1
|
Zhang F, Qu Z, Zeng J, Yu L, Zeng L, Li X. A novel goldfish orthotopic xenograft model of hepatocellular carcinoma developed to evaluate antitumor drug efficacy. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109998. [PMID: 39537120 DOI: 10.1016/j.fsi.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Tumor xenograft animal models play a crucial role in hepatocellular carcinoma (HCC) research. Mice xenograft models are time consuming, laborious and expensive while zebrafish tumor xenograft models are cost-effective and effortless. However, the development of orthotopic xenograft models for HCC in zebrafish embryos has been challenging due to the small size of zebrafish livers. In this study, we utilized 7-day-old goldfish embryos as hosts and successfully established an orthotopic xenograft model of HCC in goldfish livers. Through injecting fluorescence labeled HCC cells into the liver of goldfish, we could visualize the proliferation and migration of tumor cells in vivo. In addition, we found that the temperature of 36 °C was better for tumor cell survival in goldfish larvae compared to 28 °C, assessed by EdU and TUNEL assays. Moreover, macrophage infiltration in the goldfish liver could be evaluated by neutral red staining. Finally, we evaluated the efficacy of the targeted therapy drug Sorafenib and the traditional Chinese medicine, Huaier granules, alone or in combination in the goldfish HCC orthotopic xenograft model. We found that the combination therapy showed the best efficacy against HCC cells in terms of macrophage infiltration, polarization as well as tumor cells proliferation, metastasis and apoptosis. In conclusion, the proposed goldfish HCC orthotopic xenograft model opens new avenues for HCC related research, including evaluation of tumor progression, cell interactions in the immune microenvironment, drug efficacy, and screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China.
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Jing Zeng
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Lanxin Yu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| |
Collapse
|
2
|
Zong R, Wang R, Wu M, Ruan H, Ou W, Dong W, Zhang P, Fan S, Li J. Enhancement of the anticancer potential and biosafety of BSA-modified, bacterial membrane-coated curcumin nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114156. [PMID: 39137532 DOI: 10.1016/j.colsurfb.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Bacteria and bacterial components have been widely used as bionanocarriers to deliver drugs to treat tumors. In this study, we isolated bacterial outer membrane vesicles (OMVs) with good stability and high yield for macrophage polarization and cell recruitment. Using ultrasound baths, these bacterial OMVs were combined with curcumin nanoparticles (OMV CUR NPs), following which these nanoparticles were modified with bovine serum albumin (BSA) to achieve high biosafety and tumor-targeting effects. The particle size, PDI, and zeta potential of the BSA-OMV CUR NPs were 157.9 nm, 0.233, and -15.1 mV, respectively. The BSA-OMV CUR NPs exhibited high storage stability, low cytotoxicity, sustained release, enhanced cellular uptake of CUR, induction of tumor cell apoptosis, and inhibition of tumor cell proliferation and migration. By determining the survival rate, body length, heart rate, head size, eye size, and pericardium size of the zebrafish, we found that the BSA-OMV CUR NPs were safe for application in vivo. Moreover, an increase in antiproliferation, antiangiogenic and antimetastatic effects of BSA-OMV CUR NPs was demonstrated in wild-type and transgenic tumor-transplanted zebrafish embryos.
Collapse
Affiliation(s)
- Rui Zong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Rui Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Mengting Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Hainan Ruan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Wanqing Ou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Weiyu Dong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Peng Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
3
|
Lawrence JM, Tan SH, Kim DC, Tan KE, Schroeder SE, Yeo KS, Schaefer MA, Sosic AM, Zhu S. Diverse Engraftment Capability of Neuroblastoma Cell Lines in Zebrafish Larvae. Zebrafish 2024. [PMID: 39316469 DOI: 10.1089/zeb.2024.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Xenotransplantation of neuroblastoma cells into larval zebrafish allows the characterization of their in vivo tumorigenic abilities and high-throughput treatment screening. This established preclinical model traditionally relies on microinjection into the yolk or perivitelline space, leaving the engraftment ability of cells at the hindbrain ventricle (HBV) and pericardial space (PCS), sites valuable for evaluating metastasis, angiogenesis, and the brain microenvironment, unknown. To address this gap in knowledge, Casper zebrafish at 48 h postfertilization were microinjected with approximately 200 Kelly, Be(2)-C, SK-N-AS, or SY5Y cells into either the HBV or PCS. Fish were imaged at 1, 3, and 6 days postinjection and tumor growth was monitored at each timepoint. We hypothesized that engraftment ability and location preference would be cell line dependent. Kelly and SK-N-AS cells were able to engraft at both the HBV and PCS, with a near doubling in size of tumor volume during the 6 days observation period, with cells appearing to grow better in the HBV. Be(2)-C tumors remained static while SY5Y tumors decreased in size, with almost complete loss of volume at both sites. Therefore, the capability of neuroblastoma cell engraftment in zebrafish larvae is cell line dependent with a location preference.
Collapse
Affiliation(s)
- Josephine M Lawrence
- Department of Comparative Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shyang Hong Tan
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Daniel C Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ke-En Tan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sydney E Schroeder
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Madison A Schaefer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Alexis M Sosic
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Li R, Zhou N, Zhang C, Wu M, Xu W, Cheng J, Tao L, Li Z, Zhang Y. Cardiotoxicity risk induced by sanitary insecticide Dimefluthrin. CHEMOSPHERE 2024; 364:142910. [PMID: 39067820 DOI: 10.1016/j.chemosphere.2024.142910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Dimefluthrin (DIM) is a commonly utilized sanitary insecticide, predominantly employed for indoor pest management within residential and public environments directly interacting with human habitation. However, the usage of DIM is escalating with increasing mosquito resistance, prompting concerns about its health risks. Here, using zebrafish as a research model, we systematically evaluated DIM's impact on human health. Findings revealed significant health hazards during embryonic development, including reduced hatching rates, shortened body lengths, and organ malformations, notably affecting the heart. It was explored the mechanism of DIM-induced cardiotoxicity in zebrafish, and histopathological analyses revealed that DIM resulted in ventricular linearization in zebrafish embryos. Antioxidant enzyme activities were reduced and cardiac reactive oxygen species (ROS) accumulated after DIM exposure, suggesting clear signs of oxidative stress. Additionally, acridine orange (AO) staining and caspase-3 immunofluorescence demonstrated cardiac apoptosis in Tg (kdrl: EGFP) zebrafish. qPCR analysis implied that DIM induced apoptosis via the p53/Caspase pathway by up-regulating the expression levels of p53, cytochrome C (cyto-C), caspase-9, and caspase-3. Together, our work provided a systematic perspective on the cardiotoxicity of sanitary pesticides, which could offer opportunities for future risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Arner A, Ettinger A, Blaser BW, Schmid B, Jeremias I, Rostam N, Binder-Blaser V. In vivo monitoring of leukemia-niche interactions in a zebrafish xenograft model. PLoS One 2024; 19:e0309415. [PMID: 39213296 PMCID: PMC11364250 DOI: 10.1371/journal.pone.0309415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.
