1
|
Prins RC, Billerbeck S. The signal peptide of yeast killer toxin K2 confers producer self-protection and allows conversion into a modular toxin-immunity system. Cell Rep 2024; 43:114449. [PMID: 38985680 DOI: 10.1016/j.celrep.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Some microbial toxins also target the producer species itself, necessitating a means of self-protection. The M2 double-stranded RNA (dsRNA) killer virus in Saccharomyces cerevisiae contains a single open reading frame (ORF) encoding both the secreted pore-forming toxin K2 as well as a cognate immunity factor. Here, we show that expression of a 49-amino acid N-terminal peptide from the K2 precursor is both necessary and sufficient for immunity. This immunity peptide simultaneously functions as a signal peptide for toxin secretion and protects the cell against the cytotoxic K2 α subunit. The K2 toxin and immunity factor can be functionally separated into two ORFs, yielding a modular toxin-immunity system. This case further shows how a (signal) peptide can carry the potential for providing cellular protection against an antimicrobial toxin.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Gerke C, Bauersfeld L, Schirmeister I, Mireisz CNM, Oberhardt V, Mery L, Wu D, Jürges CS, Spaapen RM, Mussolino C, Le-Trilling VTK, Trilling M, Dölken L, Paster W, Erhard F, Hofmann M, Schlosser A, Hengel H, Momburg F, Halenius A. Multimodal HLA-I genotype regulation by human cytomegalovirus US10 and resulting surface patterning. eLife 2024; 13:e85560. [PMID: 38900146 PMCID: PMC11189632 DOI: 10.7554/elife.85560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) β2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.
Collapse
Affiliation(s)
- Carolin Gerke
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and Medicine (SGBM), University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Ivo Schirmeister
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Valerie Oberhardt
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center University of FreiburgFreiburgGermany
| | - Lea Mery
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Di Wu
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | | | - Robbert M Spaapen
- Department of Immunopathology, Sanquin ResearchAmsterdamNetherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Claudio Mussolino
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center University of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency, Medical Center University of FreiburgFreiburgGermany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-EssenEssenGermany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital EssenEssenGermany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of WürzburgWürzburgGermany
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Wolfgang Paster
- St. Anna Children’s Cancer Research Institute (CCRI)ViennaAustria
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of WürzburgWürzburgGermany
| | - Maike Hofmann
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center University of FreiburgFreiburgGermany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Hartmut Hengel
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg University HospitalHeidelbergGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
3
|
Meng JH, Huang YB, Long J, Cai QC, Qiao X, Zhang QL, Zhang LD, Yan X, Jing R, Liu XS, Zhou SJ, Yuan YS, Yin-Chen Ma, Zhou LX, Peng NN, Li XC, Cai CH, Tang HM, Martins AF, Jiang JX, Kai-Jun Luo. Innexin hemichannel activation by Microplitis bicoloratus ecSOD monopolymer reduces ROS. iScience 2024; 27:109469. [PMID: 38577101 PMCID: PMC10993139 DOI: 10.1016/j.isci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Biao Huang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiu-Chen Cai
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Xin Qiao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiong-Li Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Dan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Rui Jing
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Shan Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Sai-Jun Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Sheng Yuan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yin-Chen Ma
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Xiang Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Cheng-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - André F. Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
4
|
Kol I, Rishiq A, Cohen M, Kahlon S, Pick O, Dassa L, Stein N, Bar-On Y, Wolf DG, Seidel E, Mandelboim O. CLPTM1L is a GPI-anchoring pathway component targeted by HCMV. J Cell Biol 2023; 222:e202207104. [PMID: 37389656 PMCID: PMC10316631 DOI: 10.1083/jcb.202207104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The GPI-anchoring pathway plays important roles in normal development and immune modulation. MHC Class I Polypeptide-related Sequence A (MICA) is a stress-induced ligand, downregulated by human cytomegalovirus (HCMV) to escape immune recognition. Its most prevalent allele, MICA*008, is GPI-anchored via an uncharacterized pathway. Here, we identify cleft lip and palate transmembrane protein 1-like protein (CLPTM1L) as a GPI-anchoring pathway component and show that during infection, the HCMV protein US9 downregulates MICA*008 via CLPTM1L. We show that the expression of some GPI-anchored proteins (CD109, CD59, and MELTF)-but not others (ULBP2, ULBP3)-is CLPTM1L-dependent, and further show that like MICA*008, MELTF is downregulated by US9 via CLPTM1L during infection. Mechanistically, we suggest that CLPTM1L's function depends on its interaction with a free form of PIG-T, normally a part of the GPI transamidase complex. We suggest that US9 inhibits this interaction and thereby downregulates the expression of CLPTM1L-dependent proteins. Altogether, we report on a new GPI-anchoring pathway component that is targeted by HCMV.
