1
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
2
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Tao Q, Wu R, Zou X, Chen Y, Li W, Lu Z, Ma L, Kong L, Lu D, Yang X, Song W, Li W, Liu L, Ding S, Liu X, Duan X, Liao L, Liu Y. High-density vertical sidewall MoS 2 transistors through T-shape vertical lamination. Nat Commun 2024; 15:5774. [PMID: 38982079 PMCID: PMC11233715 DOI: 10.1038/s41467-024-50185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Vertical transistors, in which the source and drain are aligned vertically and the current flow is normal to the wafer surface, have attracted considerable attention recently. However, the realization of high-density vertical transistors is challenging, and could be largely attributed to the incompatibility between vertical structures and conventional lateral fabrication processes. Here we report a T-shape lamination approach for realizing high-density vertical sidewall transistors, where lateral transistors could be pre-fabricated on planar substrates first and then laminated onto vertical substrates using T-shape stamps, hence overcoming the incompatibility between planar processes and vertical structures. Based on this technique, we vertically stacked 60 MoS2 transistors within a small vertical footprint, corresponding to a device density over 108 cm-2. Furthermore, we demonstrate two approaches for scalable fabrication of vertical sidewall transistor arrays, including simultaneous lamination onto multiple vertical substrates, as well as on the same vertical substrate using multi-cycle layer-by-layer laminations.
Collapse
Affiliation(s)
- Quanyang Tao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xuming Zou
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China.
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Wanying Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Lingan Kong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Wenjing Song
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Wei Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xiao Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China.
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China.
| |
Collapse
|
4
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Dong W, Dai Z, Liu L, Zhang Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303014. [PMID: 38049925 DOI: 10.1002/adma.202303014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/30/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.
Collapse
Affiliation(s)
- Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
6
|
Cao Z, Zhu L, Yao K. Low-Power Transistors with Ideal p-type Ohmic Contacts Based on VS 2/WSe 2 van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19158-19166. [PMID: 38572998 DOI: 10.1021/acsami.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Achieving low-resistance Ohmic contacts with a vanishing Schottky barrier is crucial for enhancing the performance of two-dimensional (2D) field-effect transistors (FETs). In this paper, we present a theoretical investigation of VS2/WSe2-vdWHs-FETs with a gate length (Lg) in the range of 1-5 nm, using ab initio quantum transport simulations. The results show that a very low hole Schottky barrier height (-0.01 eV) can be achieved with perfect band offsets and reduced metal-induced gap states (MIGS), indicating the formation of p-type Ohmic contacts. Additionally, these FETs also exhibit an impressive low subthreshold swing (SS) (69 mV/dec) and high Ion/Ioff (>107) with an appropriate underlap (UL) structure consisting of pristine WSe2. Furthermore, even when the Lg is scaled down to 3 nm, the device can still meet the low-power (LP) requirements of the International Technology Roadmap for Semiconductors (ITRS) by controlling the UL. Consequently, this study provides valuable insights for the future development of LP 2D FETs.