Collapse
Affiliation(s)
- Anja Arner
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Bradley Wayne Blaser
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irmela Jeremias
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Nadia Rostam
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
- Department of Biology, University of Sulaimani, Sulaymaniyah, Iraq
| | - Vera Binder-Blaser
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
| |
Collapse
|
6
|
Martínez-López MF, de Almeida CR, Fontes M, Mendes RV, Kaufmann SHE, Fior R. Macrophages directly kill bladder cancer cells through TNF signaling as an early response to BCG therapy. Dis Model Mech 2024; 17:dmm050693. [PMID: 39114912 PMCID: PMC11554267 DOI: 10.1242/dmm.050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 11/13/2024] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance. We developed a fast preclinical in vivo assay to visualize in real time and at single-cell resolution the initial interactions among bladder cancer cells, BCG and innate immunity using the zebrafish xenograft model. We show that BCG induced the recruitment and polarization of macrophages towards a pro-inflammatory phenotype, accompanied by induction of the inflammatory cytokines tnfa, il1b and il6 in the tumor microenvironment. Macrophages directly induced apoptosis of human cancer cells through zebrafish TNF signaling. Macrophages were crucial for this response as their depletion completely abrogated the BCG-induced phenotype. Contrary to the general concept that macrophage anti-tumoral activities mostly rely on stimulating an effective adaptive response, we demonstrate that macrophages alone can induce tumor apoptosis and clearance. Thus, our results revealed an additional step to the BCG-induced tumor immunity model, while providing proof-of-concept experiments demonstrating the potential of this unique model to test innate immunomodulators.
Collapse
Affiliation(s)
| | | | - Márcia Fontes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Raquel Valente Mendes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| |
Collapse
|
7
|
Michael C, Mendonça-Gomes JM, DePaolo CW, Di Cristofano A, de Oliveira S. A zebrafish xenotransplant model of anaplastic thyroid cancer to study tumor microenvironment and innate immune cell interactions in vivo. Endocr Relat Cancer 2024; 31:e230195. [PMID: 38657656 PMCID: PMC11160356 DOI: 10.1530/erc-23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Clinton Walton DePaolo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Fieuws C, Bek JW, Parton B, De Neef E, De Wever O, Hoorne M, Estrada MF, Van Dorpe J, Denys H, Van de Vijver K, Claes KBM. Zebrafish Avatars: Toward Functional Precision Medicine in Low-Grade Serous Ovarian Cancer. Cancers (Basel) 2024; 16:1812. [PMID: 38791891 PMCID: PMC11120355 DOI: 10.3390/cancers16101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, based on direct exposure of patient tissues to drugs. This especially holds promise for rare subtypes like low-grade serous ovarian cancer (LGSOC). This study aims to establish an in vivo model for LGSOC using zebrafish embryos, comparing treatment responses previously observed in mouse PDX models, cell lines and 3D tumor models. To address this goal, a well-characterized patient-derived LGSOC cell line with the KRAS mutation c.35 G>T (p.(Gly12Val)) was used. Fluorescently labeled tumor cells were injected into the perivitelline space of 2 days' post-fertilization zebrafish embryos. At 1 day post-injection, xenografts were assessed for tumor size, followed by random allocation into treatment groups with trametinib, luminespib and trametinib + luminespib. Subsequently, xenografts were euthanized and analyzed for apoptosis and proliferation by confocal microscopy. Tumor cells formed compact tumor masses (n = 84) in vivo, with clear Ki67 staining, indicating proliferation. Zebrafish xenografts exhibited sensitivity to trametinib and luminespib, individually or combined, within a two-week period, establishing them as a rapid and complementary tool to existing in vitro and in vivo models for evaluating targeted therapies in LGSOC.
Collapse
Affiliation(s)
- Charlotte Fieuws
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Bram Parton
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Elyne De Neef
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Olivier De Wever
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
| | - Milena Hoorne
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta F. Estrada
- Champalimaud Centre of the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kathleen B. M. Claes
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| |
Collapse
|
9
|
Fontana CM, Van Doan H. Zebrafish xenograft as a tool for the study of colorectal cancer: a review. Cell Death Dis 2024; 15:23. [PMID: 38195619 PMCID: PMC10776567 DOI: 10.1038/s41419-023-06291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 01/11/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death, mostly due to metastatic disease and the fact that many patients already show signs of metastasis at the time of first diagnosis. Current CRC therapies negatively impact patients' quality of life and have little to no effect on combating the tumor once the dissemination has started. Danio rerio (zebrafish) is a popular animal model utilized in cancer research. One of its main advantages is the ease of xenograft transplantation due to the fact that zebrafish larvae lack the adaptative immune system, guaranteeing the impossibility of rejection. In this review, we have presented the many works that choose zebrafish xenograft as a tool for the study of CRC, highlighting the methods used as well as the promising new therapeutic molecules that have been identified due to this animal model.
Collapse
Affiliation(s)
- Camilla Maria Fontana
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
10
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Features of the rare pathogen Meyerozyma guilliermondii strain SO and comprehensive in silico analyses of its adherence-contributing virulence factor agglutinin-like sequences. J Biomol Struct Dyn 2024:1-21. [PMID: 38189364 DOI: 10.1080/07391102.2023.2300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Kwiatkowska I, Hermanowicz JM, Czarnomysy R, Surażyński A, Kowalczuk K, Kałafut J, Przybyszewska-Podstawka A, Bielawski K, Rivero-Müller A, Mojzych M, Pawlak D. Assessment of an Anticancer Effect of the Simultaneous Administration of MM-129 and Indoximod in the Colorectal Cancer Model. Cancers (Basel) 2023; 16:122. [PMID: 38201550 PMCID: PMC10778160 DOI: 10.3390/cancers16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: The purpose of the given study was to examine the antitumor activity of the simultaneous administration of MM-129, a 1,2,4-triazine derivative, and indoximod (IND), the kynurenine pathway inhibitor, toward colon cancer. (2) Methods: The efficiency of the co-administration of the studied compounds was assessed in xenografted zebrafish embryos. Then, the effects of the combined administration of compounds on cellular processes such as cell viability, apoptosis, and intracellular signaling pathways were evaluated. In vitro studies were performed using two colorectal cancer cell lines, namely, DLD-1 and HT-29. (3) Results: The results indicated that the simultaneous application of MM-129 and indoximod induced a stronger inhibition of tumor growth in zebrafish xenografts. The combination of these compounds intensified the process of apoptosis by lowering the mitochondrial potential, enhancing the externalization of phosphatidylserine (PS) and activation of caspases. Additionally, the expression of protein kinase B (AKT) and indoleamine 2,3-dioxygenase-(1IDO1) was disrupted under the applied compound combination. (4) Conclusions: Simultaneous targeting of ongoing cell signaling that promotes tumor progression, along with inhibition of the kynurenine pathway enzyme IDO1, results in the enhancement of the antitumor effect of the tested compounds against the colon cancer cells.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Mariusz Mojzych
- Faculty of Health Science, Collegium Medicum, The Mazovian Academy in Plock, Plac Dabrowskiego 2, 09-402 Plock, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
12
|
