1
|
Philip DT, Goins NM, Lazear HM. A fur plucking model to study herpes simplex virus reactivation and recurrent disease. mSphere 2024; 9:e0078323. [PMID: 39382285 PMCID: PMC11520289 DOI: 10.1128/msphere.00783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) most commonly cause ulcerative epithelial lesions (cold sores and genital herpes). Importantly, HSV establishes life-long persistent (latent) infection in peripheral neurons. Reactivation from latency produces recurrent epithelial lesions, which constitute the greatest burden of HSV disease in people. The mechanisms that regulate latency and reactivation remain incompletely understood, in part due to limitations in the animal models available for studying HSV reactivation. We have developed a simple and tractable model to induce HSV-1 and HSV-2 reactivation from latency to cause recurrent skin disease. We infected C57BL/6 mice with HSV-1 (strains NS, F, SC16, 17syn+) or HSV-2 (strain 333) on flank skin depilated by manual plucking. After at least 35 days post-infection (dpi), we replucked the fur from the infected flank and observed recurrent lesions in the same dermatome as the primary infection. We detected HSV DNA in dermatome skin through 4 days post-replucking and observed viral antigen and reporter signal in skin lesions by histology, consistent with viral replication following reactivation. In addition to C57BL/6 mice, we were able to produce reactivation in Balb/c and SKH-1 mice. We found that shaving the ipsilateral flank or plucking the contralateral flank did not induce recurrent skin lesions, suggesting that fur plucking is a specific stimulus that induces HSV reactivation. Furthermore, we were able to induce multiple rounds of plucking-induced recurrent disease, providing a model to investigate the lifelong nature of HSV infection. This new model provides a tractable system for studying pathogenic mechanisms of and therapeutic interventions against HSV reactivation and recurrent disease. IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) have infected over half of the US adult population to cause a lifelong, persistent infection; however, our understanding of the mechanisms that govern HSV reactivation and recurrent disease is incomplete. This is in part due to limitations in the animal models used to study recurrent disease, which are laborious and inefficient in mice. To address this technical gap, we developed a mouse model in which fur plucking after flank skin infection is sufficient to induce episodes of HSV reactivation and recurrent disease. Our work provides a model for the field to investigate the pathogenic mechanisms of HSV and immune responses during recurrent disease and provides an opportunity to investigate the neurobiology of HSV infection.
Collapse
Affiliation(s)
- Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel M. Goins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Hanč P, Messou MA, Ajit J, von Andrian UH. Setting the tone: nociceptors as conductors of immune responses. Trends Immunol 2024; 45:783-798. [PMID: 39307581 PMCID: PMC11493364 DOI: 10.1016/j.it.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory. Rather, we propose that nociceptors have the role of a rheostat that, in a context-dependent manner, favors tissue homeostasis and fine-tunes immunity by preventing excessive histotoxic inflammation, promoting tissue repair, and potentiating anticipatory and adaptive immune responses.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jainu Ajit
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Lee SH, Bonifacio F, Prudente AS, Choi YI, Roh J, Adjafre BL, Park CK, Jung SJ, Cunha TM, Berta T. STING recognition of viral dsDNA by nociceptors mediates pain in mice. Brain Behav Immun 2024; 121:29-42. [PMID: 39025416 DOI: 10.1016/j.bbi.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Pain is often one of the initial indicators of a viral infection, yet our understanding of how viruses induce pain is limited. Immune cells typically recognize viral nucleic acids, which activate viral receptors and signaling, leading to immunity. Interestingly, these viral receptors and signals are also present in nociceptors and are associated with pain. Here, we investigate the response of nociceptors to nucleic acids during viral infections, specifically focusing on the role of the viral signal, Stimulator of Interferon Genes (STING). Our research shows that cytosolic double-stranded DNA (dsDNA) from viruses, like herpes simplex virus 1 (HSV-1), triggers pain responses through STING expression in nociceptors. In addition, STING agonists alone can elicit pain responses. Notably, these responses involve the direct activation of STING in nociceptors through TRPV1. We also provided a proof-of-concept showing that STING and TRPV1 significantly contribute to the mechanical hypersensitivity induced by HSV-1 infection. These findings suggest that STING could be a potential therapeutic target for relieving pain during viral infections.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fabio Bonifacio
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Y I Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Beatriz Lima Adjafre
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
4
|
Joshi PR, Adhikari S, Onah C, Carrier C, Judd A, Mack M, Baral P. Lung-innervating nociceptor sensory neurons promote pneumonic sepsis during carbapenem-resistant Klebsiella pneumoniae lung infection. SCIENCE ADVANCES 2024; 10:eadl6162. [PMID: 39241063 PMCID: PMC11378917 DOI: 10.1126/sciadv.adl6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes Gram-negative lung infections and fatal pneumonic sepsis for which limited therapeutic options are available. The lungs are densely innervated by nociceptor sensory neurons that mediate breathing, cough, and bronchoconstriction. The role of nociceptors in defense against Gram-negative lung pathogens is unknown. Here, we found that lung-innervating nociceptors promote CRKP pneumonia and pneumonic sepsis. Ablation of nociceptors in mice increased lung CRKP clearance, suppressed trans-alveolar dissemination of CRKP, and protected mice from hypothermia and death. Furthermore, ablation of nociceptors enhanced the recruitment of neutrophils and Ly6Chi monocytes and cytokine induction. Depletion of Ly6Chi monocytes, but not of neutrophils, abrogated lung and extrapulmonary CRKP clearance in ablated mice, suggesting that Ly6Chi monocytes are a critical cellular population to regulate pneumonic sepsis. Further, neuropeptide calcitonin gene-related peptide suppressed the induction of reactive oxygen species in Ly6Chi monocytes and their CRKP-killing abilities. Targeting nociceptor signaling could be a therapeutic approach for treating multidrug-resistant Gram-negative infection and pneumonic sepsis.
