1
|
Hunt JM, du Rand A, Verdon D, Clemance L, Loef E, Malhi C, Buttle B, Knapp DJ, Michaels YS, Garlick J, Dunbar PR, Purvis D, Feisst V, Sheppard H. Enhanced HDR-mediated correction of heterozygous COL7A1 mutations for recessive dystrophic epidermolysis bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102472. [PMID: 40027886 PMCID: PMC11872078 DOI: 10.1016/j.omtn.2025.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Gene editing facilitated by homology-directed repair (HDR) holds great potential for treating monogenetic disorders such as recessive dystrophic epidermolysis bullosa (RDEB). However, low efficiency and variability between loci must be overcome for its widespread adoption into personalized therapies. To address these challenges, we developed a highly efficient and versatile gene editing strategy for RDEB that incorporates the small molecule inhibitor M3814 to enhance HDR. We focused on three RDEB causative COL7A1 mutations not previously targeted by existing gene therapies. Editing was achieved using Cas9-nuclease ribonucleoproteins with short single-stranded DNA donor templates, and outcomes were assessed with an Oxford Nanopore Technology sequencing analysis pipeline. We demonstrate precise genomic HDR rates of up to 75% of alleles in primary RDEB keratinocytes and 32% in fibroblasts. This approach restored collagen VII expression in up to 80% of keratinocytes within a bulk-edited population and resulted in correct collagen VII deposition in a 3D skin model. Additionally, at one locus we show that a dual Cas9-nickase strategy is less effective than Cas9-nuclease and prone to large on-target deletions. Our results demonstrate a significant advancement in the efficiency and consistency of HDR editing, potentially paving the way for more effective personalized gene therapies.
Collapse
Affiliation(s)
- John M.T. Hunt
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Center, New Zealand
| | - Alex du Rand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Daniel Verdon
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Leah Clemance
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Evert Loef
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Chloe Malhi
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ben Buttle
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - David J.H.F. Knapp
- Institut de recherche en immunologie et en cancérologie (IRIC) and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yale S. Michaels
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jonathan Garlick
- School of Dental Medicine, Tufts University, Boston, MA 02111, USA
| | - P. Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Center, New Zealand
| | - Diana Purvis
- Te Whatu Ora Health New Zealand, Te Toka Tumai, Auckland 1023, New Zealand
| | - Vaughan Feisst
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Hilary Sheppard
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Center, New Zealand
| |
Collapse
|
2
|
Canato S, Sarate R, Carvalho-Marques S, Soares RM, Song Y, Monteiro-Ferreira S, Vieugué P, Liagre M, Grossi G, Cardoso E, Dubois C, Conway EM, Schenone S, Sánchez-Danés A, Blanpain C. Survivin Promotes Stem Cell Competence for Skin Cancer Initiation. Cancer Discov 2025; 15:427-443. [PMID: 39526566 PMCID: PMC7617290 DOI: 10.1158/2159-8290.cd-24-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE This study identifies Survivin as a key regulator of the different ability of SCs and Ps to initiate skin cancer. Survivin expression in oncogene-targeted SCs is essential for their survival and self-renewal and to prevent their differentiation and apoptosis, allowing SCs and not Ps to initiate skin cancer.
Collapse
Affiliation(s)
- Sara Canato
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Rahul Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Raquel Maia Soares
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Pauline Vieugué
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mélanie Liagre
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Erik Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine University of British Columbia, Vancouver, Canada
| | | | | | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Jia YY, Atwood SX. Diversity of human skin three-dimensional organotypic cultures. Curr Opin Genet Dev 2024; 89:102275. [PMID: 39536613 DOI: 10.1016/j.gde.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recently, significant strides have been made in the development of high-fidelity skin organoids, encompassing techniques such as 3D bioprinting, skin-on-a-chip systems, and models derived from pluripotent stem cells (PSCs), replicating appendage structures and diverse skin cell types. Despite the emergence of these state-of-the-art skin engineering models, human organotypic cultures (OTCs), initially proposed in the 1970s, continue to reign as the predominant in vitro cultured three-dimensional skin model in the field of tissue engineering. This enduring prevalence is owed to their cost-effectiveness, straight forward setup, time efficiency, and faithful representation of native human skin. In this review, we systematically delineate recent advances in skin OTC models, aiming to inform future efforts to enhance in vitro skin model fidelity and reproducibility.
Collapse
Affiliation(s)
- Yunlong Y Jia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Dermatology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
Polito MP, Romaldini A, Tagliazucchi L, Marini G, Radice F, Gozza GA, Bergamini G, Costi MP, Enzo E. Biochemical characterization of the feedforward loop between CDK1 and FOXM1 in epidermal stem cells. Biol Direct 2024; 19:91. [PMID: 39396994 PMCID: PMC11472434 DOI: 10.1186/s13062-024-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
The complex network governing self-renewal in epidermal stem cells (EPSCs) is only partially defined. FOXM1 is one of the main players in this network, but the upstream signals regulating its activity remain to be elucidated. In this study, we identify cyclin-dependent kinase 1 (CDK1) as the principal kinase controlling FOXM1 activity in human primary keratinocytes. Mass spectrometry identified CDK1 as a key hub in a stem cell-associated protein network, showing its upregulation and interaction with essential self renewal-related markers. CDK1 phosphorylates FOXM1 at specific residues, stabilizing the protein and enhancing its nuclear localization and transcriptional activity, promoting self-renewal. Additionally, FOXM1 binds to the CDK1 promoter, inducing its expression.We identify the CDK1-FOXM1 feedforward loop as a critical axis sustaining EPSCs during in vitro cultivation. Understanding the upstream regulators of FOXM1 activity offers new insights into the biochemical mechanisms underlying self-renewal and differentiation in human primary keratinocytes.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Grazia Marini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Federica Radice
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Gaia Andrea Gozza
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Giulia Bergamini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy.