Xu M, Zha H, Chen J, Lee SMY, Wang Q, Wang R, Zheng Y. "Ice and Fire" Supramolecular Cell-Conjugation Drug Delivery Platform for Deep Tumor Ablation and Boosted Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305287. [PMID: 37547984 DOI: 10.1002/adma.202305287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Cancer recurrence and metastasis are two major challenges in the current clinical therapy. In this work, a novel diketopyrrolopyrrole-based photothermal reagent (DCN) with unique J-aggregation-induced redshift is synthesized to achieve efficient tumor thermal ablation under safe power (0.33 W cm-2 ). Meanwhile, S-nitroso-N-acetylpenicillamine (SNAP) is co-loaded with near-infrared-absorbing DCN in amphiphilic polymers to realize heat-induced massive release of nitric oxide (NO), which can form oxidant peroxynitrite (ONOO- ) to active matrix metalloproteinases (MMPs), thereby degrading the compact tumor extracellular matrix to improve the ablation depth and infiltration of immune cells. Through a facile supramolecular assembly method, the DCN/SNAP nanoparticles are anchored to liquid-nitrogen-frozen cancer cells, achieving enhanced antitumor immune responses and effective inhibition of distant tumors and pulmonary metastases after only one treatment. The safety and effectiveness of this supramolecular cell-conjugation platform are verified by 2D/3D cellular experiments and bilateral tumor model, confirming the thermal-ablation-gas-permeation-antigen-presentation therapeutic mode has promising anticancer prospects.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Haidong Zha
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jiamao Chen
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qi Wang
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ruibing Wang
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| | - Ying Zheng
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| |
Collapse
|
13
|
Ding C, Du M, Xiong Z, Wang X, Li H, He E, Li H, Dang Y, Lu Q, Li S, Xiao R, Xu Z, Jing L, Deng L, Wang X, Geng M, Xie Z, Zhang A. Photochemically controlled activation of STING by CAIX-targeting photocaged agonists to suppress tumor cell growth. Chem Sci 2023; 14:5956-5964. [PMID: 37293644 PMCID: PMC10246697 DOI: 10.1039/d3sc01896b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Controllable activation of the innate immune adapter protein - stimulator of interferon genes (STING) pathway is a critical challenge for the clinical development of STING agonists due to the potential "on-target off-tumor" toxicity caused by systematic activation of STING. Herein, we designed and synthesized a photo-caged STING agonist 2 with a tumor cell-targeting carbonic anhydrase inhibitor warhead, which could be readily uncaged by blue light to release the active STING agonist leading to remarkable activation of STING signaling. Furthermore, compound 2 was found to preferentially target tumor cells, stimulate the STING signaling in zebrafish embryo upon photo-uncaging and to induce proliferation of macrophages and upregulation of the mRNA expression of STING as well as its downstream NF-kB and cytokines, thus leading to significant suppression of tumor cell growth in a photo-dependent manner with reduced systemic toxicity. This photo-caged agonist not only provides a powerful tool to precisely trigger STING signalling, but also represents a novel controllable STING activation strategy for safer cancer immunotherapy.
Collapse
Affiliation(s)
- Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
- Zhangjiang Institute of Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Mengyan Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 200031 China
| | - Zhi Xiong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
- School of Pharmacy, Nanchang University Jiangxi 330000 China
| | - Xue Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Hongji Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Ende He
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 200031 China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Qing Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Shicong Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Ruoxuan Xiao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Lili Jing
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Xiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| |
Collapse
|
14
|
Michael C, Di Cristofano A, de Oliveira S. A zebrafish xenotransplant model of anaplastic thyroid cancer to study the tumor microenvironment and innate immune cell interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541816. [PMID: 37398266 PMCID: PMC10312444 DOI: 10.1101/2023.05.29.541816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignant subtype of thyroid cancer. While ATC is rare it accounts for a disproportionately high number of thyroid cancer-related deaths. Here we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643) derived fluorescently labeled ATC cell lines we show these cell lines display different engraftment rates, mass volume, proliferation, and angiogenic potential. Next, using a PIP-FUCCI reporter to track proliferation in-vivo we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 hours to understand cellular dynamics in the tumor microenvironment at the single cell level. Lastly, we tested a well-known mTOR inhibitor to show our model could be used as an effective screening platform for new therapeutic compounds. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
15
|
Sturtzel C, Grissenberger S, Bozatzi P, Scheuringer E, Wenninger-Weinzierl A, Zajec Z, Dernovšek J, Pascoal S, Gehl V, Kutsch A, Granig A, Rifatbegovic F, Carre M, Lang A, Valtingojer I, Moll J, Lötsch D, Erhart F, Widhalm G, Surdez D, Delattre O, André N, Stampfl J, Tomašič T, Taschner-Mandl S, Distel M. Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts. NPJ Precis Oncol 2023; 7:44. [PMID: 37202469 DOI: 10.1038/s41698-023-00386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Zebrafish xenotransplantation models are increasingly applied for phenotypic drug screening to identify small compounds for precision oncology. Larval zebrafish xenografts offer the opportunity to perform drug screens at high-throughput in a complex in vivo environment. However, the full potential of the larval zebrafish xenograft model has not yet been realized and several steps of the drug screening workflow still await automation to increase throughput. Here, we present a robust workflow for drug screening in zebrafish xenografts using high-content imaging. We established embedding methods for high-content imaging of xenografts in 96-well format over consecutive days. In addition, we provide strategies for automated imaging and analysis of zebrafish xenografts including automated tumor cell detection and tumor size analysis over time. We also compared commonly used injection sites and cell labeling dyes and show specific site requirements for tumor cells from different entities. We demonstrate that our setup allows us to investigate proliferation and response to small compounds in several zebrafish xenografts ranging from pediatric sarcomas and neuroblastoma to glioblastoma and leukemia. This fast and cost-efficient assay enables the quantification of anti-tumor efficacy of small compounds in large cohorts of a vertebrate model system in vivo. Our assay may aid in prioritizing compounds or compound combinations for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- C Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - S Grissenberger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - P Bozatzi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - E Scheuringer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - A Wenninger-Weinzierl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Z Zajec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - S Pascoal
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - V Gehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - A Kutsch
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, TU Wien, Vienna, Austria
| | - A Granig
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, TU Wien, Vienna, Austria
| | - F Rifatbegovic
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - M Carre
- Service d'Hématologie & Oncologie Pédiatrique, Timone Hospital, AP-HM, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, CNRS, Inserm, Institut Paoli Calmettes, Marseille, France
| | - A Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - I Valtingojer
- Department of Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - J Moll
- Department of Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
- Renon Biotech and Pharma Consulting, Unterinn am Ritten (Bz), Italy
| | - D Lötsch
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - F Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - G Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - D Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - O Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - N André
- Service d'Hématologie & Oncologie Pédiatrique, Timone Hospital, AP-HM, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, CNRS, Inserm, Institut Paoli Calmettes, Marseille, France
| | - J Stampfl
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, TU Wien, Vienna, Austria
| | - T Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - S Taschner-Mandl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - M Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria.