Collapse
Affiliation(s)
- Zenglin Cao
- School of Physics and Wuhan National High Magnetic field center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Lin Zhu
- School of Physics and Wuhan National High Magnetic field center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Kailun Yao
- School of Physics and Wuhan National High Magnetic field center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
7
|
Ma L, Wang Y, Liu Y. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chem Rev 2024; 124:2583-2616. [PMID: 38427801 DOI: 10.1021/acs.chemrev.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for next-generation electronics owing to their atomically thin structures and surfaces devoid of dangling bonds. However, establishing high-quality metal contacts with TMDs presents a critical challenge, primarily attributed to their ultrathin bodies and delicate lattices. These distinctive characteristics render them susceptible to physical damage and chemical reactions when conventional metallization approaches involving "high-energy" processes are implemented. To tackle this challenge, the concept of van der Waals (vdW) contacts has recently been proposed as a "low-energy" alternative. Within the vdW geometry, metal contacts can be physically laminated or gently deposited onto the 2D channel of TMDs, ensuring the formation of atomically clean and electronically sharp contact interfaces while preserving the inherent properties of the 2D TMDs. Consequently, a considerable number of vdW contact devices have been extensively investigated, revealing unprecedented transport physics or exceptional device performance that was previously unachievable. This review presents recent advancements in vdW contacts for TMD transistors, discussing the merits, limitations, and prospects associated with each device geometry. By doing so, our purpose is to offer a comprehensive understanding of the current research landscape and provide insights into future directions within this rapidly evolving field.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Li Z, Zhang L, Liu S, Yang X, Gao W, Chen Y, Leng Y, Lu Z, Ma L, Lu D, Liu X, Duan X, Wang Y, Liao L, Liu Y. Edge-by-Edge Lateral Heterostructure through Interfacial Sliding. NANO LETTERS 2024; 24:770-776. [PMID: 38180314 DOI: 10.1021/acs.nanolett.3c04699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
van der Waals heterostructures (vdWHs) based on two-dimensional (2D) semiconductors have attracted considerable attention. However, the reported vdWHs are largely based on vertical device structure with large overlapping area, while the realization of lateral heterostructures contacted through 2D edges remains challenging and is majorly limited by the difficulties of manipulating the lateral distance of 2D materials at nanometer scale (during transfer process). Here, we demonstrate a simple interfacial sliding approach for realizing an edge-by-edge lateral contact. By stretching a vertical vdWH, two 2D flakes could gradually slide apart or toward each other. Therefore, by applying proper strain, the initial vertical vdWH could be converted into a lateral heterojunction with intimately contacted 2D edges. The lateral contact structure is supported by both microscope characterization and in situ electrical measurements, exhibiting carrier tunneling behavior. Finally, this approach can be extended to 3D thin films, as demonstrated by the lateral 2D/3D and 3D/3D Schottky junction.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Longbin Zhang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Songlong Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weiqi Gao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yingbo Leng
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiao Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Tong W, Wei W, Zhang X, Ding S, Lu Z, Liu L, Li W, Pan C, Kong L, Wang Y, Zhu M, Liang SJ, Miao F, Liu Y. Highly Stable HfO 2 Memristors through van der Waals Electrode Lamination and Delamination. NANO LETTERS 2023; 23:9928-9935. [PMID: 37862098 DOI: 10.1021/acs.nanolett.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Memristors have attracted considerable attention in the past decade, holding great promise for future neuromorphic computing. However, the intrinsic poor stability and large device variability remain key limitations for practical application. Here, we report a simple method to directly visualize the origin of poor stability. By mechanically removing the top electrodes of memristors operated at different states (such as SET or RESET), the memristive layer could be exposed and directly characterized through conductive atomic force microscopy, providing two-dimensional area information within memristors. Based on this technique, we observed the existence of multiple conducting filaments during the formation process and built up a physical model between filament numbers and the cycle-to-cycle variation. Furthermore, by improving the interface quality through the van der Waals top electrode, we could reduce the filament number down to a single filament during all switching cycles, leading to much controlled switching behavior and reliable device operation.
Collapse
Affiliation(s)
- Wei Tong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wei Wei
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiangzhe Zhang
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| | - Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wanying Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Chen Pan
- Institute of Interdisciplinary of Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lingan Kong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| | - Shi-Jun Liang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Feng Miao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Jiao C, Pei S, Wu S, Wang Z, Xia J. Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:114503. [PMID: 37774692 DOI: 10.1088/1361-6633/acfe89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Two-dimensional (2D) layered materials can stack into new material systems, with van der Waals (vdW) interaction between the adjacent constituent layers. This stacking process of 2D atomic layers creates a new degree of freedom-interlayer interface between two adjacent layers-that can be independently studied and tuned from the intralayer degree of freedom. In such heterostructures (HSs), the physical properties are largely determined by the vdW interaction between the individual layers,i.e.interlayer coupling, which can be effectively tuned by a number of means. In this review, we summarize and discuss a number of such approaches, including stacking order, electric field, intercalation, and pressure, with both their experimental demonstrations and theoretical predictions. A comprehensive overview of the modulation on structural, optical, electrical, and magnetic properties by these four approaches are also presented. We conclude this review by discussing several prospective research directions in 2D HSs field, including fundamental physics study, property tuning techniques, and future applications.