Collapse
Affiliation(s)
- Prabhu Raj Joshi
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sandeep Adhikari
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem Onah
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Camille Carrier
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Abigail Judd
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthias Mack
- Department of Nephrology, Regensburg University Medical Center, Regensburg 93042, Germany
| | - Pankaj Baral
- Section of Microbiology and Immunology, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Cao Q, Li J, Chen M. Bioinformatics analysis of neutrophil-associated hub genes and ceRNA network construction in septic cardiomyopathy. Aging (Albany NY) 2024; 16:12833-12849. [PMID: 39216003 PMCID: PMC11501391 DOI: 10.18632/aging.206092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Septic cardiomyopathy (SCM) is a critical sepsis complication characterized by reversible cardiac depression during early septic shock. Neutrophils, integral to innate immunity, can mediate organ damage when abnormal, but their specific role in sepsis-induced myocardial damage remains elusive. Our study focuses on elucidating the role of Neutrophil-Related Genes (NRGs) in SCM, finding early diagnosis and treatment biomarkers. We identified shared differentially expressed genes (DEGs) from datasets GSE79962 and GSE44363 and pinpointed hub DEGs using the cytoHubba plugin in Cytoscape software. The Neutrophil-Related Hub Gene (NRHG) MRC1 was identified via intersecting hub DEGs with NRGs from WGCNA. We validated MRC1's abnormal expression in SCM using our data and external datasets. Furthermore, a neutrophil-related ceRNA network (AC145207.5/ miR-23a-3p/MRC1) was constructed and validated. Our findings reveal MRC1 as a potential NRHG in SCM pathogenesis, offering insights into neutrophil-mediated mechanisms in SCM and providing a novel molecular target for early diagnosis and intervention in SCM.
Collapse
Affiliation(s)
- Qingfei Cao
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jing Li
- Department of Pediatric, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meixue Chen
- Department of Pediatric, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
Wang JC, Crosson T, Nikpoor AR, Gupta S, Rafei M, Talbot S. NOCICEPTOR NEURONS CONTROL POLLUTION-MEDIATED NEUTROPHILIC ASTHMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609202. [PMID: 39229121 PMCID: PMC11370576 DOI: 10.1101/2024.08.22.609202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The immune and sensory nervous systems, having evolved together, use a shared language of receptors and transmitters to maintain homeostasis by responding to external and internal disruptions. Although beneficial in many cases, neurons can exacerbate inflammation during allergic reactions, such as asthma. Our research modeled asthma aggravated by pollution, exposing mice to ambient PM2.5 particles and ovalbumin. This exposure significantly increased bronchoalveolar lavage fluid neutrophils and γδ T cells compared to exposure to ovalbumin alone. We normalized airway inflammation and lung neutrophil levels by silencing nociceptor neurons at inflammation's peak using intranasal QX-314 or ablating TRPV1-expressing neurons. Additionally, we observed heightened sensitivity in chemical-sensing TRPA1 channels in neurons from pollution-exacerbated asthmatic mice. Elevated levels of artemin were detected in the bronchoalveolar lavage fluid from pollution-exposed mice, with artemin levels normalizing in mice with ablated nociceptor neurons. Upon exposure PM2.5 particles, alveolar macrophages expressing pollution-sensing aryl hydrocarbon receptors, were identified as the source of artemin. This molecule enhanced TRPA1 responsiveness and increased neutrophil influx, providing a novel mechanism by which lung-innervating neurons respond to air pollution and suggesting a potential therapeutic target for controlling neutrophilic airway inflammation in asthma, a clinically intractable condition.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Amin Reza Nikpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Surbhi Gupta
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| |
Collapse
|
7
|
Zhang Y, Li T, Zhao H, Xiao X, Hu X, Wang B, Huang Y, Yin Z, Zhong Y, Li Y, Li J. High-sensitive sensory neurons exacerbate rosacea-like dermatitis in mice by activating γδ T cells directly. Nat Commun 2024; 15:7265. [PMID: 39179539 PMCID: PMC11344132 DOI: 10.1038/s41467-024-50970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