| |
Collapse
|
16
|
You Y, Chen X, Chen X, Li H, Zhou R, Zhou J, Chen M, Peng B, Ji S, Kwan HY, Zou L, Yu J, Liu Y, Wu Y, Zhao X. Jiawei Yanghe Decoction suppresses breast cancer by regulating immune responses via JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116358. [PMID: 36933872 DOI: 10.1016/j.jep.2023.116358] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Yanghe Decoction (JWYHD) is a widely used traditional Chinese medicine prescription in the clinical setting for the treatment of autoimmune diseases. Many studies showed that JWYHD has anti-tumor activities in cell and animal models. However, the anti-breast cancer effects of JWYHD and the underlying mechanisms of action remain unknown. AIM OF STUDY This study aimed to determine the anti-breast cancer effect and reveal the underlying mechanisms of action in vivo, in vitro and in silico. MATERIALS AND METHODS Orthotopic xenograft breast cancer mouse model and inflammatory zebrafish model were used to observe the anti-tumor effect and immune cell regulation of JWYHD. Moreover, the anti-inflammatory effect of JWYHD were evaluated by the expression of RAW 264.7 cells. JWYHD active ingredients were obtained by UPLC-MS/MS and potential targets were screened by network pharmacology. The therapeutic targets and signaling pathways predicted by computer were assessed by Western blot, real-time PCR (RT-PCR), immunohistochemistry (IHC) staining, and Enzyme-linked immunosorbent assays (ELISA) to explore the therapeutic mechanism of JWYHD against breast cancer. At last, Colivelin and Stattic were used to explore the effect of JWYHD on JAK2/STAT3 pathway. RESULTS JWYHD significantly decreased the tumor growth in a dose-dependent manner in the orthotopic xenograft breast cancer mouse model. Flow cytometry and IHC results indicated that JWYHD decreased the expressions of M2 macrophages and Treg while increasing M1 macrophages. Meanwhile, ELISA and Western blot results showed a decrease in IL-1β, IL-6, TNFα, PTGS2 and VEGFα in tumor tissue of JWYHD groups. The results were also verified in LPS-induced RAW264.7 cells and zebrafish inflammatory models. TUNEL assay and IHC results showed that JWYHD significantly induced apoptosis. Seventy-two major compounds in JWYHD were identified by UPLC-MS/MS and Network pharmacology. It was found that the significant binding affinity of JWYHD to TNFα, PTGS2, EGFR, STAT3, VEGFα and their expressions were inhibited by JWYHD. IHC and Western blot analysis showed that JWYHD could decrease the expression of JAK2/STAT3 pathway. Furthermore, Colivelin could reverse the decrease effect of JWYHD in vitro. CONCLUSION JWYHD exerts a significant anti-tumor effect mainly by inhibiting inflammation, activating immune responses and inducing apoptosis via the JAK2/STAT3 signaling pathway. Our findings provide strong pharmacological evidence for the clinical application of JWYHD in the management of breast cancer.
Collapse
Affiliation(s)
- Yanting You
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523009, China.
| | - Xiaomei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Ruisi Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| | - Lifang Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jingtao Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yifen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523009, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Novel Zebrafish Patient-Derived Tumor Xenograft Methodology for Evaluating Efficacy of Immune-Stimulating BCG Therapy in Urinary Bladder Cancer. Cells 2023; 12:cells12030508. [PMID: 36766850 PMCID: PMC9914090 DOI: 10.3390/cells12030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) immunotherapy is the standard-of-care adjuvant therapy for non-muscle-invasive bladder cancer in patients at considerable risk of disease recurrence. Although its exact mechanism of action is unknown, BCG significantly reduces this risk in responding patients but is mainly associated with toxic side-effects in those facing treatment resistance. Methods that allow the identification of BCG responders are, therefore, urgently needed. METHODS Fluorescently labelled UM-UC-3 cells and dissociated patient tumor samples were used to establish zebrafish tumor xenograft (ZTX) models. Changes in the relative primary tumor size and cell dissemination to the tail were evaluated via fluorescence microscopy at three days post-implantation. The data were compared to the treatment outcomes of the corresponding patients. Toxicity was evaluated based on gross morphological evaluation of the treated zebrafish larvae. RESULTS BCG-induced toxicity was avoided by removing the water-soluble fraction of the BCG formulation prior to use. BCG treatment via co-injection with the tumor cells resulted in significant and dose-dependent primary tumor size regression. Heat-inactivation of BCG decreased this effect, while intravenous BCG injections were ineffective. ZTX models were successfully established for six of six patients based on TUR-B biopsies. In two of these models, significant tumor regression was observed, which, in both cases, corresponded to the treatment response in the patients. CONCLUSIONS The observed BCG-related anti-tumor effect indicates that ZTX models might predict the BCG response and thereby improve treatment planning. More experiments and clinical studies are needed, however, to elucidate the BCG mechanism and estimate the predictive value.
Collapse
|
18
|
Miserocchi G, Bocchini M, Cortesi M, Arienti C, De Vita A, Liverani C, Mercatali L, Bravaccini S, Ulivi P, Zanoni M. Combining preclinical tools and models to unravel tumor complexity: Jump into the next dimension. Front Immunol 2023; 14:1171141. [PMID: 37033986 PMCID: PMC10080004 DOI: 10.3389/fimmu.2023.1171141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Tumors are complex and heterogeneous diseases characterized by an intricate milieu and dynamically in connection with surrounding and distant tissues. In the last decades, great efforts have been made to develop novel preclinical models able to recapitulate the original features of tumors. However, the development of an in vitro functional and realistic tumor organ is still utopic and represents one of the major challenges to reproduce the architecture of the tumor ecosystem. A strategy to decrypt the whole picture and predict its behavior could be started from the validation of simplified biomimetic systems and then proceed with their integration. Variables such as the cellular and acellular composition of tumor microenvironment (TME) and its spatio-temporal distribution have to be considered in order to respect the dynamic evolution of the oncologic disease. In this perspective, we aim to explore the currently available strategies to improve and integrate in vitro and in vivo models, such as three-dimensional (3D) cultures, organoids, and zebrafish, in order to better understand the disease biology and improve the therapeutic approaches.
Collapse
Affiliation(s)
- Giacomo Miserocchi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Giacomo Miserocchi, ; Michele Zanoni,
| | - Martine Bocchini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Arienti
- Osteoncology and Rare Tumors Center, Immunotherapy, Cell Therapy and Biobank, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Liverani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Laura Mercatali
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Giacomo Miserocchi, ; Michele Zanoni,
| |
Collapse
|
19
|
Li X, Li M. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents. Med Res Rev 2023; 43:212-236. [PMID: 36029178 DOI: 10.1002/med.21924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Elsaid HOA, Tjeldnes H, Rivedal M, Serre C, Eikrem Ø, Svarstad E, Tøndel C, Marti HP, Furriol J, Babickova J. Gene Expression Analysis in gla-Mutant Zebrafish Reveals Enhanced Ca 2+ Signaling Similar to Fabry Disease. Int J Mol Sci 2022; 24:358. [PMID: 36613802 PMCID: PMC9820748 DOI: 10.3390/ijms24010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Fabry disease (FD) is an X-linked inborn metabolic disorder due to partial or complete lysosomal α-galactosidase A deficiency. FD is characterized by progressive renal insufficiency and cardio- and cerebrovascular involvement. Restricted access on Gb3-independent tissue injury experimental models has limited the understanding of FD pathophysiology and delayed the development of new therapies. Accumulating glycosphingolipids, mainly Gb3 and lysoGb3, are Fabry specific markers used in clinical follow up. However, recent studies suggest there is a need for additional markers to monitor FD clinical course or response to treatment. We used a gla-knockout zebrafish (ZF) to investigate alternative biomarkers in Gb3-free-conditions. RNA sequencing was used to identify transcriptomic signatures in kidney tissues discriminating gla-mutant (M) from wild type (WT) ZF. Gene Ontology (GO) and KEGG pathways analysis showed upregulation of immune system activation and downregulation of oxidative phosphorylation pathways in kidneys from M ZF. In addition, upregulation of the Ca2+ signaling pathway was also detectable in M ZF kidneys. Importantly, disruption of mitochondrial and lysosome-related pathways observed in M ZF was validated by immunohistochemistry. Thus, this ZF model expands the pathophysiological understanding of FD, the Gb3-independent effects of gla mutations could be used to explore new therapeutic targets for FD.
