1
|
Qiu J, Abella L, Du X, Cao Z, He Z, Meng Q, Yan Y, Poblet JM, Sun L, Rodríguez-Fortea A, Chen N. CaY@C 2n: Exploring Molecular Qubits with Ca-Y Metal-Metal Bonds. J Am Chem Soc 2024; 146:24310-24319. [PMID: 39165005 PMCID: PMC11555672 DOI: 10.1021/jacs.4c04720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Metal-metal bonding is crucial in chemistry for advancing our understanding of the fundamental aspects of chemical bonds. Metal-metal bonds based on alkaline-earth (Ae) elements, especially the heavier Ae elements (Ca, Sr, and Ba), are rarely reported due to their high electropositivity. Herein, we report two heteronuclear di-EMFs CaY@Cs(6)-C82 and CaY@C2v(5)-C80, which contain unprecedented single-electron Ca-Y metal-metal bonds. These compounds were characterized by single-crystal X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The crystallographic study of CaY@Cs(6)-C82 shows that Ca and Y are successfully encapsulated into the carbon cage with a Ca-Y distance of 3.691 Å. The CW-EPR study of both CaY@Cs(6)-C82 and CaY@C2v(5)-C80 exhibits a doublet, suggesting the presence of an unpaired electron located between Ca and Y. The combined experimental and theoretical results confirm the presence of a Ca-Y single-electron metal-metal bond with substantial covalent interaction, attributed to significant overlap between the 4s4p orbitals of Ca and the 5s5p4d orbitals of Y. Furthermore, pulse EPR spectroscopy was used to investigate the quantum coherence of the electron spin within this bond. The unpaired electron, characterized by its s orbital nature, is effectively protected by the carbon cage, resulting in efficient suppression of both spin-lattice relaxation and decoherence. CaY@Cs(6)-C82 behaves as an electron spin qubit, displaying a maximum decoherence time of 7.74 μs at 40 K. This study reveals an unprecedented Ae-rare-earth metal-metal bond stabilized by the fullerene cages and elucidates the molecular qubit properties stemming from their unique bonding character, highlighting their potential in quantum information processing applications.
Collapse
Affiliation(s)
- Jiawei Qiu
- College
of Chemistry, Chemical Engineering, and Materials Science and State
Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Laura Abella
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Xiya Du
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang Province 310024, China
| | - Zhengkai Cao
- College
of Chemistry, Chemical Engineering, and Materials Science and State
Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiwen He
- College
of Chemistry, Chemical Engineering, and Materials Science and State
Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qingyu Meng
- College
of Chemistry, Chemical Engineering, and Materials Science and State
Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yingjing Yan
- College
of Chemistry, Chemical Engineering, and Materials Science and State
Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Josep M. Poblet
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Lei Sun
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Key
Laboratory for Quantum Materials of Zhejiang Province, Department
of Physics, School of Science, Westlake
University, Hangzhou, Zhejiang Province 310030, China
| | - Antonio Rodríguez-Fortea
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Ning Chen
- College
of Chemistry, Chemical Engineering, and Materials Science and State
Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
2
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Sheng W, Rajeshkumar T, Zhao Y, Maron L, Zhu C. Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds. J Am Chem Soc 2024; 146:12790-12798. [PMID: 38684067 DOI: 10.1021/jacs.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.
Collapse
Affiliation(s)
- Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. Thorium(IV)-antimony complexes exhibiting single, double, and triple polar covalent metal-metal bonds. Nat Chem 2024; 16:780-790. [PMID: 38378948 DOI: 10.1038/s41557-024-01448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
There is continued burgeoning interest in metal-metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal-metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal-metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium-antimony bonds, thus introducing polar covalent actinide-metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
6
|
Yang W, Velkos G, Rosenkranz M, Schiemenz S, Liu F, Popov AA. Nd─Nd Bond in I h and D 5h Cage Isomers of Nd 2 @C 80 Stabilized by Electrophilic CF 3 Addition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305190. [PMID: 37946664 PMCID: PMC10767449 DOI: 10.1002/advs.202305190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Synthesis of molecular compounds with metal-metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal-metal bonding between early lanthanides is demonstrated. Combined experimental and computational study proves that pristine Nd2 @C80 has an open shell structure with a single electron occupying the Nd─Nd bonding orbital. Nd2 @C80 is stabilized by a one-electron reduction and further by the electrophilic CF3 addition to [Nd2 @C80 ]- . Single-crystal X-ray diffraction reveals the formation of two Nd2 @C80 (CF3 ) isomers with D5h -C80 and Ih -C80 carbon cages, both featuring a single-electron Nd─Nd bond with the length of 3.78-3.79 Å. The mutual influence of the exohedral CF3 group and endohedral metal dimer in determining the molecular structure of the adducts is analyzed. Unlike Tb or Dy analogs, which are strong single-molecule magnets with high blocking temperature of magnetization, the slow relaxation of magnetization in Nd2 @Ih -C80 (CF3 ) is detectable via out-of-phase magnetic susceptibility only below 3 K and in the presence of magnetic field.