| |
Collapse
|
6
|
Carretta C, Parenti S, Bertesi M, Rontauroli S, Badii F, Tavernari L, Genovese E, Malerba M, Papa E, Sperduti S, Enzo E, Mirabile M, Pedrazzi F, Neroni A, Tombari C, Mora B, Maffioli M, Mondini M, Brociner M, Maccaferri M, Tenedini E, Martinelli S, Bartalucci N, Bianchi E, Casarini L, Potenza L, Luppi M, Tagliafico E, Guglielmelli P, Simoni M, Passamonti F, Norfo R, Vannucchi AM, Manfredini R. Chromosome 9p trisomy increases stem cells clonogenic potential and fosters T-cell exhaustion in JAK2-mutant myeloproliferative neoplasms. Leukemia 2024; 38:2171-2182. [PMID: 39179669 PMCID: PMC11436358 DOI: 10.1038/s41375-024-02373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
JAK2V617F is the most recurrent genetic mutation in Philadelphia-negative chronic Myeloproliferative Neoplasms (MPNs). Since the JAK2 locus is located on Chromosome 9, we hypothesized that Chromosome 9 copy number abnormalities may be a disease modifier in JAK2V617F-mutant MPN patients. In this study, we identified a subset of MPN patients with partial or complete Chromosome 9 trisomy (+9p patients), who differ from JAK2V617F-homozygous MPN patients as they carry three JAK2 alleles as well as three copies of all neighboring gene loci, including CD274, encoding immunosuppressive Programmed death-ligand 1 (PD-L1) protein. Investigation of the clonal hierarchy revealed that the JAK2V617F occurs first, followed by +9p. Functionally, CD34+ cells from +9p MPN patients demonstrated increased clonogenicity, generating a greater number of primitive colonies, due to high OCT4 and NANOG expression, with knock-down of these genes leading to a genotype-specific decrease in colony numbers. Moreover, our analysis revealed increased PD-L1 surface expression in malignant monocytes from +9p patients, while analysis of the T cell compartment unveiled elevated levels of exhausted cytotoxic T cells. Overall, here we identify a distinct novel subgroup of MPN patients, who feature a synergistic interplay between +9p and JAK2V617F that shapes immune escape characteristics and increased stemness in CD34+ cells.
Collapse
Affiliation(s)
- Chiara Carretta
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sandra Parenti
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Bertesi
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastiano Rontauroli
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Badii
- Department of Cancer Biology, Thomas Jefferson University and Sidney Kimmel Cancer Center, Philadelphia, PA, USA
| | - Lara Tavernari
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Genovese
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marica Malerba
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Papa
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Margherita Mirabile
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Pedrazzi
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Camilla Tombari
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Margherita Maffioli
- S.C. Ematologia, Ospedale di Circolo e Fondazione Macchi-ASST Sette Laghi, Varese, Italy
| | - Marco Mondini
- S.C. Ematologia, Ospedale di Circolo e Fondazione Macchi-ASST Sette Laghi, Varese, Italy
| | - Marco Brociner
- S.C. Ematologia, Ospedale di Circolo e Fondazione Macchi-ASST Sette Laghi, Varese, Italy
| | | | - Elena Tenedini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Martinelli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bartalucci
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisa Bianchi
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Hematology Unit, Modena University Hospital, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Modena University Hospital, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Guglielmelli
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Ruggiero Norfo
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Maria Vannucchi
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rossella Manfredini
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
7
|
Sercia L, Romano O, Marini G, Enzo E, Forcato M, De Rosa L, De Luca M. A cellular disease model toward gene therapy of TGM1-dependent lamellar ichthyosis. Mol Ther Methods Clin Dev 2024; 32:101311. [PMID: 39234443 PMCID: PMC11372595 DOI: 10.1016/j.omtm.2024.101311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Lamellar ichthyosis (LI) is a chronic disease, mostly caused by mutations in the TGM1 gene, marked by impaired skin barrier formation. No definitive therapies are available, and current treatments aim at symptomatic relief. LI mouse models often fail to faithfully replicate the clinical and histopathological features of human skin conditions. To develop advanced therapeutic approaches, such as combined ex vivo cell and gene therapy, we established a human cellular model of LI by efficient CRISPR-Cas9-mediated gene ablation of the TGM1 gene in human primary clonogenic keratinocytes. Gene-edited cells showed complete absence of transglutaminase 1 (TG1) expression and recapitulated a hyperkeratotic phenotype with most of the molecular hallmarks of LI in vitro. Using a self-inactivating γ-retroviral (SINγ-RV) vector expressing transgenic TGM1 under the control of its own promoter, we tested an ex vivo gene therapy approach and validate the model of LI as a platform for pre-clinical evaluation studies. Gene-corrected TGM1-null keratinocytes displayed proper TG1 expression, enzymatic activity, and cornified envelope formation and, hence, restored proper epidermal architecture. Single-cell multiomics analysis demonstrated proviral integrations in holoclone-forming epidermal stem cells, which are crucial for epidermal regeneration. This study serves as a proof of concept for assessing the potential of this therapeutic approach in treating TGM1-dependent LI.