Rosacea patients show facial hypersensitivity to stimulus factors (such as heat and capsaicin); however, the underlying mechanism of this hyperresponsiveness remains poorly defined. Here, we show capsaicin stimulation in mice induces exacerbated rosacea-like dermatitis but has no apparent effect on normal skin. Nociceptor ablation substantially reduces the hyperresponsiveness of rosacea-like dermatitis. Subsequently, we find that γδ T cells express Ramp1, the receptor of the neuropeptide CGRP, and are in close contact with these nociceptors in the skin. γδ T cells are significantly increased in rosacea skin lesions and can be further recruited and activated by neuron-secreted CGRP. Rosacea-like dermatitis is reduced in T cell receptor δ-deficient (Tcrd-/-) mice, and the nociceptor-mediated aggravation of rosacea-like dermatitis is also reduced in these mice. In vitro experiments show that CGRP induces IL17A secretion from γδ T cells by regulating inflammation-related and metabolism-related pathways. Finally, rimegepant, a CGRP receptor antagonist, shows efficacy in the treatment of rosacea-like dermatitis. In conclusion, our findings demonstrate a neuron-CGRP-γδT cell axis that contributes to the hyperresponsiveness of rosacea, thereby showing that targeting CGRP is a potentially effective therapeutic strategy for rosacea.
Collapse
MESH Headings
- Animals
- Rosacea/immunology
- Mice
- Calcitonin Gene-Related Peptide/metabolism
- Sensory Receptor Cells/metabolism
- Capsaicin/pharmacology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Skin/pathology
- Skin/immunology
- Skin/metabolism
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Dermatitis/immunology
- Dermatitis/metabolism
- Dermatitis/pathology
- Disease Models, Animal
- Male
- Nociceptors/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Humans
- Receptors, Calcitonin Gene-Related Peptide/metabolism
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
8
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Wu M, Song G, Li J, Song Z, Zhao B, Liang L, Li W, Hu H, Tu H, Li S, Li P, Zhang B, Wang W, Zhang Y, Zhang W, Zheng W, Wang J, Wen Y, Wang K, Li A, Zhou T, Zhang Y, Li H. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 2024; 187:2935-2951.e19. [PMID: 38772371 DOI: 10.1016/j.cell.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/18/2024] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.
Collapse
Affiliation(s)
- Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Guangping Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Jianing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zengqing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Bing Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Liyun Liang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Wenlong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Huaibin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Peiyao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Biyu Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Wen Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yu Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wanpeng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Weifan Zheng
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jiarong Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yuqi Wen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| | - Yucheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
10
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA. Modulation of host immunity by sensory neurons. Trends Immunol 2024; 45:381-396. [PMID: 38697871 DOI: 10.1016/j.it.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
Recent studies have uncovered a new role for sensory neurons in influencing mammalian host immunity, challenging conventional notions of the nervous and immune systems as separate entities. In this review we delve into this groundbreaking paradigm of neuroimmunology and discuss recent scientific evidence for the impact of sensory neurons on host responses against a wide range of pathogens and diseases, encompassing microbial infections and cancers. These valuable insights enhance our understanding of the interactions between the nervous and immune systems, and also pave the way for developing candidate innovative therapeutic interventions in immune-mediated diseases highlighting the importance of this interdisciplinary research field.
