Christen U, Durgnat V, Hofmann G, Burnier M, Wuerzner G, Schoettker P. Accuracy of blood pressure measurement across BMI categories using the OptiBP™ mobile application. Blood Press 2022; 31:288-296. [PMID: 36266938 DOI: 10.1080/08037051.2022.2132214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PURPOSE Obesity is a clear risk factor for hypertension. Blood pressure (BP) measurement in obese patients may be biased by cuff size and upper arm shape which may affect the accuracy of measurements. This study aimed to assess the accuracy of the OptiBP smartphone application for three different body mass index (BMI) categories (normal, overweight and obese). MATERIALS AND METHODS Participants with a wide range of BP and BMI were recruited at Lausanne University Hospital's hypertension clinic in Switzerland. OptiBP estimated BP by recording an optical signal reflecting light from the participants' fingertips into a smartphone camera. Age, sex and BP distribution were collected to fulfil the AAMI/ESH/ISO universal standards. Both auscultatory BP references and OptiBP BP were measured and compared using the simultaneous opposite arms method, as described in the 81060-2:2018 ISO norm. Subgroup analyses were performed for each BMI category. RESULTS We analyzed 414 recordings from 95 patients: 34 were overweight and 15 were obese. The OptiBP application had a performance acceptance rate of 82%. The mean and standard deviation (SD) differences between the optical BP estimations and the auscultatory reference rates (criterion 1) were respected in all subgroups: SBP mean value was 2.08 (SD 7.58); 1.32 (6.44); -2.29 (5.62) respectively in obese, overweight and normal weight subgroup. For criterion 2, which investigates the precision errors on an individual level, the threshold for systolic BP in the obese group was slightly above the requirement for this criterion. CONCLUSION This study demonstrated that the OptiBP application is easily applicable to overweight and obese participants. Differences between the reference measure and the OptiBP estimation were within ISO limits (criterion 1). In obese participants, the SD of mean error was outside criterion 2 limits. Whether auscultatory measurement, due to arm morphology or the OptiBP is associated with increasing bias in obese still needs to be studied.
Collapse
Affiliation(s)
- Mary Caillat
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Degott
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arlene Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Proençain
- Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Guillaume Bonnier
- Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | | | | | | | - Virginie Durgnat
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gregory Hofmann
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Schoettker
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
18
|
Liu Z, Zhou C, Wang H, He Y. Blood pressure monitoring techniques in the natural state of multi-scenes: A review. Front Med (Lausanne) 2022; 9:851172. [PMID: 36091712 PMCID: PMC9462511 DOI: 10.3389/fmed.2022.851172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Blood pressure is one of the basic physiological parameters of human physiology. Frequent and repeated measurement of blood pressure along with recording of environmental or other physiological parameters when measuring blood pressure may reveal important cardiovascular risk factors that can predict occurrence of cardiovascular events. Currently, wearable non-invasive blood pressure measurement technology has attracted much research attention. Several different technical routes have been proposed to solve the challenge between portability or continuity of measurement methods and medical level accuracy of measurement results. The accuracy of blood pressure measurement technology based on auscultation and oscillography has been clinically verified, while majority of other technical routes are being explored at laboratory or multi-center clinical demonstration stage. Normally, Blood pressure measurement based on oscillographic method outside the hospital can only be measured at intervals. There is a need to develop techniques for frequent and high-precision blood pressure measurement under natural conditions outside the hospital. In this paper, we discussed the current status of blood pressure measurement technology and development trends of blood pressure measurement technology in different scenarios. We focuses on the key technical challenges and the latest advances in the study of miniaturization devices based on oscillographic method at wrist and PTT related method at finger positions as well as technology processes. This study is of great significance to the application of high frequency blood pressure measurement technology.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Guangdong Transtek Medical Electronics Co., Ltd., Zhongshan, China
| | - Congcong Zhou
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hongwei Wang
- Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Hongwei Wang,
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Yong He,
| |
Collapse
|
19
|
Influence of Age on Magnitude and Timing of Vasodepression and Cardioinhibition in Tilt-Induced Vasovagal Syncope. JACC Clin Electrophysiol 2022; 8:997-1009. [DOI: 10.1016/j.jacep.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
|
20
|
Cuffless blood pressure measuring devices: review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens 2022; 40:1449-1460. [PMID: 35708294 DOI: 10.1097/hjh.0000000000003224] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Many cuffless blood pressure (BP) measuring devices are currently on the market claiming that they provide accurate BP measurements. These technologies have considerable potential to improve the awareness, treatment, and management of hypertension. However, recent guidelines by the European Society of Hypertension do not recommend cuffless devices for the diagnosis and management of hypertension. OBJECTIVE This statement by the European Society of Hypertension Working Group on BP Monitoring and Cardiovascular Variability presents the types of cuffless BP technologies, issues in their validation, and recommendations for clinical practice. STATEMENTS Cuffless BP monitors constitute a wide and heterogeneous group of novel technologies and devices with different intended uses. Cuffless BP devices have specific accuracy issues, which render the established validation protocols for cuff BP devices inadequate for their validation. In 2014, the Institute of Electrical and Electronics Engineers published a standard for the validation of cuffless BP devices, and the International Organization for Standardization is currently developing another standard. The validation of cuffless devices should address issues related to the need of individual cuff calibration, the stability of measurements post calibration, the ability to track BP changes, and the implementation of machine learning technology. Clinical field investigations may also be considered and issues regarding the clinical implementation of cuffless BP readings should be investigated. CONCLUSION Cuffless BP devices have considerable potential for changing the diagnosis and management of hypertension. However, fundamental questions regarding their accuracy, performance, and implementation need to be carefully addressed before they can be recommended for clinical use.