Collapse
Affiliation(s)
- Wei Yang
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Sandra Schiemenz
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| |
Collapse
|
7
|
Jin H, Xin J, Xiang W, Jiang Z, Han X, Chen M, Du P, Yao YR, Yang S. Bandgap Engineering of Erbium-Metallofullerenes toward Switchable Photoluminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304121. [PMID: 37805835 DOI: 10.1002/adma.202304121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er-EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono-Er-EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er-cyanide cluster into various C82 cages to form novel Er-monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2 (5), Cs (6), and C2 v (9)), the photoluminescent properties of CYCFs are investigated, and obvious near-infrared (NIR) photoluminescence only is observed for ErCN@C2 (5)-C82 . Combined with a comparative photoluminescence study of three medium-bandgap di-Er-EMFs, including Er2 @Cs (6)-C82 , Er2 O@Cs (6)-C82 , and Er2 C2 @Cs (6)-C82 , this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er-EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di-Er-EMFs differ dramatically. It is found that the location of the Er atom within the same Cs (6)-C82 cage is almost fixed and independent on the endo-unit; thus the previous statement on the key role of metal position in photoluminescence of di-Er-EMFs seems erroneous, and the geometric configuration of the endo-unit, especially the bridging mode of two Er ions, is decisive instead.
Collapse
Affiliation(s)
- Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Yao YR, Zhao J, Meng Q, Hu HS, Guo M, Yan Y, Zhuang J, Yang S, Fortier S, Echegoyen L, Schwarz WHE, Li J, Chen N. Synthesis and Characterization of U≡C Triple Bonds in Fullerene Compounds. J Am Chem Soc 2023; 145:25440-25449. [PMID: 37955678 DOI: 10.1021/jacs.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.
Collapse
Affiliation(s)
- Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Shangfeng Yang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Institut Catalá d'Investigació Química, Ave. Països Catalans 16, 43007 Tarragona, Spain
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - W H Eugen Schwarz
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Jaroš A, Straka M. Unraveling actinide-actinide bonding in fullerene cages: a DFT versus ab initio methodological study. Phys Chem Chem Phys 2023; 25:31500-31513. [PMID: 37962545 DOI: 10.1039/d3cp03606e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Actinide-actinide bonding poses a challenge for both experimental and theoretical chemists because of both the scarcity of experimental data and the exotic nature of actinide bonding due to the involvement and mixing of actinide 7s-, 6p-, 6d-, and particularly 5f-orbitals. Only a few experimental examples of An-An bonding have been reported so far. Here, we perform a methodological study of actinide-actinide bonding on experimentally known Th2@C80 and U2@C80 systems. We compared selected GGA, meta-GGA, hybrid-GGA and range-separated hybrid-GGA functionals with the results obtained using a multireference CASPT2 method, which we consider as a reference point. We show that functionals such as BP86, PBE or TPSS perform well for predicting geometries, while range-separated hybrids are superior in the description of the chemical bonding. None of the tested functionals were deemed reliable regarding the correct electronic spin ground state. Based on the results of this methodological study, we re-evaluate selected previously studied diactinide fullerene systems using more reliable protocol.
Collapse
Affiliation(s)
- Adam Jaroš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic.