Collapse
Affiliation(s)
- Hassan Osman Alhassan Elsaid
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Tjeldnes
- Computational Biology Unit, Department of Informatics, University of Bergen, 5021 Bergen, Norway
| | - Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Camille Serre
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Øystein Eikrem
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
21
|
Segal D, Mazloom-Farsibaf H, Chang BJ, Roudot P, Rajendran D, Daetwyler S, Fiolka R, Warren M, Amatruda JF, Danuser G. In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish. J Cell Biol 2022; 221:213501. [PMID: 36155740 PMCID: PMC9516844 DOI: 10.1083/jcb.202109100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments.
Collapse
Affiliation(s)
- Dagan Segal
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
22
|
Inflammation- and Metastasis-Related Proteins Expression Changes in Early Stages in Tumor and Non-Tumor Adjacent Tissues of Colorectal Cancer Samples. Cancers (Basel) 2022; 14:cancers14184487. [PMID: 36139645 PMCID: PMC9497293 DOI: 10.3390/cancers14184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Non-tumor adjacent tissue plays a key role in colorectal cancer development, as well as chronic inflammation, but their role has not yet been dilucidated. In addition, inflammation is a process which is related to epithelial-mesenchymal transition and metastasis, but their changes across the different colorectal cancer stages are not fully studied. Understanding how these processes participate in all colorectal cancer phases can be key to a better understanding of the disease. Abstract Chronic inflammation can induce malignant cell transformation, having an important role in all colorectal cancer (CRC) phases. Non-tumor adjacent tissue plays an important role in tumor progression, but its implication in CRC has not yet been fully elucidated. The aim was to analyze the expression of inflammatory, epithelial-mesenchymal transition (EMT), and metastasis-related proteins in both tumor and non-tumor adjacent tissues from CRC patients by western blot. Tumor tissue presented an increase in metastasis and EMT-related proteins compared to non-tumor adjacent tissue, especially in stage II. Tumor tissue stage II also presented an increase in inflammatory-related proteins compared to other stages, which was also seen in non-tumor adjacent tissue stage II. Additionally, the relapse-free survival study of Vimentin and VEGF-B expression levels in stage II patients showed that the higher the expression levels of each protein, the lower 10-year relapse-free survival. These could suggest that some metastasis-related signalling pathways may be activated in stage II in tumor tissue, accompanied by an increase in inflammation. Furthermore, non-tumor adjacent tissue presented an increase of the inflammatory status that could be the basis for future tumor progression. In conclusion, these proteins could be useful as biomarkers of diagnosis for CRC at early stages.
Collapse
|
23
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
24
|
Wang Q, Wang W, Pan W, Lv X, Zhang L, Zheng K, Tian F, Xu C. Case Report: Two Patients With EGFR Exon 20 Insertion Mutanted Non-Small Cell Lung Cancer Precision Treatment Using Patient-Derived Xenografts in Zebrafish Embryos. Front Oncol 2022; 12:884798. [PMID: 35936715 PMCID: PMC9348893 DOI: 10.3389/fonc.2022.884798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) exon 20 insertion mutations are uncommon EGFR mutations and generally resistant to first- and second-generation EGFR-tyrosine kinase inhibitors (TKIs). In precision oncology, treatment regimens are tested for improving the clinical outcomes. Zebrafish embryo tumor transplant models are used in cancer research. Methods We report two Chinese females who were diagnosed with stage IV lung adenocarcinoma and shown to harbor EGFR exon 20 insertion mutations by next-generation sequencing (NGS). Then, we established lung cancer patient-derived xenografts using a zebrafish model. The tumor cells were isolated from the patient. For case one, tumor cells were collected from lymph node biopsy, while the tumor cells were obtained from the pleural effusion. Zebrafish were inoculated with tumor cells and placed in the culture medium containing the third-generation EGFR-TKI, osimertinib. Fluorescence microscope photographs were used to record the red fluorescence area, which represented the proliferation and migration of tumor cells in the zebrafish. Results Case one was diagnosed with lung adenocarcinoma (cT4N3M1b, stage IVB) and had an EGFR exon 20 mutation (p. N771delinsHH [abundance 14.08%]). Tumor cell proliferation and migration were significantly reduced in the osimertinib group compared with the control group. The patient received first-line osimertinib (160 mg). According to RECIST v1.1, she achieved a partial response. Case two had stage IVA lung adenocarcinoma with a pleural effusion. The pleural effusion sample was selected to obtain tumor cells for injection, and the zebrafish lung cancer model was established. The proliferation of tumor cells in the osimertinib group was significantly reduced compared to the control group. The migration of tumor cells was not significantly reduced compared to the control group. The patient also received first-line osimertinib (160 mg). The lung lesions were stable, but the pleural effusion was poorly controlled. Conclusion Our study demonstrates the applicability of a zebrafish embryos model as an innovative platform to targeted drug testing. More precise methods are needed to select treatment options in the future.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian Hospital of Chinese Medicine, Suqian, China
| | - Wenxian Wang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaojing Lv
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lei Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian Hospital of Chinese Medicine, Suqian, China
| | - Kaiming Zheng
- Department of Geriatric Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- *Correspondence: Chunwei Xu, ; Fang Tian,
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Chunwei Xu, ; Fang Tian,
| |
Collapse
|
25
|
Myllymäki H, Yu PP, Feng Y. Opportunities presented by zebrafish larval models to study neutrophil function in tissues. Int J Biochem Cell Biol 2022; 148:106234. [PMID: 35667555 DOI: 10.1016/j.biocel.2022.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Appropriate neutrophil function is essential for innate immune defence and to avoid inflammatory pathology. Neutrophils can adapt their responses according to their environment and recently, the existence of multiple distinct neutrophil populations has been confirmed in both health and disease. However, the study of neutrophil functions in their tissue environment has remained challenging, and for instance, the relationship between neutrophil maturity and function is not fully understood. Many neutrophil morphological and functional features are highly conserved between mammals and non-mammalian vertebrates. This enables the use of the transparent and genetically tractable zebrafish larvae to study neutrophil biology. We review data on the development and function of zebrafish larval neutrophils and advances zebrafish have brought to studies of neutrophil biology. In addition, we discuss opportunities and aspects to be considered when using the larval zebrafish model to further enhance our understanding of neutrophil function in health and disease.