Collapse
Affiliation(s)
- Laura Sercia
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Oriana Romano
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Grazia Marini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mattia Forcato
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Laura De Rosa
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
8
|
Polito MP, Romaldini A, Rinaldo S, Enzo E. Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation. Biol Direct 2024; 19:63. [PMID: 39113077 PMCID: PMC11308432 DOI: 10.1186/s13062-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, 00185, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
9
|
Polito MP, Marini G, Fabrizi A, Sercia L, Enzo E, De Luca M. Biochemical role of FOXM1-dependent histone linker H1B in human epidermal stem cells. Cell Death Dis 2024; 15:508. [PMID: 39019868 PMCID: PMC11255229 DOI: 10.1038/s41419-024-06905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Epidermal stem cells orchestrate epidermal renewal and timely wound repair through a tight regulation of self-renewal, proliferation, and differentiation. In culture, human epidermal stem cells generate a clonal type referred to as holoclone, which give rise to transient amplifying progenitors (meroclone and paraclone-forming cells) eventually generating terminally differentiated cells. Leveraging single-cell transcriptomic data, we explored the FOXM1-dependent biochemical signals controlling self-renewal and differentiation in epidermal stem cells aimed at improving regenerative medicine applications. We report that the expression of H1 linker histone subtypes decrease during serial cultivation. At clonal level we observed that H1B is the most expressed isoform, particularly in epidermal stem cells, as compared to transient amplifying progenitors. Indeed, its expression decreases in primary epithelial culture where stem cells are exhausted due to FOXM1 downregulation. Conversely, H1B expression increases when the stem cells compartment is sustained by enforced FOXM1 expression, both in primary epithelial cultures derived from healthy donors and JEB patient. Moreover, we demonstrated that FOXM1 binds the promotorial region of H1B, hence regulates its expression. We also show that H1B is bound to the promotorial region of differentiation-related genes and negatively regulates their expression in epidermal stem cells. We propose a novel mechanism wherein the H1B acts downstream of FOXM1, contributing to the fine interplay between self-renewal and differentiation in human epidermal stem cells. These findings further define the networks that sustain self-renewal along the previously identified YAP-FOXM1 axis.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Grazia Marini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Fabrizi
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Sercia
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy.
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
10
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Mader MM, Gebeyehu G, Jaouni TM, Jacków-Malinowska J, Rami A, Hansen C, Guo Z, Gaddam S, Tate KM, Pappalardo A, Li L, Chow GM, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Cramer A, Bruckner A, Bilousova G, Roop D, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable and cGMP-compatible autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. Nat Commun 2024; 15:5834. [PMID: 38992003 PMCID: PMC11239819 DOI: 10.1038/s41467-024-49400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Torkelson
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shengdi Li
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kelly McCarthy
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Hanson H Zhen
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius M Mader
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gulilat Gebeyehu
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Taysir M Jaouni
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Joanna Jacków-Malinowska
- Department of Dermatology, Columbia University, New York, NY, USA
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Sadhana Gaddam
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Keri M Tate
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lingjie Li
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Grace M Chow
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kevin R Roy
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Patrick S McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Amber Cramer
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jean Y Tang
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA.
| | - Anthony E Oro
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Ghuwalewala S, Jiang K, Ragi S, Shalloway D, Tumbar T. A transit-amplifying progenitor with biphasic behavior contributes to epidermal renewal. Development 2024; 151:dev202389. [PMID: 38934416 PMCID: PMC11234368 DOI: 10.1242/dev.202389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Transit-amplifying (TA) cells are progenitors that undergo an amplification phase followed by transition into an extinction phase. A long postulated epidermal TA progenitor with biphasic behavior has not yet been experimentally observed in vivo. Here, we identify such a TA population using clonal analysis of Aspm-CreER genetic cell-marking in mice, which uncovers contribution to both homeostasis and injury repair of adult skin. This TA population is more frequently dividing than a Dlx1-CreER-marked long-term self-renewing (e.g. stem cell) population. Newly developed generalized birth-death modeling of long-term lineage tracing data shows that both TA progenitors and stem cells display neutral competition, but only the stem cells display neutral drift. The quantitative evolution of a nascent TA cell and its direct descendants shows that TA progenitors indeed amplify the basal layer before transition and that the homeostatic TA population is mostly in extinction phase. This model will be broadly useful for analyzing progenitors whose behavior changes with their clone age. This work identifies a long-missing class of non-self-renewing biphasic epidermal TA progenitors and has broad implications for understanding tissue renewal mechanisms.
Collapse
Affiliation(s)
- Sangeeta Ghuwalewala
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Kevin Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sara Ragi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Yoshioka H, Ueta M, Fukuoka H, Yokoi N, Mizushima K, Naito Y, Kinoshita S, Sotozono C. Alteration of Gene Expression in Pathological Keratinization of the Ocular Surface. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 38935029 PMCID: PMC11216254 DOI: 10.1167/iovs.65.6.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.
Collapse
Affiliation(s)
- Hokoru Yoshioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Xiao T, Eze UC, Charruyer-Reinwald A, Weisenberger T, Khalifa A, Abegaze B, Schwab GK, Elsabagh RH, Parenteau TR, Kochanowski K, Piper M, Xia Y, Cheng JB, Cho RJ, Ghadially R. Short cell cycle duration is a phenotype of human epidermal stem cells. Stem Cell Res Ther 2024; 15:76. [PMID: 38475896 PMCID: PMC10935907 DOI: 10.1186/s13287-024-03670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A traditional view is that stem cells (SCs) divide slowly. Meanwhile, both embryonic and pluripotent SCs display a shorter cell cycle duration (CCD) in comparison to more committed progenitors (CPs). METHODS We examined the in vitro proliferation and cycling behavior of somatic adult human cells using live cell imaging of passage zero keratinocytes and single-cell RNA sequencing. RESULTS We found two populations of keratinocytes: those with short CCD and protracted near exponential growth, and those with long CCD and terminal differentiation. Applying the ergodic principle, the comparative numbers of cycling cells in S phase in an enriched population of SCs confirmed a shorter CCD than CPs. Further, analysis of single-cell RNA sequencing of cycling adult human keratinocyte SCs and CPs indicated a shortening of both G1 and G2M phases in the SC. CONCLUSIONS Contrary to the pervasive paradigm, SCs progress through cell cycle more quickly than more differentiated dividing CPs. Thus, somatic human adult keratinocyte SCs may divide infrequently, but divide rapidly when they divide. Additionally, it was found that SC-like proliferation persisted in vitro.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Ugomma C Eze
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Alex Charruyer-Reinwald
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Tracy Weisenberger
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Ayman Khalifa
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Brook Abegaze
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Gabrielle K Schwab
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Rasha H Elsabagh
- Immunology Department, Animal Health Research Institute (AHRI), Giza, Egypt
| | | | - Karl Kochanowski
- Department of Pharmaceutical Chemistry, UC San Francisco, San Francisco, CA, USA
| | - Merisa Piper
- Department of Plastic Surgery, UC San Francisco, San Francisco, CA, USA
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jeffrey B Cheng
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Raymond J Cho
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Ruby Ghadially
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA.