- Faculty of Science, Charles University, Albertov 2038/6, Prague 2, 128 43, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic.
| |
Collapse
|
10
|
Yan Y, Abella L, Sun R, Fang YH, Roselló Y, Shen Y, Jin M, Rodríguez-Fortea A, de Graaf C, Meng Q, Yao YR, Echegoyen L, Wang BW, Gao S, Poblet JM, Chen N. Actinide-lanthanide single electron metal-metal bond formed in mixed-valence di-metallofullerenes. Nat Commun 2023; 14:6637. [PMID: 37863887 PMCID: PMC10589252 DOI: 10.1038/s41467-023-42165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Understanding metal-metal bonding involving f-block elements has been a challenging goal in chemistry. Here we report a series of mixed-valence di-metallofullerenes, ThDy@C2n (2n = 72, 76, 78, and 80) and ThY@C2n (2n = 72 and 78), which feature single electron actinide-lanthanide metal-metal bonds, characterized by structural, spectroscopic and computational methods. Crystallographic characterization unambiguously confirmed that Th and Y or Dy are encapsulated inside variably sized fullerene carbon cages. The ESR study of ThY@D3h(5)-C78 shows a doublet as expected for an unpaired electron interacting with Y, and a SQUID magnetometric study of ThDy@D3h(5)-C78 reveals a high-spin ground state for the whole molecule. Theoretical studies further confirm the presence of a single-electron bonding interaction between Y or Dy and Th, due to a significant overlap between hybrid spd orbitals of the two metals.
Collapse
Affiliation(s)
- Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Laura Abella
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu-Hui Fang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yannick Roselló
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Yi Shen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Meihe Jin
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
11
|
Xiang W, Hu Z, Xin J, Jin H, Jiang Z, Han X, Chen M, Yao YR, Yang S. Steering Single-Electron Metal-Metal Bonds and Hyperfine Coupling between a Transition Metal-Lanthanide Heteronuclear Bimetal Confined in Carbon Cages. J Am Chem Soc 2023; 145:22599-22608. [PMID: 37787921 DOI: 10.1021/jacs.3c07686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Metal complexes bearing single-electron metal-metal bonds (SEMBs) exhibit unusual electronic structures evoking strong magnetic coupling, and such bonds can be stabilized in the form of dimetallofullerenes (di-EMFs) in which two metals are confined in a carbon cage. Up to now, only a few di-EMFs containing SEMBs are reported, which are all based on a high-symmetry icosahedral (Ih) C80 cage embedding homonuclear rare-earth bimetals, and a chemical modification of the Ih-C80 cage is required to stabilize the SEMB. Herein, by introducing 3d-block transition metal titanium (Ti) along with 4f-block lanthanum (La) into the carbon cage, we synthesized the first crystallographically characterized SEMB-containing 3d-4f heteronuclear di-EMFs based on pristine fullerene cages. Four novel La-Ti heteronuclear di-EMFs were isolated, namely, LaTi@D3h(5)-C78, LaTi@Ih(7)-C80, LaTi@D5h(6)-C80, and LaTi@C2v(9)-C82, and their molecular structures were unambiguously determined by single-crystal X-ray diffraction. Upon increasing the cage size from C78 to C82, the La-Ti distance decreases from 4.31 to 3.97 Å, affording fine-tuning of the metal-metal bonding and hyperfine coupling, as evidenced by an electron spin resonance (ESR) spectroscopic study. Density functional theory (DFT) calculations confirm the existence of SEMB in all four LaTi@C2n di-EMFs, and the accumulation of electron density between La and Ti atoms shifts gradually from the proximity of the Ti atom inside C78 to the center of the LaTi bimetal inside C82 due to the decrease of the La-Ti distance. The electronic properties of LaTi@C2n heteronuclear dimetallofullerenes differ apparently from their homonuclear La2@C2n counterparts, revealing the peculiarity of heteronuclear dimetallofullerenes with the involvement of 3d-block transition metal Ti.