Collapse
|
21
|
Athaya T, Choi S. A Review of Noninvasive Methodologies to Estimate the Blood Pressure Waveform. SENSORS (BASEL, SWITZERLAND) 2022; 22:3953. [PMID: 35632360 PMCID: PMC9145242 DOI: 10.3390/s22103953] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 05/06/2023]
Abstract
Accurate estimation of blood pressure (BP) waveforms is critical for ensuring the safety and proper care of patients in intensive care units (ICUs) and for intraoperative hemodynamic monitoring. Normal cuff-based BP measurements can only provide systolic blood pressure (SBP) and diastolic blood pressure (DBP). Alternatively, the BP waveform can be used to estimate a variety of other physiological parameters and provides additional information about the patient's health. As a result, various techniques are being proposed for accurately estimating the BP waveforms. The purpose of this review is to summarize the current state of knowledge regarding the BP waveform, three methodologies (pressure-based, ultrasound-based, and deep-learning-based) used in noninvasive BP waveform estimation research and the feasibility of employing these strategies at home as well as in ICUs. Additionally, this article will discuss the physical concepts underlying both invasive and noninvasive BP waveform measurements. We will review historical BP waveform measurements, standard clinical procedures, and more recent innovations in noninvasive BP waveform monitoring. Although the technique has not been validated, it is expected that precise, noninvasive BP waveform estimation will be available in the near future due to its enormous potential.
Collapse
Affiliation(s)
| | - Sunwoong Choi
- School of Electrical Engineering, Kookmin University, Seoul 02707, Korea;
| |
Collapse
|
22
|
Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application. MICROMACHINES 2022; 13:mi13050784. [PMID: 35630251 PMCID: PMC9146494 DOI: 10.3390/mi13050784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023]
Abstract
The wearable device industry is on the rise, with technology applications ranging from wireless communication technologies to the Internet of Things. However, most of the wearable sensors currently on the market are expensive, rigid and bulky, leading to poor data accuracy and uncomfortable wearing experiences. Near-field communication sensors are low-cost, easy-to-manufacture wireless communication technologies that are widely used in many fields, especially in the field of wearable electronic devices. The integration of wireless communication devices and sensors exhibits tremendous potential for these wearable applications by endowing sensors with new features of wireless signal transferring and conferring radio frequency identification or near-field communication devices with a sensing function. Likewise, the development of new materials and intensive research promotes the next generation of ultra-light and soft wearable devices for healthcare. This review begins with an introduction to the different components of near-field communication, with particular emphasis on the antenna design part of near-field communication. We summarize recent advances in different wearable areas of near-field communication sensors, including structural design, material selection, and the state of the art of scenario-based development. The challenges and opportunities relating to wearable near-field communication sensors for healthcare are also discussed.