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA.
| |
Collapse
|
14
|
Cattaneo C, Enzo E, De Rosa L, Sercia L, Consiglio F, Forcato M, Bicciato S, Paiardini A, Basso G, Tagliafico E, Paganelli A, Fiorentini C, Magnoni C, Latella MC, De Luca M. Allele-specific CRISPR-Cas9 editing of dominant epidermolysis bullosa simplex in human epidermal stem cells. Mol Ther 2024; 32:372-383. [PMID: 38053334 PMCID: PMC10861943 DOI: 10.1016/j.ymthe.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a rare skin disease inherited mostly in an autosomal dominant manner. Patients display a skin fragility that leads to blisters and erosions caused by minor mechanical trauma. EBS phenotypic and genotypic variants are caused by genetic defects in intracellular proteins whose function is to provide the attachment of basal keratinocytes to the basement membrane zone and most EBS cases display mutations in keratin 5 (KRT5) and keratin 14 (KRT14) genes. Besides palliative treatments, there is still no long-lasting effective cure to correct the mutant gene and abolish the dominant negative effect of the pathogenic protein over its wild-type counterpart. Here, we propose a molecular strategy for EBS01 patient's keratinocytes carrying a monoallelic c.475/495del21 mutation in KRT14 exon 1. Through the CRISPR-Cas9 system, we perform a specific cleavage only on the mutant allele and restore a normal cellular phenotype and a correct intermediate filament network, without affecting the epidermal stem cell, referred to as holoclones, which play a crucial role in epidermal regeneration.
Collapse
Affiliation(s)
- C Cattaneo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - E Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - L De Rosa
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - L Sercia
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - F Consiglio
- Holostem Terapie Avanzate, s.r.l, 41125 Modena, Italy
| | - M Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - S Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - A Paiardini
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza Università di Roma, 00185 Rome, Italy
| | - G Basso
- Genomic Units, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - E Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - A Paganelli
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
| | - C Fiorentini
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
| | - C Magnoni
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
| | - M C Latella
- Holostem Terapie Avanzate, s.r.l, 41125 Modena, Italy
| | - M De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
15
|
Ragazzini R, Boeing S, Zanieri L, Green M, D'Agostino G, Bartolovic K, Agua-Doce A, Greco M, Watson SA, Batsivari A, Ariza-McNaughton L, Gjinovci A, Scoville D, Nam A, Hayday AC, Bonnet D, Bonfanti P. Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus. Dev Cell 2023; 58:2428-2446.e9. [PMID: 37652013 PMCID: PMC10957394 DOI: 10.1016/j.devcel.2023.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.
Collapse
Affiliation(s)
- Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Mary Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giuseppe D'Agostino
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Plasticell Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Kerol Bartolovic
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- Single Cell Facility, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Sara A Watson
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | | | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK.
| |
Collapse
|
16
|
Aimaier R, Chung MH, Gu Y, Yu Q, Wei C, Li H, Guo Z, Long M, Li Y, Wang W, Li Q, Wang Z. FOXM1 promotes neurofibromatosis type 1-associated malignant peripheral nerve sheath tumor progression in a NUF2-dependent manner. Cancer Gene Ther 2023; 30:1390-1402. [PMID: 37488294 DOI: 10.1038/s41417-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas characterized by poor prognosis and low drug response rates. Traditional chemo/radiotherapies show only mild benefits for patients with MPNSTs, and no targeted therapy is available in the clinic. A better understanding of the molecular background of MPNSTs is critical for the development of effective targeted therapies. Forkhead box M1 (FOXM1) has been implicated in the progression of many human malignancies, though its role in MPNSTs is unclear. In this study, using four Gene Expression Omnibus (GEO) datasets and a tissue microarray, we demonstrated that FOXM1 upregulation was associated with poor prognosis in patients with MPNSTs. FOXM1 overexpression and knockdown regulated the proliferation and colony formation of MPNST cells. Using bioinformatics analysis and luciferase reporter assays, we identified NUF2 as a direct downstream target of FOXM1. Both in vitro and in vivo experiments demonstrated that the induction of MPNST cell proliferation by FOXM1 was dependent on elevated NUF2 expression, as NUF2 knockdown abolished the FOXM1-induced proliferation of MPNST cells. Our study showed that the FOXM1-NUF2 axis mediates human MPNST progression and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiong Yu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Cherkashina OL, Morgun EI, Rippa AL, Kosykh AV, Alekhnovich AV, Stoliarzh AB, Terskikh VV, Vorotelyak EA, Kalabusheva EP. Blank Spots in the Map of Human Skin: The Challenge for Xenotransplantation. Int J Mol Sci 2023; 24:12769. [PMID: 37628950 PMCID: PMC10454653 DOI: 10.3390/ijms241612769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Most of the knowledge about human skin homeostasis, development, wound healing, and diseases has been accumulated from human skin biopsy analysis by transferring from animal models and using different culture systems. Human-to-mouse xenografting is one of the fundamental approaches that allows the skin to be studied in vivo and evaluate the ongoing physiological processes in real time. Humanized animals permit the actual techniques for tracing cell fate, clonal analysis, genetic modifications, and drug discovery that could never be employed in humans. This review recapitulates the novel facts about mouse skin self-renewing, regeneration, and pathology, raises issues regarding the gaps in our understanding of the same options in human skin, and postulates the challenges for human skin xenografting.