Collapse
Affiliation(s)
- Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Tomeček J, Liddle ST, Kaltsoyannis N. Actinide-Actinide Bonding: Electron Delocalisation and σ-Aromaticity in the Tri-Thorium Cluster [{Th(η 8 -C 8 H 8 )(μ-Cl) 2 } 3 K 2 ]. Chemphyschem 2023; 24:e202300366. [PMID: 37366275 DOI: 10.1002/cphc.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
The tri-thorium cluster [{Th(η8 -C8 H8 )(μ3 -Cl)2 }3 {K(THF)2 }2 ]∞ (Nature 2021, 598, 72-75) was reported to feature intriguing σ-aromatic bonding between the thorium atoms, a mode of metal-metal bonding unique in the actinide series. However, the presence of this bonding motif has since been challenged by others. Here, we computationally explore electron delocalisation in a molecular cluster fragment of [{Th(η8 -C8 H8 )(μ3 -Cl)2 }3 {K(THF)2 }2 ]∞ and examine its responses to an applied magnetic field using a variety of methods. We also discuss the importance of the choice of basis set for the Th atoms and issues regarding locating QTAIM bond critical points. When taken together, the computed data consistently suggest the presence of delocalised Th-Th bonding and Th3 σ-aromaticity.
Collapse
Affiliation(s)
- Josef Tomeček
- Department of Chemistry and Centre for Radiochemistry Research, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry and Centre for Radiochemistry Research, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
13
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
14
|
Moreno-Vicente A, Roselló Y, Chen N, Echegoyen L, Dunk PW, Rodríguez-Fortea A, de Graaf C, Poblet JM. Are U-U Bonds Inside Fullerenes Really Unwilling Bonds? J Am Chem Soc 2023; 145:6710-6718. [PMID: 36872864 PMCID: PMC10064334 DOI: 10.1021/jacs.2c12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Previous characterizations of diactinide endohedral metallofullerenes (EMFs) Th2@C80 and U2@C80 have shown that although the two Th3+ ions form a strong covalent bond within the carbon cage, the interaction between the U3+ ions is weaker and described as an "unwilling" bond. To evaluate the feasibility of covalent U-U bonds, which are neglected in classical actinide chemistry, we have first investigated the formation of smaller diuranium EMFs by laser ablation using mass spectrometric detection of dimetallic U2@C2n species with 2n ≥ 50. DFT, CASPT2 calculations, and MD simulations for several fullerenes of different sizes and symmetries showed that thanks to the formation of strong U(5f3)-U(5f3) triple bonds, two U3+ ions can be incarcerated inside the fullerene. The formation of U-U bonds competes with U-cage interactions that tend to separate the U ions, hindering the observation of short U-U distances in the crystalline structures of diuranium endofullerenes as in U2@C80. Smaller cages like C60 exhibit the two interactions, and a strong triple U-U bond with an effective bond order higher than 2 is observed. Although 5f-5f interactions are responsible for the covalent interactions at distances close to 2.5 Å, overlap between 7s6d orbitals is still detected above 4 Å. In general, metal ions within fullerenes should be regarded as templates in cage formation, not as statistically confined units that have little chance of being observed.
Collapse
Affiliation(s)
- Antonio Moreno-Vicente
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Yannick Roselló
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Paul W Dunk
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
15
|
Li M, Zhao R, Dang J, Zhao X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Self-driven carbon atom implantation into fullerene embedding metal-carbon cluster. Proc Natl Acad Sci U S A 2022; 119:e2202563119. [PMID: 36122234 PMCID: PMC9522327 DOI: 10.1073/pnas.2202563119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.