Collapse
|
23
|
Abstract
Cuffless blood pressure (BP) measurement has become a popular field due to clinical need and technological opportunity. However, no method has been broadly accepted hitherto. The objective of this review is to accelerate progress in the development and application of cuffless BP measurement methods. We begin by describing the principles of conventional BP measurement, outstanding hypertension/hypotension problems that could be addressed with cuffless methods, and recent technological advances, including smartphone proliferation and wearable sensing, that are driving the field. We then present all major cuffless methods under investigation, including their current evidence. Our presentation includes calibrated methods (i.e., pulse transit time, pulse wave analysis, and facial video processing) and uncalibrated methods (i.e., cuffless oscillometry, ultrasound, and volume control). The calibrated methods can offer convenience advantages, whereas the uncalibrated methods do not require periodic cuff device usage or demographic inputs. We conclude by summarizing the field and highlighting potentially useful future research directions. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - George S Stergiou
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece; ,
| | - Alberto P Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
24
|
Wang TW, Syu JY, Chu HW, Sung YL, Chou L, Escott E, Escott O, Lin TT, Lin SF. Intelligent Bio-Impedance System for Personalized Continuous Blood Pressure Measurement. BIOSENSORS 2022; 12:bios12030150. [PMID: 35323420 PMCID: PMC8946827 DOI: 10.3390/bios12030150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
Abstract
Continuous blood pressure (BP) measurement is crucial for long-term cardiovascular monitoring, especially for prompt hypertension detection. However, most of the continuous BP measurements rely on the pulse transit time (PTT) from multiple-channel physiological acquisition systems that impede wearable applications. Recently, wearable and smart health electronics have become significant for next-generation personalized healthcare progress. This study proposes an intelligent single-channel bio-impedance system for personalized BP monitoring. Compared to the PTT-based methods, the proposed sensing configuration greatly reduces the hardware complexity, which is beneficial for wearable applications. Most of all, the proposed system can extract the significant BP features hidden from the measured bio-impedance signals by an ultra-lightweight AI algorithm, implemented to further establish a tailored BP model for personalized healthcare. In the human trial, the proposed system demonstrates the BP accuracy in terms of the mean error (ME) and the mean absolute error (MAE) within 1.7 ± 3.4 mmHg and 2.7 ± 2.6 mmHg, respectively, which agrees with the criteria of the Association for the Advancement of Medical Instrumentation (AAMI). In conclusion, this work presents a proof-of-concept for an AI-based single-channel bio-impedance BP system. The new wearable smart system is expected to accelerate the artificial intelligence of things (AIoT) technology for personalized BP healthcare in the future.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (J.-Y.S.); (H.-W.C.); (Y.-L.S.); (L.C.)
| | - Jhen-Yang Syu
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (J.-Y.S.); (H.-W.C.); (Y.-L.S.); (L.C.)
| | - Hsiao-Wei Chu
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (J.-Y.S.); (H.-W.C.); (Y.-L.S.); (L.C.)
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (J.-Y.S.); (H.-W.C.); (Y.-L.S.); (L.C.)
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
- Cardiovascular Center, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
| | - Lin Chou
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (J.-Y.S.); (H.-W.C.); (Y.-L.S.); (L.C.)
| | - Endian Escott
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (E.E.); (O.E.)
| | - Olivia Escott
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (E.E.); (O.E.)
| | - Ting-Tse Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
- Cardiovascular Center, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
- College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10025, Taiwan
- Correspondence: (T.-T.L.); (S.-F.L.)
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (J.-Y.S.); (H.-W.C.); (Y.-L.S.); (L.C.)
- Correspondence: (T.-T.L.); (S.-F.L.)
| |
Collapse
|
25
|
Pi I, Pi I, Wu W. External factors that affect the photoplethysmography waveforms. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractPhotoplethysmography (PPG) is a simple and inexpensive technology used in many smart devices to monitor cardiovascular health. The PPG sensors use LED lights to penetrate into the bloodstream to detect the different blood volume changes in the tissue through skin contact by sensing the amount of light that hits the sensor. Typically, the data are displayed on a graph and it forms the pulse waveform. The information from the produced pulse waveform can be useful in calculating measurements that help monitor cardiovascular health, such as blood pressure. With many more people beginning to monitor their health status on their smart devices, it is extremely important that the PPG signal is accurate. Designing a simple experiment with standard laboratory equipment and commercial sensors, we wanted to find how external factors influence the results. In this study, it was found that external factors, touch force and temperature, can have a large impact on the resulting waveform, so the effects of those factors need to be considered in order for the information to become more reliable.
Collapse
|
26
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Abstract
Cardiovascular disease (CVD), which seriously threatens human health, can be prevented by blood pressure (BP) measurement. However, convenient and accurate BP measurement is a vital problem. Although the easily-collected pulse wave (PW)-based methods make it possible to monitor BP at all times and places, the current methods still require professional knowledge to process the medical data. In this paper, we combine the advantages of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, to propose a CNN-LSTM BP prediction method based on PW data. In detailed, CNN first extract features from PW data, and then the features are input into LSTM for further training. The numerical results based on real-life data sets show that the proposed method can achieve high predicted accuracy of BP while saving training time. As a result, CNN-LSTM can achieve convenient BP monitoring in daily health.
Collapse
|