Collapse
Affiliation(s)
- Olga L. Cherkashina
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra L. Rippa
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander V. Alekhnovich
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Aleksey B. Stoliarzh
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Vasiliy V. Terskikh
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P. Kalabusheva
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
18
|
Park SY, Ter-Saakyan S, Faraci G, Lee HY. Immune cell identifier and classifier (ImmunIC) for single cell transcriptomic readouts. Sci Rep 2023; 13:12093. [PMID: 37495649 PMCID: PMC10372073 DOI: 10.1038/s41598-023-39282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
Single cell RNA sequencing has a central role in immune profiling, identifying specific immune cells as disease markers and suggesting therapeutic target genes of immune cells. Immune cell-type annotation from single cell transcriptomics is in high demand for dissecting complex immune signatures from multicellular blood and organ samples. However, accurate cell type assignment from single-cell RNA sequencing data alone is complicated by a high level of gene expression heterogeneity. Many computational methods have been developed to respond to this challenge, but immune cell annotation accuracy is not highly desirable. We present ImmunIC, a simple and robust tool for immune cell identification and classification by combining marker genes with a machine learning method. With over two million immune cells and half-million non-immune cells from 66 single cell RNA sequencing studies, ImmunIC shows 98% accuracy in the identification of immune cells. ImmunIC outperforms existing immune cell classifiers, categorizing into ten immune cell types with 92% accuracy. We determine peripheral blood mononuclear cell compositions of severe COVID-19 cases and healthy controls using previously published single cell transcriptomic data, permitting the identification of immune cell-type specific differential pathways. Our publicly available tool can maximize the utility of single cell RNA profiling by functioning as a stand-alone bioinformatic cell sorter, advancing cell-type specific immune profiling for the discovery of disease-specific immune signatures and therapeutic targets.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Sonia Ter-Saakyan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
19
|
Polito MP, Marini G, Palamenghi M, Enzo E. Decoding the Human Epidermal Complexity at Single-Cell Resolution. Int J Mol Sci 2023; 24:ijms24108544. [PMID: 37239891 DOI: 10.3390/ijms24108544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The epidermis is one of the largest tissues in the human body, serving as a protective barrier. The basal layer of the epidermis, which consists of epithelial stem cells and transient amplifying progenitors, represents its proliferative compartment. As keratinocytes migrate from the basal layer to the skin surface, they exit the cell cycle and initiate terminal differentiation, ultimately generating the suprabasal epidermal layers. A deeper understanding of the molecular mechanisms and pathways driving keratinocytes' organization and regeneration is essential for successful therapeutic approaches. Single-cell techniques are valuable tools for studying molecular heterogeneity. The high-resolution characterization obtained with these technologies has identified disease-specific drivers and new therapeutic targets, further promoting the advancement of personalized therapies. This review summarizes the latest findings on the transcriptomic and epigenetic profiling of human epidermal cells, analyzed from human biopsy or after in vitro cultivation, focusing on physiological, wound healing, and inflammatory skin conditions.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Grazia Marini
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
20
|
De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to Advanced Therapies for Epidermolysis Bullosa. Cold Spring Harb Perspect Biol 2023; 15:a041229. [PMID: 36167646 PMCID: PMC10071437 DOI: 10.1101/cshperspect.a041229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermolysis bullosa (EB) is a devastating genetic skin disease typified by a plethora of different phenotypes and ranking from severe, early lethal, to mild localized forms. Although there is no cure for EB, recent progress in pharmacology and molecular and cellular biology is boosting the development of new advanced therapeutic strategies. Here we will focus on two main categories of such therapies: (1) those aimed at controlling inflammation and inducing reepithelialization of the wounds, and (2) those, perhaps more challenging and ambitious, that aim to permanently regenerate a fully functional epidermis, which requires targeting of epidermal stem cells. In both cases, the genetic variants underlying the different EB forms and factors, such as genetic background, modifier genes, comorbidities, and lifestyle, all of which impinge on EB genotype-phenotype correlation, need to be defined.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate, S.r.l., 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sercia
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
21
|
miRNome and Proteome Profiling of Human Keratinocytes and Adipose Derived Stem Cells Proposed miRNA-Mediated Regulations of Epidermal Growth Factor and Interleukin 1-Alpha. Int J Mol Sci 2023; 24:ijms24054956. [PMID: 36902387 PMCID: PMC10002856 DOI: 10.3390/ijms24054956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is regulated by complex crosstalk between keratinocytes and other cell types, including stem cells. In this study, a 7-day direct co-culture model of human keratinocytes and adipose-derived stem cells (ADSCs) was proposed to study the interaction between the two cell types, in order to identify regulators of ADSCs differentiation toward the epidermal lineage. As major mediators of cell communication, miRNome and proteome profiles in cell lysates of cultured human keratinocytes and ADSCs were explored through experimental and computational analyses. GeneChip® miRNA microarray, identified 378 differentially expressed miRNAs; of these, 114 miRNAs were upregulated and 264 miRNAs were downregulated in keratinocytes. According to miRNA target prediction databases and the Expression Atlas database, 109 skin-related genes were obtained. Pathway enrichment analysis revealed 14 pathways including vesicle-mediated transport, signaling by interleukin, and others. Proteome profiling showed a significant upregulation of the epidermal growth factor (EGF) and Interleukin 1-alpha (IL-1α) compared to ADSCs. Integrated analysis through cross-matching the differentially expressed miRNA and proteins suggested two potential pathways for regulations of epidermal differentiation; the first is EGF-based through the downregulation of miR-485-5p and miR-6765-5p and/or the upregulation of miR-4459. The second is mediated by IL-1α overexpression through four isomers of miR-30-5p and miR-181a-5p.