Collapse
Affiliation(s)
- Chenyin Jiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Shenghai Pei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Song Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zenghui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Juan Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
11
|
Li F, Zhang H, Li Y, Zhao Y, Liu M, Yang Y, Yao J, Min S, Kan E, Wan Y. Interface Engineering Modulated Valley Polarization in MoS 2/ hBN Heterostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:861. [PMID: 36903739 PMCID: PMC10004763 DOI: 10.3390/nano13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Layered transition metal dichalcogenides (TMDs) provide a favorable research platform for the advancement of spintronics and valleytronics because of their unique spin-valley coupling effect, which is attributed to the absence of inversion symmetry coupled with the presence of time-reversal symmetry. To maneuver the valley pseudospin efficiently is of great importance for the fabrication of conceptual devices in microelectronics. Here, we propose a straightforward way to modulate valley pseudospin with interface engineering. An underlying negative correlation between the quantum yield of photoluminescence and the degree of valley polarization was discovered. Enhanced luminous intensities were observed in the MoS2/hBN heterostructure but with a low value of valley polarization, which was in stark contrast to those observed in the MoS2/SiO2 heterostructure. Based on the steady-state and time-resolved optical measurements, we reveal the correlation between exciton lifetime, luminous efficiency, and valley polarization. Our results emphasize the significance of interface engineering for tailoring valley pseudospin in two-dimensional systems and probably advance the progression of the conceptual devices based on TMDs in spintronics and valleytronics.
Collapse
Affiliation(s)
- Fang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hui Zhang
- Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - You Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yibin Zhao
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingyan Liu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunwei Yang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiamin Yao
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shaolong Min
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
12
|
Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W. Laser Irradiation Effect on the p-GaSe/n-HfS 2 PN-Heterojunction for High-Performance Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35927-35939. [PMID: 35867860 DOI: 10.1021/acsami.2c08430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D)-based PN-heterojunction revealed a promising future of atomically thin optoelectronics with diverse functionalities in different environments. Herein, we reported a p-GaSe/n-HfS2 van der Waals (vdW) heterostructure for high-performance photodetectors and investigated the laser irradiation effect on the fabricated device. The fabricated 2D vdW heterostructure revealed a high photoresponsivity of 1 × 104 A W-1 with a photocurrent value of 377 nA due to unique type-II band alignment and enhanced surface potential under light illumination, which is further confirmed by density functional theory (DFT) calculations. Before laser irradiation, the device showed high field-effect mobility (μEF) of 26.37 cm2 V-1 s-1, ON/OFF ratio of ∼105, and threshold voltage swing (SS) of ∼463 mV dec-1. With the exposure of 690 mW cm-2 laser power density, μEF reached 204 cm2 V-1 s-1, although ∼2 V ΔVth shifts are observed along with the SS decreased to 175 mV dec-1. Interestingly, the reduced SS shows better channel control of the fabricated device with laser power. Similarly, the ON/OFF ratio decreased to ∼1.29 × 103. The results indicate that the creation of oxide trap charges at the interface of SiO2 and PN-heterojunction layers was observed with voltage biasing and high laser power density. The degradation of electrical parameters is attributed to fewer interface trap charges per surface area of the device rather than direct damage in PN-heterojunction layers. Considering the excellent 2D electronic properties, these materials are better candidates for future high-radiation environments.