Collapse
Affiliation(s)
- Henna Myllymäki
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Peiyi Pearl Yu
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
26
|
Wang X, Li W, Jiang H, Ma C, Huang M, Wei X, Wang W, Jing L. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci 2022; 23:6442. [PMID: 35742884 PMCID: PMC9224329 DOI: 10.3390/ijms23126442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has up to half the tumor mass of tumor-associated myeloid cells. Myeloid innate immune cells play important roles in regulating cancer cell recognition and tumor growth. PDAC cells often mold myeloid cells into pro-tumoral state to fuel cancer growth and induce immune suppression. However, how tumor cells educate the innate immune responses remains largely unknown. In this study, we used four different human PDAC cell lines (PANC1, BxPC3, AsPC1, and CFPAC1) to establish the zebrafish xenograft model and investigated the interaction between pancreatic cancer and innate immune cells. The primary tumor-derived cancer cells PANC1 and BxPC3 activated innate immune anti-tumoral responses efficiently, while cancer cells from metastatic tissues AsPC1 and CFPAC1 induced an innate immune suppression and educated innate immune cells towards pro-tumoral state. Chemical conversion of innate immune cells to anti-tumoral state inhibited tumor growth for AsPC1 and CFPAC1. Moreover, genetic and pharmacological inhibition of macrophages also significantly reduced tumor growth, supporting the important roles of macrophages in innate immune suppression. REG4 expression is high in AsPC1 and CFPAC1. Knockdown of REG4 induced innate immune activation and reduced tumor growth in the xenografts, indicating that REG4 is a beneficial target for PDAC therapy. Our study provides a fast in-vivo model to study PDAC-innate immune interaction and their plasticity that could be used to study the related mechanism as well as identify new drugs to enhance immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (W.L.); (H.J.); (C.M.); (M.H.); (X.W.); (W.W.)
| |
Collapse
|
27
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
28
|
Xiao J, McGill JR, Nasir A, Lekan A, Johnson B, Wilkins DJ, Pearson GW, Tanner K, Goodarzi H, Glasgow E, Schlegel R, Agarwal S. Identifying drivers of breast cancer metastasis in progressively invasive subpopulations of zebrafish-xenografted MDA-MB-231. MOLECULAR BIOMEDICINE 2022; 3:16. [PMID: 35614362 PMCID: PMC9133282 DOI: 10.1186/s43556-022-00080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes. Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Joseph R McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander Lekan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Eric Glasgow
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.
| |
Collapse
|
29
|
Chu J, Gao F, Yan M, Zhao S, Yan Z, Shi B, Liu Y. Natural killer cells: a promising immunotherapy for cancer. J Transl Med 2022; 20:240. [PMID: 35606854 PMCID: PMC9125849 DOI: 10.1186/s12967-022-03437-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.
Collapse
Affiliation(s)
- Junfeng Chu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meimei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Shuang Zhao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Zheng Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Bian Shi
- Department of Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Yanyan Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
30
|
Hason M, Jovicic J, Vonkova I, Bojic M, Simon-Vermot T, White RM, Bartunek P. Bioluminescent Zebrafish Transplantation Model for Drug Discovery. Front Pharmacol 2022; 13:893655. [PMID: 35559262 PMCID: PMC9086674 DOI: 10.3389/fphar.2022.893655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jovana Jovicic
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vonkova
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Bojic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Theresa Simon-Vermot
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard M. White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
31
|
Li M, Zhao X, Xie J, Tong X, Shan J, Shi M, Wang G, Ye W, Liu Y, Unger BH, Cheng Y, Zhang W, Wu N, Xia XQ. Dietary Inclusion of Seabuckthorn ( Hippophae rhamnoides) Mitigates Foodborne Enteritis in Zebrafish Through the Gut-Liver Immune Axis. Front Physiol 2022; 13:831226. [PMID: 35464096 PMCID: PMC9019508 DOI: 10.3389/fphys.2022.831226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
To help prevent foodborne enteritis in aquaculture, several feed additives, such as herbal medicine, have been added to fish diets. Predictions of effective herb medicines for treating fish foodborne enteritis from key regulated DEGs (differentially expressed genes) in transcriptomic data can aid in the development of feed additives using the Traditional Chinese Medicine Integrated Database. Seabuckthorn has been assessed as a promising candidate for treating grass carp soybean-induced enteritis (SBMIE). In the present study, the SBMIE zebrafish model was used to assess seabuckthorn's therapeutic or preventative effects. The results showed that intestinal and hepatic inflammation was reduced when seabuckthorn was added, either pathologically (improved intestinal villi morphology, less oil-drops) or growth-related (body fat deposition). Moreover, seabuckthorn may block the intestinal p53 signaling pathway, while activating the PPAR signaling pathway and fatty acid metabolism in the liver. 16S rRNA gene sequencing results also indicated a significant increase in OTU numbers and skewed overlapping with the fish meal group following the addition of seabuckthorn. Additionally, there were signs of altered gut microbiota taxa composition, particularly for reduced TM7, Sphingomonas, and Shigella, following the addition of seabuckthorn. Hindgut imaging of fluorescent immune cells in SBMIE larvae revealed the immune regulatory mechanisms at the cellular level. Seabuckthorn may significantly inhibit the inflammatory gathering of neutrophils, macrophages, and mature T cells, as well as cellular protrusions' formation. On the other hand, in larvae, seabuckthorn inhibited the inflammatory aggregation of lck+ T cells but not immature lymphocytes, indicating that it affected intestinal adaptive immunity. Although seabuckthorn did not affect the distribution of intestinal CD4+ cells, the number of hepatic CD4+ cells were reduced in fish from the seabuckthorn supplementation group. Thus, the current data indicate that seabuckthorn may alleviate foodborne gut-liver symptoms by enhancing intestinal mucosal immunity and microbiota while simultaneously inhibiting hepatic adipose disposition, making it a potential additive for preventing fish foodborne gut-liver symptoms.
Collapse
Affiliation(s)
- Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | | | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Costa B, Estrada MF, Barroso MT, Fior R. Zebrafish Patient-Derived Avatars from Digestive Cancers for Anti-cancer Therapy Screening. Curr Protoc 2022; 2:e415. [PMID: 35436037 DOI: 10.1002/cpz1.415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patient-derived xenografts (PDXs), also called "avatars," are generated by the implantation of human primary tumor cells or tissues into a host animal. Given the complexity and unique characteristics of each tumor, PDXs are models of choice in cancer research and precision medicine. In this context, the zebrafish PDX model (zPDX or zAvatar) has been recognized as a promising in vivo model to directly challenge patient cells with anti-cancer therapies in a personalized manner. The assay relies on the injection of tumor cells from patients into zebrafish embryos to then test and identify the best available drug combination for a particular patient. Compared to mouse PDXs, zAvatar assays take less time and do not require in vitro or in vivo cell expansion. The present article describes how to generate zAvatars from resected digestive cancer from surgeries and how to then use them for anti-cancer therapy screening. We describe the steps for tumor sample collection and cryopreservation, sample preparation and fluorescent labeling for microinjection into zebrafish embryos, drug administration, and analysis of tumor behavior by single-cell confocal imaging. We provide detailed protocols and helpful tips for performing this assay, and we address the technical challenges associated with the workflow. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Patient tumor sample collection and cryopreservation Basic Protocol 2: Generation of zAvatars and anti-cancer treatment Basic Protocol 3: Whole-mount immunofluorescence Basic Protocol 4: Confocal imaging and analysis.