Collapse
|
22
|
Jia X, He L, Yang Z. Recent advances in the role of Yes-associated protein in dermatosis. Skin Res Technol 2023; 29:e13285. [PMID: 36973973 PMCID: PMC10155855 DOI: 10.1111/srt.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Dermatosis is a general term for diseases of the skin and skin appendages including scleroderma, psoriasis, bullous disease, atopic dermatitis, basal cell carcinoma, squamous cell carcinoma, and melanoma. These diseases affect millions of individuals globally and are a serious public health concern. However, the pathogenesis of skin diseases is not fully understood, and treatments are not optimal. Yes-associated protein (YAP) is a transcriptional coactivator that plays a role in the regulation of gene transcription and signal transduction. AIMS To study the role of Yes-associated protein in skin diseases. MATERIALS AND METHODS The present review summarizes recent advances in our understanding of the role of YAP in skin diseases, current treatments that target YAP, and potential avenues for novel therapies. RESULTS Abnormal YAP expression has been implicated in occurrence and development of dermatosis. YAP regulates the cell homeostasis, proliferation, differentiation, apoptosis, angiopoiesis, and epithelial-to-mesenchymal transition, among other processes. As well as, it serves as a potential target in many biological processes for treating dermatosis. CONCLUSIONS The effects of YAP on the skin are complex and require multidimensional investigational approaches. YAP functions as an oncoprotein that can promote the occurrence and development of cancer, but there is currently limited information on the therapeutic potential of YAP inhibition for cancer treatment. Additional studies are also needed to clarify the role of YAP in the development and maturation of dermal fibroblasts; skin barrier function, homeostasis, aging, and melanin production; and dermatosis.
Collapse
Affiliation(s)
- Xiaorong Jia
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Li He
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Zhi Yang
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
23
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Jackow J, Rami A, Hansen C, Guo Z, Gaddam S, Pappalardo A, Li L, Cramer A, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Bruckner A, Bilousova G, Roop D, Bailey I, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable, GMP-compatible, autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529447. [PMID: 36909618 PMCID: PMC10002612 DOI: 10.1101/2023.02.28.529447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Background Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Jessica L. Torkelson
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Shengdi Li
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kelly McCarthy
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Hanson H. Zhen
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Joanna Jackow
- Department of Dermatology, Columbia University, New York, NY 10032
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology
| | | | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology
| | - Amber Cramer
- Program in Epithelial Biology and Department of Dermatology
| | - Kevin R. Roy
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Patrick S. McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irene Bailey
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Jean Y. Tang
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | | | - Lars M. Steinmetz
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Anthony E. Oro
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| |
Collapse
|
24
|
Brooks IR, Sheriff A, Moran D, Wang J, Jacków J. Challenges of Gene Editing Therapies for Genodermatoses. Int J Mol Sci 2023; 24:2298. [PMID: 36768619 PMCID: PMC9916788 DOI: 10.3390/ijms24032298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Jacków
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
25
|
Yakupu A, Zhang D, Guan H, Jiang M, Dong J, Niu Y, Tang J, Liu Y, Ma X, Lu S. Single-cell analysis reveals melanocytes may promote inflammation in chronic wounds through cathepsin G. Front Genet 2023; 14:1072995. [PMID: 36755572 PMCID: PMC9900029 DOI: 10.3389/fgene.2023.1072995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
During acute wound (AW) healing, a series of proper communications will occur between different epidermal cells at precise temporal stages to restore the integrity of the skin. However, it is still unclear what variation happened in epidermal cell interaction in the chronic wound environment. To provide new insights into chronic wound healing, we reconstructed the variations in the epidermal cell-cell communication network that occur in chronic wound healing via single-cell RNA-seq (scRNA-seq) data analysis. We found that the intricate cellular and molecular interactions increased in pressure ulcer (PU) compared to AW, especially the PARs signaling pathways were significantly upregulated. It shows that the PARs signaling pathways' main source was melanocytes and the CTSG-F2RL1 ligand-receptor pairs were its main contributor. Cathepsin G (CatG or CTSG) is a serine protease mainly with trypsin- and chymotrypsin-like specificity. It is synthesized and secreted by some immune or non-immune cells. Whereas, it has not been reported that melanocytes can synthesize and secrete the CTSG. F2R Like Trypsin Receptor 1 (F2RL1) is a member of proteinase-activated receptors (PARs) that are irreversibly activated by proteolytic cleavage and its stimulation can promote inflammation and inflammatory cell infiltration. In this study, we found that melanocytes increased in pressure ulcers, melanocytes can synthesize and secrete the CTSG and may promote inflammation in chronic wounds through CTSG-F2RL1 pairs, which may be a novel potential target and a therapeutic strategy in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Aobuliaximu Yakupu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haonan Guan
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minfei Jiang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Niu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajun Tang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingkai Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Ma
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| | - Shuliang Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| |
Collapse
|
26
|
Jayarajan V, Hall GT, Xenakis T, Bulstrode N, Moulding D, Castellano S, Di WL. Short-Term Treatment with Rho-Associated Kinase Inhibitor Preserves Keratinocyte Stem Cell Characteristics In Vitro. Cells 2023; 12:cells12030346. [PMID: 36766688 PMCID: PMC9913223 DOI: 10.3390/cells12030346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - George T. Hall
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Neil Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Dale Moulding
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Wei-Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: ; Tel.: +44-(0)207905-2369; Fax: +44-(0)207905-2882
| |
Collapse
|
27
|
Coutier J, Auvré F, Lemaître G, Lataillade JJ, Deleuze JF, Roméo PH, Martin MT, Fortunel NO. MXD4/MAD4 Regulates Human Keratinocyte Precursor Fate. J Invest Dermatol 2023; 143:105-114.e12. [PMID: 36007550 DOI: 10.1016/j.jid.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
Deciphering the pathways that regulate human epidermal precursor cell fate is necessary for future developments in skin repair and graft bioengineering. Among them, characterization of pathways regulating the keratinocyte (KC) precursor immaturity versus differentiation balance is required for improving the efficiency of KC precursor ex vivo expansion. In this study, we show that the transcription factor MXD4/MAD4 is expressed at a higher level in quiescent KC stem/progenitor cells located in the basal layer of human epidermis than in cycling progenitors. In holoclone KCs, stable short hairpin-RNA‒mediated decreased expression of MXD4/MAD4 increases MYC expression, whose modulation increases the proliferation of KC precursors and maintenance of their clonogenic potential and preserves the functionality of these precursors in three-dimensional epidermis organoid generation. Altogether, these results characterize MXD4/MAD4 as a major piece of the stemness puzzle in the human epidermis KC lineage and pinpoint an original avenue for ex vivo expansion of human KC precursors.