Collapse
|
17
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
18
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri-Thorium Cluster: Core-Shell Syngenetic σ-Aromaticity. Angew Chem Int Ed Engl 2022; 61:e202209658. [PMID: 35856937 PMCID: PMC9541753 DOI: 10.1002/anie.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/10/2022]
Abstract
A unique thorium-thorium bond was observed in the crystalline tri-thorium cluster [{Th(η8 -C8 H8 )(μ3 -Cl)2 }3 {K(THF)2 }2 ]∞ , though the claim of σ-aromaticity for Th3 bond has been questioned. Herein, a new type of core-shell syngenetic bonding model is proposed to describe the stability of this tri-thorium cluster. The model involves a 3c-2e bond in the Th3 core and a multicentered (ThCl2 )3 charge-shift bond with 12 electrons scattering along the outer shell. To differentiate the strengths of the 3c-2e bond and the charge-shift bond, the block-localized wavefunction (BLW) method which falls into the ab initio valence bond (VB) theory is employed to construct a strictly core/shell localized state and its contributing covalent resonance structure for the Th3 core bond. By comparing with the σ-aromatic H3 + and nonaromatic Li3 + , the computed resonance energies and extra cyclic resonance energies confirm that this Th3 core bond is truly delocalized and σ-aromatic.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yirong Mo
- Department of NanoscienceJoint School of Nanoscience and NanoengineeringUniversity of North Carolina at GreensboroGreensboroNC 27401USA
| |
Collapse
|
19
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri‐Thorium Cluster: Core‐Shell Syngenetic σ‐Aromaticity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuhui Lin
- Southwest Jiaotong University School of Life Science and Engineering CHINA
| | - Yirong Mo
- University of North Carolina at Greensboro Department of Nanoscience 2907 E. Gate City Blvd 27401 Greensboro UNITED STATES
| |
Collapse
|
20
|
Hu S, Zhao P, Li B, Yu P, Yang L, Ehara M, Jin P, Akasaka T, Lu X. Cluster-Geometry-Associated Metal-Metal Bonding in Trimetallic Carbide Clusterfullerenes. Inorg Chem 2022; 61:11277-11283. [PMID: 35838171 DOI: 10.1021/acs.inorgchem.2c01399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geometry configurations of the metallic clusters play a significant role in the involved bonding nature. Herein, we report the crystallographic characterization of unprecedented erbium-based trimetallic clusterfullerenes, namely, Er3C2@Ih(7)-C80, in which the inner Er3C2 cluster presents a lifted bat ray configuration with the C2 unit elevated by ∼1.62 Å above the Er3 plane. Within the plane, the Er···Er distances for Er1···Er2, Er1···Er2A, and Er2···Er2A are 3.4051(15), 3.4051(15), and 3.3178(15) Å, respectively, falling into the range of the metal-metal bonding. Density functional theory calculations unveil the three-center-one-electron Er-Er-Er bond in Er3C2@Ih(7)-C80 with one electron shared by three metals, and thus, its exceptional electronic structure can be expressed as (Er3)8+(C2)2-@C806-. Interestingly, with the further observation on the geometry configurations of the encapsulated clusters in M3C2@C2n (M = Sc, Y, and Lu) series, we find that the lifted bat ray configuration of the inner cluster is explicitly associated with the formation of the bonding interactions between the inner metals. This finding provides insights into the nature of metal-metal bonding and gives guidelines for the design of the single-molecule magnet.
Collapse
Affiliation(s)
- Shuaifeng Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Bo Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Pengwei Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Le Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Takeshi Akasaka
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
21
|
Zhou K, Zhang YY, Chen XT, Hu SX. 12-Membered Ring Carbides with Stabilization of Actinide Atoms. Inorg Chem 2022; 61:2119-2128. [PMID: 35041785 DOI: 10.1021/acs.inorgchem.1c03341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinide (Th and U) carbides as the potential nuclear fuels in nuclear reactors require basic research in order to understand the thermodynamic stability and performance of these substances. Here we report the structural characterization and bonding analyses of [C12], ThC12, and UC12 clusters via a global-minimum search combined with relativistic quantum chemistry calculations to elucidate the stability and bonding nature of An-C bonds. We predict that these [C12], ThC12, and UC12 compounds have a planar structure with C6h, D12h, and D12h symmetry, respectively. [C12] has a hyperconjugation structure containing alternating single and double bonds. The significant stabilization when forming AnC12 predominantly comes from the electrostatic interaction between An4+ and [C12]4- and also from a certain degree of orbital interaction between the An 5f6d7s valence shell and [C12] π orbitals. The covalent character of the An-C bonds exhibits a direct in-plane σ-type overlap of the C 2p-derived MOs of [C12] and the An 5fϕ AO, thus leading to an unprecedented electronic configuration of d1f1 for U in UC12. Our results present an example of the novel properties that can be expected for actinide compounds and would provide the knowledge required to obtain novel structures of AnC12 in future experiments.