Collapse
Affiliation(s)
- Zahir Muhammad
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| | - Rajibul Islam
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Yan Wang
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| | - Carmine Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
- Consiglio Nazionale delle Ricerche CNR-SPIN, UOS Salerno, I-84084 Fisciano, Salerno, Italy
| | - Ziyu Lv
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bahadur Singh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Pierre Vallobra
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| | - Yue Zhang
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| | - Ling Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Weisheng Zhao
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| |
Collapse
|
13
|
Li N, Okmi A, Jabegu T, Zheng H, Chen K, Lomashvili A, Williams W, Maraba D, Kravchenko I, Xiao K, He K, Lei S. van der Waals Semiconductor Empowered Vertical Color Sensor. ACS NANO 2022; 16:8619-8629. [PMID: 35436098 DOI: 10.1021/acsnano.1c09875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial vision is receiving significant attention nowadays, particularly for the development of neuromorphic electronic devices, artificial intelligence, and microrobotics. Nevertheless, color recognition, the most critical vision function, is missed in the current research due to the difficulty of downscaling of the prevailing color sensing devices. Conventional color sensors typically adopt a lateral color sensing channel layout and consume a large amount of physical space, whereas compact designs suffer from an unsatisfactory color detection accuracy. In this work, we report a van der Waals semiconductor-empowered vertical color sensing structure with the emphasis on compact device profile and precise color recognition capability. More attractive, we endow color sensor hardware with the function of chromatic aberration correction, which can simplify the design of an optical lens system and, in turn, further downscales the artificial vision systems. Also, the dimension of a multiple pixel prototype device in our study confirms the scalability and practical potentials of our developed device architecture toward the above applications.
Collapse
Affiliation(s)
- Ningxin Li
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Aisha Okmi
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Tara Jabegu
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hongkui Zheng
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Alexander Lomashvili
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Westley Williams
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Diren Maraba
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ivan Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kai He
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Material Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sidong Lei
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
14
|
Mao JY, Wu S, Ding G, Wang ZP, Qian FS, Yang JQ, Zhou Y, Han ST. A van der Waals Integrated Damage-Free Memristor Based on Layered 2D Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106253. [PMID: 35083839 DOI: 10.1002/smll.202106253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
2D materials with intriguing properties have been widely used in optoelectronics. However, electronic devices suffered from structural damage due to the ultrathin materials and uncontrolled defects at interfaces upon metallization, which hindered the development of reliable devices. Here, a damage-free Au/h-BN/Au memristor is reported using a clean, water-assisted metal transfer approach by physically assembling Au electrodes onto the layered h-BN which minimized the structural damage and undesired interfacial defects. The memristors demonstrate significantly improved performance with the coexistence of nonpolar and threshold switching as well as tunable current levels by controlling the compliance current, compared with devices with evaporated contacts. The devices integrated into an array show suppressed sneak path current and can work as both logic gates and latches to implement logic operations allowing in-memory computing. Cross-sectional scanning transmission electron microscopy analysis validates the feasibility of this nondestructive metal integration approach, the crucial role of high-quality atomically sharp interface in resistive switching, and a direct observation of percolation path. The underlying mechanism of boron vacancies-assisted transport is further supported experimentally by conductive atomic force microscopy free from process-induced damage, and theoretically by ab initio simulations.