Collapse
Affiliation(s)
- Julien Coutier
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Frédéric Auvré
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Gilles Lemaître
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Jean-Jacques Lataillade
- INSERM UMRS-MD 1197, Institute of Armies Biomedical Research (IRBA), Armies Blood Transfusion Centre, Clamart, France
| | | | - Paul-Henri Roméo
- CEA-INSERM UMR1274, Research Laboratory on Repair and Transcription in hematopoietic Stem Cells, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France; Paris-Diderot University, Paris, France; Paris-Saclay University, Gif-sur-Yvette, France
| | - Michèle T Martin
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Nicolas O Fortunel
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France.
| |
Collapse
|
28
|
Gupta I, Shankrit S, Narta K, Ghazi M, Grover R, Pandey R, Kar HK, Menon SM, Gupta A, Yenamandra VK, Singh A, Mukerji M, Mukhopadhyay A, Rani R, Gokhale RS, Dash D, Natarajan VT. Whole-Exome Sequencing of Vitiligo Lesions Indicates Lower Burden of Somatic Variations: Implications in Risk for Nonmelanoma Skin Cancers. J Invest Dermatol 2022; 143:1111-1114.e8. [PMID: 36535361 DOI: 10.1016/j.jid.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Iti Gupta
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shambhavi Shankrit
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Kiran Narta
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madeeha Ghazi
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ritika Grover
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemanta Kumar Kar
- Department of Dermatology, PGIMER Dr. Ram Manohar Lohia Hospital, New Delhi, India; Department of Dermatology, Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha
| | - Shruti M Menon
- Department of Dermatology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Aayush Gupta
- Department of Dermatology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Vamsi K Yenamandra
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Archana Singh
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitali Mukerji
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Arijit Mukhopadhyay
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Translational Medicine Unit, Biomedical Research Centre, University of Salford, Manchester, United Kingdom
| | - Rajni Rani
- National Institute of Immunology, New Delhi, India
| | - Rajesh S Gokhale
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; National Institute of Immunology, New Delhi, India
| | - Debasis Dash
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vivek T Natarajan
- Council for Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
29
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
30
|
Lotti R, Palazzo E, Quadri M, Dumas M, Schnebert S, Biondini D, Bianchini MA, Nizard C, Pincelli C, Marconi A. Isolation of an "Early" Transit Amplifying Keratinocyte Population in Human Epidermis: A Role for the Low Affinity Neurotrophin Receptor CD271. Stem Cells 2022; 40:1149-1161. [PMID: 36037263 PMCID: PMC9806768 DOI: 10.1093/stmcls/sxac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
In the interfollicular epidermis (IFE), stem cells (KSC) generate transit amplifying (TA) cells that, after symmetric divisions, produce differentiating daughters. Here, we isolated and characterized the highly proliferative interfollicular epidermal basal cell population "early" TA (ETA) cells, based on their capacity to adhere to type IV collagen. Proliferation and colony-forming efficiency in ETA cells are lower than in KSC but higher than in "late" TA (LTA). Stemness, proliferation, and differentiation markers confirmed that ETA cells display a unique phenotype. Skin reconstructs derived from ETA cells present different features (epidermal thickness, Ki67, and Survivin expression), as compared to skin equivalents generated from either KSC or LTA cells. The low-affinity neurotrophin receptor CD271, which regulates the KSC to TA cell transition in the human epidermis through an on/off switch control mechanism, is predominantly expressed in ETA cells. Skin equivalents generated from siRNA CD271 ETA cells display a more proliferative and less differentiated phenotype, as compared to mock-derived reconstructs. Consistently, CD271 overexpression in LTA cells generates a more proliferative skin equivalent than mock LTA cells. Finally, the CD271 level declines with cellular senescence, while it induces a delay in p16INK4 expression. We conclude that ETA cells represent the first KSC progenitor with exclusive features. CD271 identifies and modulates ETA cells, thus participating in the early differentiation and regenerative capacity of the human epidermis.