Collapse
Affiliation(s)
- Bruna Costa
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | - Marta F Estrada
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | | | - Rita Fior
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| |
Collapse
|
33
|
Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today 2022; 27:1513-1522. [DOI: 10.1016/j.drudis.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
34
|
Codolo G, Facchinello N, Papa N, Bertocco A, Coletta S, Benna C, Dall’Olmo L, Mocellin S, Tiso N, de Bernard M. Macrophage-Mediated Melanoma Reduction after HP-NAP Treatment in a Zebrafish Xenograft Model. Int J Mol Sci 2022; 23:ijms23031644. [PMID: 35163566 PMCID: PMC8836027 DOI: 10.3390/ijms23031644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/02/2023] Open
Abstract
The Helicobacter pylori Neutrophil Activating Protein (HP-NAP) is endowed with immunomodulatory properties that make it a potential candidate for anticancer therapeutic applications. By activating cytotoxic Th1 responses, HP-NAP inhibits the growth of bladder cancer and enhances the anti-tumor activity of oncolytic viruses in the treatment of metastatic breast cancer and neuroendocrine tumors. The possibility that HP-NAP exerts its anti-tumor effect also by modulating the activity of innate immune cells has not yet been explored. Taking advantage of the zebrafish model, we examined the therapeutic efficacy of HP-NAP against metastatic human melanoma, limiting the observational window to 9 days post-fertilization, well before the maturation of the adaptive immunity. Human melanoma cells were xenotransplanted into zebrafish embryos and tracked in the presence or absence of HP-NAP. The behavior and phenotype of macrophages and the impact of their drug-induced depletion were analyzed exploiting macrophage-expressed transgenes. HP-NAP administration efficiently inhibited tumor growth and metastasis and this was accompanied by strong recruitment of macrophages with a pro-inflammatory profile at the tumor site. The depletion of macrophages almost completely abrogated the ability of HP-NAP to counteract tumor growth. Our findings highlight the pivotal role of activated macrophages in counteracting melanoma growth and support the notion that HP-NAP might become a new biological therapeutic agent for the treatment of metastatic melanomas.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Nicole Papa
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.D.); (S.M.)
| | - Ambra Bertocco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Sara Coletta
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35124 Padova, Italy;
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.D.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35124 Padova, Italy;
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.D.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35124 Padova, Italy;
| | - Natascia Tiso
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
- Correspondence: (N.T.); (M.d.B.)
| | - Marina de Bernard
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
- Correspondence: (N.T.); (M.d.B.)
| |
Collapse
|
35
|
Preclinical testing of CAR T cells in zebrafish xenografts. Methods Cell Biol 2022; 167:133-147. [DOI: 10.1016/bs.mcb.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Weiss JM, Lumaquin-Yin D, Montal E, Suresh S, Leonhardt CS, White RM. Shifting the focus of zebrafish toward a model of the tumor microenvironment. eLife 2022; 11:69703. [PMID: 36538362 PMCID: PMC9767465 DOI: 10.7554/elife.69703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells exist in a complex ecosystem with numerous other cell types in the tumor microenvironment (TME). The composition of this tumor/TME ecosystem will vary at each anatomic site and affects phenotypes such as initiation, metastasis, and drug resistance. A mechanistic understanding of the large number of cell-cell interactions between tumor and TME requires models that allow us to both characterize as well as genetically perturb this complexity. Zebrafish are a model system optimized for this problem, because of the large number of existing cell-type-specific drivers that can label nearly any cell in the TME. These include stromal cells, immune cells, and tissue resident normal cells. These cell-type-specific promoters/enhancers can be used to drive fluorophores to facilitate imaging and also CRISPR cassettes to facilitate perturbations. A major advantage of the zebrafish is the ease by which large numbers of TME cell types can be studied at once, within the same animal. While these features make the zebrafish well suited to investigate the TME, the model has important limitations, which we also discuss. In this review, we describe the existing toolset for studying the TME using zebrafish models of cancer and highlight unique biological insights that can be gained by leveraging this powerful resource.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Dianne Lumaquin-Yin
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Emily Montal
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Shruthy Suresh
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Carl S Leonhardt
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States,Department of Medicine, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
37
|
Fan RY, Wu JQ, Liu YY, Liu XY, Qian ST, Li CY, Wei P, Song Z, He MF. Zebrafish xenograft model for studying mechanism and treatment of non-small cell lung cancer brain metastasis. J Exp Clin Cancer Res 2021; 40:371. [PMID: 34801071 PMCID: PMC8605597 DOI: 10.1186/s13046-021-02173-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Brain metastasis (BM) is thought to be related to the mortality and poor prognosis of non-small cell lung cancer (NSCLC). Despite promising development of NSCLC treatment, the treatment of NSCLC BM is still not optimistic due to the existence of the blood-brain barrier (BBB) that prevent drug penetration, as well as the short median survival time of the patients left for treatment. In this context, further development of quick and effective pre-clinical models is needed in NSCLC BM treatment. Here, we report a model system using zebrafish to promote the development of drugs for patients with NSCLC BM. Methods Three different NSCLC cell lines (H1975, A549 and H1299) were used to establish zebrafish BM models. The embryo age and cell number for injection were first optimized. Metastatic cells were observed in the brain blood vessels of zebrafish and were verified by hematoxylin-eosin (HE) staining. Then, the metastasis potentials of H1975 and A549 with manipulated microRNA-330-3p (miR-330-3p) expression were also investigated. Finally, sensitivities of H1975 and A549 to osimertinib and gefitinib were tested. Results This zebrafish BM model could distinguish NSCLC cell lines with different BM potential. Over-expressed miR-330-p significantly improved the BM potential of the A549 cells while knockdown miR-330-p reduced the BM ability of the H1975 cells. Both osimertinib and gefitinib showed inhibition effect in zebrafish BM model with the inhibition rate higher than 50 %. H1975 cell showed much higher sensitivity to osimertinib rather than gefitinib both in vivo and in vitro. Conclusions We established zebrafish brain metastasis model for studying mechanism and treatment of NSCLC BM. This study provided a useful model for NSCLC brain metastasis that could be used to study the mechanism that drive NSCLC cells to the brain as well as identify potential therapeutic options. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02173-5.