Collapse
Affiliation(s)
- Jing-Yu Mao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Shuang Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhan-Peng Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fang-Sheng Qian
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jia-Qin Yang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
15
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, Moss DJ. Fabrication Technologies for the On-Chip Integration of 2D Materials. SMALL METHODS 2022; 6:e2101435. [PMID: 34994111 DOI: 10.1002/smtd.202101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
With compact footprint, low energy consumption, high scalability, and mass producibility, chip-scale integrated devices are an indispensable part of modern technological change and development. Recent advances in 2D layered materials with their unique structures and distinctive properties have motivated their on-chip integration, yielding a variety of functional devices with superior performance and new features. To realize integrated devices incorporating 2D materials, it requires a diverse range of device fabrication techniques, which are of fundamental importance to achieve good performance and high reproducibility. This paper reviews the state-of-art fabrication techniques for the on-chip integration of 2D materials. First, an overview of the material properties and on-chip applications of 2D materials is provided. Second, different approaches used for integrating 2D materials on chips are comprehensively reviewed, which are categorized into material synthesis, on-chip transfer, film patterning, and property tuning/modification. Third, the methods for integrating 2D van der Waals heterostructures are also discussed and summarized. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Zhigang Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, 94132, USA
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
16
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
17
|
Liu M, Zhang Y, Zhang Y, Zhou Z, Qin N, Tao TH. Robotic Manipulation under Harsh Conditions Using Self-Healing Silk-Based Iontronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102596. [PMID: 34738735 PMCID: PMC8805592 DOI: 10.1002/advs.202102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Progress toward intelligent human-robotic interactions requires monitoring sensors that are mechanically flexible, facile to implement, and able to harness recognition capability under harsh environments. Conventional sensing methods have been divided for human-side collection or robot-side feedback and are not designed with these criteria in mind. However, the iontronic polymer is an example of a general method that operates properly on both human skin (commonly known as skin electronics or iontronics) and the machine/robotic surface. Here, a unique iontronic composite (silk protein/glycerol/Ca(II) ion) and supportive molecular mechanism are developed to simultaneously achieve high conductivity (around 6 kΩ at 50 kHz), self-healing (within minutes), strong stretchability (around 1000%), high strain sensitivity and transparency, and universal adhesiveness across a broad working temperature range (-40-120 °C). Those merits facilitate the development of iontronic sensing and the implementation of damage-resilient robotic manipulation. Combined with a machine learning algorithm and specified data collection methods, the system is able to classify 1024 types of human and robot hand gestures under challenging scenarios and to offer excellent object recognition with an accuracy of 99.7%.
Collapse
Affiliation(s)
- Mengwei Liu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yujia Zhang
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yanghong Zhang
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhitao Zhou
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Nan Qin
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute of Brain‐Intelligence TechnologyZhangjiang LaboratoryShanghai200031China
- Shanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai200031China
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| |
Collapse
|
18
|
Li Z, Ren L, Wang S, Huang X, Li Q, Lu Z, Ding S, Deng H, Chen P, Lin J, Hu Y, Liao L, Liu Y. Dry Exfoliation of Large-Area 2D Monolayer and Heterostructure Arrays. ACS NANO 2021; 15:13839-13846. [PMID: 34355880 DOI: 10.1021/acsnano.1c05734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) semiconductors have attracted considerable attention in recent years. However, to date, there is still no effective approach to produce large-scale monolayers while retaining their intrinsic properties. Here, we report a simple mechanical exfoliation method to produce large-scale and high-quality 2D semiconductors, by designing an atomically flat Au-mesh film as the peeling tape. Using our prefabricated mesh tape, the limited contact region (between the 2D crystal and Au) could provide enough adhesion to mechanically exfoliate uniform 2D monolayers, and the noncontact region (between the mesh holes and monolayers) ensures weak interaction to mechanically release the 2D monolayers on desired substrates. Together, we demonstrate a scalable method to dry exfoliate various 2D monolayer arrays onto different substrates without involving any solutions or contaminations, representing the optimization between material yield, scalability, and quality. Furthermore, detailed optical and electrical characterizations are conducted to confirm their intrinsic quality. With the ability to mechanically exfoliate various 2D arrays and further restacking them, we have demonstrated large-scale van der Waals heterostructure arrays through layer-to-layer assembling. Our study offers a simple and scalable method for dry exfoliating 2D monolayer and heterostructure arrays with intrinsic material quality, which could be crucial to accelerate fundamental investigations as well as practical applications of proof-of-concepts devices.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liwang Ren
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shiyu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xinxin Huang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Qianyuan Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hanjun Deng
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Pingan Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jun Lin
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|