Collapse
Affiliation(s)
- Inbal Kol
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Ahmed Rishiq
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Mevaseret Cohen
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Shira Kahlon
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Ophir Pick
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Liat Dassa
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Natan Stein
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Yotam Bar-On
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana G. Wolf
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Einat Seidel
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Li S, Jing T, Zhu F, Chen Y, Yao X, Tang X, Zuo C, Liu M, Xie Y, Jiang Y, Wang Y, Li D, Li L, Gao S, Chen D, Zhao H, Ma W. Genetic Analysis of Orf Virus (ORFV) Strains Isolated from Goats in China: Insights into Epidemiological Characteristics and Evolutionary Patterns. Virus Res 2023; 334:199160. [PMID: 37402415 PMCID: PMC10410590 DOI: 10.1016/j.virusres.2023.199160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Contagious ecthyma (CE) is an acute infectious zoonosis caused by orf virus (ORFV) that mainly infects sheep and goats and causes obvious lesions and low market value of livestock, resulting in huge economic losses for farmers. In this study, two strains of ORFV were isolated from Shaanxi Province and Yunnan Province in China, named FX and LX. The two ORFVs were located in the major clades of domestic strains respectively, and exhibited distinct sequence homology. We analyzed the genetic data of core genes (B2L, F1L, VIR, ORF109) and variable genes (GIF, ORF125 and vIL-10) of ORFV to investigate its epidemiological and evolutionary characteristics. The sequences from 2007 to 2018 constituted the majority of the viral population, predominantly concentrated in India and China. Most genes were clustered into SA00-like type and IA82-like type, and the hotspots in East and South Asia were identified in the ORFV transmission trajectories. For these genes, VIR had the highest substitution rate of 4.85 × 10-4, both VIR and vIL-10 suffered the positive selection pressure during ORFV evolution. Many motifs associated with viral survival were distributed among ORFVs. In addition, some possible viral epitopes have been predicted, which still require validation in vivo and in vitro. This work gives more insight into the prevalence and phylogenetic relationships of existing orf viruses and facilitate better vaccine design.
Collapse
Affiliation(s)
- Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Tian Jing
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Fang Zhu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yiming Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xiaoting Yao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Chenxiang Zuo
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Mingjie Liu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yuecai Jiang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yunpeng Wang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Dengliang Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Lulu Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Shikong Gao
- Shenmu Animal Husbandry Development Center, Shenmu, Shaanxi Province 719399, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| | - Huiying Zhao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
6
|
Ashley CL, McSharry BP, McWilliam HEG, Stanton RJ, Fielding CA, Mathias RA, Fairlie DP, McCluskey J, Villadangos JA, Rossjohn J, Abendroth A, Slobedman B. Suppression of MR1 by human cytomegalovirus inhibits MAIT cell activation. Front Immunol 2023; 14:1107497. [PMID: 36845106 PMCID: PMC9950634 DOI: 10.3389/fimmu.2023.1107497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.
Collapse
Affiliation(s)
- Caroline L. Ashley
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A. Fielding
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
8
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|
9
|
McCaul N, Quandte M, Bontjer I, van Zadelhoff G, Land A, Crooks ET, Binley JM, Sanders RW, Braakman I. Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Rep 2021; 36:109646. [PMID: 34469718 DOI: 10.1016/j.celrep.2021.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.
Collapse
Affiliation(s)
- Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
10
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Seidel E, Dassa L, Schuler C, Oiknine-Djian E, Wolf DG, Le-Trilling VTK, Mandelboim O. The human cytomegalovirus protein UL147A downregulates the most prevalent MICA allele: MICA*008, to evade NK cell-mediated killing. PLoS Pathog 2021; 17:e1008807. [PMID: 33939764 PMCID: PMC8118558 DOI: 10.1371/journal.ppat.1008807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/13/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines. Human cytomegalovirus (HCMV) is a common pathogen that usually causes asymptomatic infection in the immunocompetent population, but the immunosuppressed and fetuses infected in utero suffer mortality and disability due to HCMV disease. Current HCMV treatments are limited and no vaccine has been approved, despite significant efforts. HCMV encodes many genes of unknown function, and virus-host interactions are only partially understood. Here, we discovered that a hitherto uncharacterized HCMV protein, UL147A, downregulates the expression of an activating immune ligand allele named MICA*008, thus hindering the elimination of HCMV-infected cells. Elucidating HCMV immune evasion mechanisms could aid in the development of novel HCMV treatments and vaccines. Furthermore, MICA*008 is a highly prevalent allele implicated in cancer immune evasion, autoimmunity and graft rejection. In this work we have shown that UL147A interferes with MICA*008’s poorly understood, nonstandard maturation pathway, and acts additively with a functionally homologous HCMV protein, US9. Study of UL147A may enable manipulation of its expression as a therapeutic measure against HCMV.
Collapse
Affiliation(s)
- Einat Seidel
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Liat Dassa
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Corinna Schuler
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Dana G. Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (VTKL-T); (OM)
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
- * E-mail: (VTKL-T); (OM)
| |
Collapse
|