Collapse
Affiliation(s)
- Ke Zhou
- College of Chemistry and Environmental Science & Shaanxi Key Laboratory of Catalysis & Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yang-Yang Zhang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics, Tsinghua University, Beijing 100084, China
| | - Xiao-Tong Chen
- Institute of Nuclear and New Energy Technology & Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.,Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
22
|
Shen W, Bao L, Lu X. Endohedral Metallofullerenes: An Ideal Platform of
Sub‐Nano
Chemistry. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wangqiang Shen
- School of Materials Science and Engineering, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan Hubei 430074 China
| | - Lipiao Bao
- School of Materials Science and Engineering, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan Hubei 430074 China
| | - Xing Lu
- School of Materials Science and Engineering, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan Hubei 430074 China
| |
Collapse
|
23
|
Wang Y, Velkos G, Israel NJ, Rosenkranz M, Büchner B, Liu F, Popov AA. Electrophilic Trifluoromethylation of Dimetallofullerene Anions en Route to Air-Stable Single-Molecule Magnets with High Blocking Temperature of Magnetization. J Am Chem Soc 2021; 143:18139-18149. [PMID: 34669376 DOI: 10.1021/jacs.1c07021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lanthanide dimetallofullerenes with single-electron M-M bonds are an important class of single molecular magnets and qubit candidates, but stabilization of their unique electronic and spin structure in the form of a neutral molecule requires functionalization of the fullerene cage with a single radical group. The lack of selectivity of the currently available procedure results in a complicated and tedious separation process. Here we demonstrate that electrophilic trifluoromethylation of a mixture of metallofullerene anions with Umemoto reagent II is highly selective toward M2@C80- (M = Tb, Y) anions, yielding M2@C80(CF3) monoadducts as the main reaction product. Single-crystal X-ray diffraction study proved attachment of the CF3 group to the pentagon/hexagon/hexagon junction and revealed that positions of metal atoms inside the fullerene cage in the cocrystal with NiOEP are strongly related to the position of the porphyrin moieties. Magnetic characterization of Tb2@C80(CF3) showed that it is a robust single-molecule magnet with broad magnetic hysteresis, 100 s blocking temperature of 25 K, and the relaxation barrier of 801(4) K, corresponding to the flipping of the Tb magnetic moment in the strongly ferromagnetically coupled [Tb3+-e-Tb3+] spin system.
Collapse
Affiliation(s)
- Yaofeng Wang
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Noel Jens Israel
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| |
Collapse
|
24
|
Yao YR, Roselló Y, Ma L, Puente Santiago AR, Metta-Magaña A, Chen N, Rodríguez-Fortea A, Poblet JM, Echegoyen L. Crystallographic Characterization of U@C 2n (2 n = 82-86): Insights about Metal-Cage Interactions for Mono-metallofullerenes. J Am Chem Soc 2021; 143:15309-15318. [PMID: 34516733 DOI: 10.1021/jacs.1c06833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endohedral mono-metallofullerenes are the prototypes to understand the fundamental nature and the unique interactions between the encapsulated metals and the fullerene cages. Herein, we report the crystallographic characterizations of four new U-based mono-metallofullerenes, namely, U@Cs(6)-C82, U@C2(8)-C84, U@Cs(15)-C84, and U@C1(12)-C86, among which the chiral cages C2(8)-C84 and C1(12)-C86 have never been previously reported for either endohedral or empty fullerenes. Symmetrical patterns, such as indacene, sumanene, and phenalene, and charge transfer are found to determine the metal positions inside the fullerene cages. In addition, a new finding concerning the metal positions inside the cages reveals that the encapsulated metal ions are always located on symmetry planes of the fullerene cages, as long as the fullerene cages possess mirror planes. DFT calculations show that the metal-fullerene motif interaction determines the stability of the metal position. In fullerenes containing symmetry planes, the metal prefers to occupy a symmetrical arrangement with respect to the interacting motifs, which share one of their symmetry planes with the fullerene. In all computationally analyzed fullerenes containing at least one symmetry plane, the actinide was found to be located on the mirror plane. This finding provides new insights into the nature of metal-cage interactions and gives new guidelines for structural determinations using crystallographic and theoretical methods.
Collapse
Affiliation(s)
- Yang-Rong Yao
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| | - Yannick Roselló
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| | - Alain Rafael Puente Santiago
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|