Collapse
Affiliation(s)
- Ruo-Yue Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Jia-Qi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Yu-Yang Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China.,Jiangsu Tripod Preclinical Research Laboratory Co. Ltd, 211816, Nanjing, China
| | - Xiang-Yu Liu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, 210023, Nanjing, China
| | - Si-Tong Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Chong-Yong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Zhe Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 210009, Nanjing, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China.
| |
Collapse
|
38
|
Belo MAA, Oliveira MF, Oliveira SL, Aracati MF, Rodrigues LF, Costa CC, Conde G, Gomes JMM, Prata MNL, Barra A, Valverde TM, de Melo DC, Eto SF, Fernandes DC, Romero MGMC, Corrêa Júnior JD, Silva JO, Barros ALB, Perez AC, Charlie-Silva I. Zebrafish as a model to study inflammation: A tool for drug discovery. Biomed Pharmacother 2021; 144:112310. [PMID: 34678720 DOI: 10.1016/j.biopha.2021.112310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
This study aims to demonstrate the applicability and importance of zebrafish (Danio rerio) model to study acute and chronic inflammatory responses induced by different stimuli: carrageenan phlogogen (nonimmune); acute infection by bacteria (immune); foreign body reaction (chronic inflammation by round glass coverslip implantation); reaction induced by xenotransplantation. In addition to the advantages of presenting low breeding cost, high prolificity, transparent embryos, high number of individuals belonging to the same spawning and high genetic similarity that favor translational responses to vertebrate organisms like humans, zebrafish proved to be an excellent tool, allowing the evaluation of edema formation, accumulation of inflammatory cells in the exudate, mediators, signaling pathways, gene expression and production of specific proteins. Our studies demonstrated the versatility of fish models to investigate the inflammatory response and its pathophysiology, essential for the successful development of studies to discover innovative pharmacological strategies.
Collapse
Affiliation(s)
- Marco A A Belo
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil; Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Melque F Oliveira
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil
| | - Susana L Oliveira
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Mayumi F Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Letícia F Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Camila C Costa
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Juliana M M Gomes
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana N L Prata
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ayslan Barra
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thalita M Valverde
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniela C de Melo
- Department of zootechnics at the Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Silas F Eto
- Postgraduate Program in Health Sciences - PROCISA, Federal University of Roraima, Brazil
| | | | - Marina G M C Romero
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - José D Corrêa Júnior
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana O Silva
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andre L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andrea C Perez
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, University of São Paulo (ICB-USP), São Paulo, Brazil.
| |
Collapse
|
39
|
Letrado P, Mole H, Montoya M, Palacios I, Barriuso J, Hurlstone A, Díez-Martínez R, Oyarzabal J. Systematic Roadmap for Cancer Drug Screening Using Zebrafish Embryo Xenograft Cancer Models: Melanoma Cell Line as a Case Study. Cancers (Basel) 2021; 13:cancers13153705. [PMID: 34359605 PMCID: PMC8345186 DOI: 10.3390/cancers13153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, there is no consensus in the scientific literature regarding the zebrafish embryo xenotransplantation procedure for drug screening. Thus, this study sets systematic guidelines for maximizing the reproducibility of drug screening in zebrafish-embryo cancer xenograft models based on evaluating every step of the procedure in a real case scenario in which the chemical properties of the compounds are unknown or not optimal. It aims to be a stepping stone to bring the versatility of zebrafish embryos to drug screening for cancer. The present work helps our group to pursue the objective of establishing zebrafish embryos as a valuable alternative to mice models; and hopefully, will help other groups in this field to progress in the same direction. Abstract Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns. Thus, we explored the following crucial factors: (i) user-independent inclusion criteria, focusing on sample homogeneity; (ii) metric definition for data analysis; (iii) tumor engraftment criteria; (iv) image analysis versus quantification of human cancer cells using qPCR (RNA and gDNA); (v) tumor implantation sites; (vi) compound distribution (intratumoral administration versus alternative inoculation sites); and (vii) efficacy (intratumoral microinjection versus compound solution in media). Based on these analyses and corresponding assessments, we propose the first roadmap for systematic drug discovery screening in zebrafish xenograft cancer models using a melanoma cell line as a case study. This study aims to help the wider cancer research community to consider the adoption of this versatile model for cancer drug screening projects.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| | - Holly Mole
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
| | - María Montoya
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Irene Palacios
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Jorge Barriuso
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Adam Hurlstone
- Division of Infection, Immunology and Respiratory Medicine, School of Biological Science, The University of Manchester, Manchester M13 9PT, UK;
| | - Roberto Díez-Martínez
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
| | - Julen Oyarzabal
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| |
Collapse
|
40
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
41
|
Durinikova E, Buzo K, Arena S. Preclinical models as patients' avatars for precision medicine in colorectal cancer: past and future challenges. J Exp Clin Cancer Res 2021; 40:185. [PMID: 34090508 PMCID: PMC8178911 DOI: 10.1186/s13046-021-01981-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a complex and heterogeneous disease, characterized by dismal prognosis and low survival rate in the advanced (metastatic) stage. During the last decade, the establishment of novel preclinical models, leading to the generation of translational discovery and validation platforms, has opened up a new scenario for the clinical practice of CRC patients. To bridge the results developed at the bench with the medical decision process, the ideal model should be easily scalable, reliable to predict treatment responses, and flexibly adapted for various applications in the research. As such, the improved benefit of novel therapies being tested initially on valuable and reproducible preclinical models would lie in personalized treatment recommendations based on the biology and genomics of the patient's tumor with the overall aim to avoid overtreatment and unnecessary toxicity. In this review, we summarize different in vitro and in vivo models, which proved efficacy in detection of novel CRC culprits and shed light into the biology and therapy of this complex disease. Even though cell lines and patient-derived xenografts remain the mainstay of colorectal cancer research, the field has been confidently shifting to the use of organoids as the most relevant preclinical model. Prioritization of organoids is supported by increasing body of evidence that these represent excellent tools worth further therapeutic explorations. In addition, novel preclinical models such as zebrafish avatars are emerging as useful tools for pharmacological interrogation. Finally, all available models represent complementary tools that can be utilized for precision medicine applications.
Collapse
Affiliation(s)
- Erika Durinikova
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Kristi Buzo
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
| |
Collapse
|
42
|
López-Cuevas P, Cross SJ, Martin P. Modulating the Inflammatory Response to Wounds and Cancer Through Infection. Front Cell Dev Biol 2021; 9:676193. [PMID: 33996835 PMCID: PMC8120001 DOI: 10.3389/fcell.2021.676193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
The zebrafish (Danio rerio) has recently emerged as an excellent model to study cancer biology and the tumour microenvironment, including the early inflammatory response to both wounding and early cancer growth. Here, we use high-resolution confocal imaging of translucent zebrafish larvae, with novel automated tracking and cell:cell interaction software, to investigate how innate immune cells behave and interact with repairing wounds and early cancer (pre-neoplastic) cells expressing a mutant active human oncogene (HRASG12V). We show that bacterial infections, delivered either systemically or locally, induce a change in the number and behaviour of neutrophils and macrophages recruited to acute wounds and to pre-neoplastic cells, and that infection can modify cellular interactions in ways that lead to a significant delay in wound healing and a reduction in the number of pre-neoplastic cells. Besides offering insights as to how Coley’s toxins and other cancer bacteriotherapies may function to reduce cancer burden, our study also highlights novel software tools that can be easily adapted to investigate cellular behaviours and interactions in other zebrafish models.
Collapse
Affiliation(s)
- Paco López-Cuevas
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen J Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|