Collapse
Affiliation(s)
- Roberta Lotti
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marika Quadri
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marc Dumas
- LVMH Recherche, Life Sciences Department, Saint Jean de Braye, France
| | | | - Diego Biondini
- Pediatric Surgery Unit, Department of Pediatric Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Anastasia Bianchini
- Pediatric Surgery Unit, Department of Pediatric Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Carine Nizard
- LVMH Recherche, Life Sciences Department, Saint Jean de Braye, France
| | - Carlo Pincelli
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- Corresponding author: Alessandra Marconi, MSc in Biology, Specialist in Clinical Pathology, DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124 Modena, Italy. Tel: +39 059 4222812; Fax: +39 059 4224271;
| |
Collapse
|
31
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
32
|
ROCK ‘n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells 2022; 11:cells11071130. [PMID: 35406693 PMCID: PMC8997668 DOI: 10.3390/cells11071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.
Collapse
|
33
|
Ascensión AM, Araúzo-Bravo MJ, Izeta A. Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Technologies to Dermatology. Life (Basel) 2022; 12:67. [PMID: 35054460 PMCID: PMC8781146 DOI: 10.3390/life12010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Skin is a complex and heterogeneous organ at the cellular level. This complexity is beginning to be understood through the application of single-cell genomics and computational tools. A large number of datasets that shed light on how the different human skin cell types interact in homeostasis-and what ceases to work in diverse dermatological diseases-have been generated and are publicly available. However, translation of these novel aspects to the clinic is lacking. This review aims to summarize the state-of-the-art of skin biology using single-cell technologies, with a special focus on skin pathologies and the translation of mechanistic findings to the clinic. The main implications of this review are to summarize the benefits and limitations of single-cell analysis and thus help translate the emerging insights from these novel techniques to the bedside.
Collapse
Affiliation(s)
- Alex M. Ascensión
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Max Planck Institute for Molecular Biomedicine, 48167 Muenster, Germany
- IKERBASQUE, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- School of Engineering, Tecnun-University of Navarra, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
34
|
Enzo E, Cattaneo C, Consiglio F, Polito MP, Bondanza S, De Luca M. Clonal analysis of human clonogenic keratinocytes. Methods Cell Biol 2022; 170:101-116. [DOI: 10.1016/bs.mcb.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Schepler H, Neufurth M, Wang S, She Z, Schröder HC, Wang X, Müller WE. Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics 2022; 12:18-34. [PMID: 34987631 PMCID: PMC8690915 DOI: 10.7150/thno.67148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The healing of chronic wounds is impaired by a lack of metabolic energy. In previous studies, we showed that physiological inorganic polyphosphate (polyP) is a generator of metabolic energy by forming ATP as a result of the enzymatic cleavage of the high-energy phosphoanhydride bonds of this polymer. Therefore, in the present study, we investigated whether the administration of polyP can substitute for the energy deficiency in chronic wound healing. Methods: PolyP was incorporated into collagen mats and applied in vitro and to patients in vivo. Results: (i) In vitro studies: Keratinocytes grown in vitro onto the polyP/collagen mats formed long microvilli to guide them to a favorable environment. HUVEC cells responded to polyP/collagen mats with an increased adhesion and migration propensity as well as penetration into the mats. (ii) In vivo - human clinical studies: In a "bench to bedside" process these promising in vitro results were translated from the laboratory into the clinic. In the proof-of-concept application, the engineered polyP/collagen mats were applied to chronic wounds in patients. Those mats impressively accelerated the re-epithelialization rate, with a reduction of the wound area to 65% after 3 weeks and to 36.6% and 22.5% after 6 and 9 weeks, respectively. Complete healing was achieved and no further treatment was necessary. Biopsy samples from the regenerating wound area showed predominantly myofibroblasts. The wound healing process was supported by the use of a polyP containing moisturizing solution. Conclusion: The results strongly recommend polyP as a beneficial component in mats for a substantial healing of chronic wounds.
Collapse
Affiliation(s)
- Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Zhengding She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E.G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
36
|
Kueckelhaus M, Rothoeft T, De Rosa L, Yeni B, Ohmann T, Maier C, Eitner L, Metze D, Losi L, Secone Seconetti A, De Luca M, Hirsch T. Transgenic Epidermal Cultures for Junctional Epidermolysis Bullosa - 5-Year Outcomes. N Engl J Med 2021; 385:2264-2270. [PMID: 34881838 DOI: 10.1056/nejmoa2108544] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).
Collapse
Affiliation(s)
- Maximilian Kueckelhaus
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Rothoeft
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura De Rosa
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Burcu Yeni
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Ohmann
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Christoph Maier
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lynn Eitner
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Dieter Metze
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Secone Seconetti
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Hirsch
- From the Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, and the Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide (M.K., B.Y., T.H.), and the Department of Dermatology, University of Muenster (D.M.), Muenster, the Department of Neonatology and Pediatric Intensive Care (T.R.) and the Department of Neuropediatrics (L.E.), University Children's Hospital, Ruhr-University Bochum (C.M.), Bochum, and the Research Department, BG Klinikum Duisburg, Duisburg (T.O.) - all in Germany; and Holostem Terapie Avanzate, Center for Regenerative Medicine Stefano Ferrari (L.D.R., A.S.S.), and the Unit of Pathology (L.L.) and the Center for Regenerative Medicine Stefano Ferrari (M.D.L.), Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Nguyen TM, Aragona M. Regulation of tissue architecture and stem cell dynamics to sustain homeostasis and repair in the skin epidermis. Semin Cell Dev Biol 2021; 130:79-89. [PMID: 34563461 DOI: 10.1016/j.semcdb.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022]
Abstract
Stratified epithelia are made up of several layers of cells, which act as a protective barrier for the organ they cover. To ensure their shielding effect, epithelia are naturally able to cope with constant environmental insults. This ability is enabled by their morphology and architecture, as well as the continuous turnover of stem and progenitor cells that constitute their building blocks. Stem cell fate decisions and dynamics are fundamental key biological processes that allow epithelia to exert their functions. By focusing on the skin epidermis, this review discusses how tissue architecture is generated during development, maintained through adult life, and re-established during regeneration.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|