Collapse
Affiliation(s)
- Telma Saraiva-Santos
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Tiago H Zaninelli
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Felipe A Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Pei L, Hickman HD. T Cell Surveillance during Cutaneous Viral Infections. Viruses 2024; 16:679. [PMID: 38793562 PMCID: PMC11126121 DOI: 10.3390/v16050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The skin is a complex tissue that provides a strong physical barrier against invading pathogens. Despite this, many viruses can access the skin and successfully replicate in either the epidermal keratinocytes or dermal immune cells. In this review, we provide an overview of the antiviral T cell biology responding to cutaneous viral infections and how these responses differ depending on the cellular targets of infection. Much of our mechanistic understanding of T cell surveillance of cutaneous infection has been gained from murine models of poxvirus and herpesvirus infection. However, we also discuss other viral infections, including flaviviruses and papillomaviruses, in which the cutaneous T cell response has been less extensively studied. In addition to the mechanisms of successful T cell control of cutaneous viral infection, we highlight knowledge gaps and future directions with possible impact on human health.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
13
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
14
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
15
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LT, Lucas D, Deepe GS, Jankowski MP. Macrophage epigenetic memories of early life injury drive neonatal nociceptive priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528015. [PMID: 36824978 PMCID: PMC9948986 DOI: 10.1101/2023.02.13.528015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
|
16
|
Miallot R, Millet V, Roger A, Fenouil R, Tardivel C, Martin JC, Tranchida F, Shintu L, Berchard P, Sousa Lanza J, Malissen B, Henri S, Ugolini S, Dutour A, Finetti P, Bertucci F, Blay JY, Galland F, Naquet P. The coenzyme A precursor pantethine enhances antitumor immunity in sarcoma. Life Sci Alliance 2023; 6:e202302200. [PMID: 37833072 PMCID: PMC10583838 DOI: 10.26508/lsa.202302200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.
Collapse
Affiliation(s)
- Richard Miallot
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Virginie Millet
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Anais Roger
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Romain Fenouil
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | | | | | | | - Laetitia Shintu
- CNRS, Centrale Marseille, ISM2, Aix Marseille Université, Marseille, France
| | - Paul Berchard
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
| | - Juliane Sousa Lanza
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Bernard Malissen
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
- INSERM, CNRS, Centre D'Immunophénomique (CIPHE), Aix Marseille Université, Marseille, France
| | - Sandrine Henri
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Sophie Ugolini
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Aurélie Dutour
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
| | - Pascal Finetti
- INSERM, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Laboratory of Predictive Oncology, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- INSERM, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Laboratory of Predictive Oncology, Aix-Marseille Université, Marseille, France
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Jean-Yves Blay
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
- UNICANCER Centre Léon Bérard, Department of Medicine, Université Lyon I, Lyon, France
| | - Franck Galland
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Philippe Naquet
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| |
Collapse
|
17
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
18
|
Fuller AM, Luiz A, Tian N, Arcangeletti M, Iseppon F, Sexton JE, Millet Q, Caxaria S, Ketabi N, Celik P, Wood JN, Sikandar S. Gate control of sensory neurotransmission in peripheral ganglia by proprioceptive sensory neurons. Brain 2023; 146:4033-4039. [PMID: 37249190 PMCID: PMC10549771 DOI: 10.1093/brain/awad182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Melzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation. Parvalbumin-positive sensory neurons express the enzymes and transporters necessary to produce vesicular GABA that is known to be released from depolarized somata. These observations support the view that gate control mechanisms occur peripherally within dorsal root ganglia.
Collapse
Affiliation(s)
- Alice M Fuller
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana Luiz
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Naxi Tian
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Manuel Arcangeletti
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Federico Iseppon
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Jane E Sexton
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Queensta Millet
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sara Caxaria
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Niloofar Ketabi
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Petek Celik
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John N Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Shafaq Sikandar
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
19
|
Dourson AJ, Jankowski MP. Developmental impact of peripheral injury on neuroimmune signaling. Brain Behav Immun 2023; 113:156-165. [PMID: 37442302 PMCID: PMC10530254 DOI: 10.1016/j.bbi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
A peripheral injury drives neuroimmune interactions at the level of the injury and throughout the neuraxis. Understanding these systems will be beneficial in the pursuit to target persistent pain that involves both neural and immune components. In this review, we discuss the impact of injury on the development of neuroimmune signaling, along with data that suggest a possible cellular immune memory. We also discuss the parallel effects of injury in the nervous system and immune related areas including bone marrow, lymph node and central nervous system-related cells. Finally, we relate these findings to patient populations and current research that evaluates human tissue.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
20
|
Maruyama M, Sakai A, Fukunaga T, Miyagawa Y, Okada T, Hamada M, Suzuki H. Neat1 lncRNA organizes the inflammatory gene expressions in the dorsal root ganglion in neuropathic pain caused by nerve injury. Front Immunol 2023; 14:1185322. [PMID: 37614230 PMCID: PMC10442554 DOI: 10.3389/fimmu.2023.1185322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Primary sensory neurons regulate inflammatory processes in innervated regions through neuro-immune communication. However, how their immune-modulating functions are regulated in concert remains largely unknown. Here, we show that Neat1 long non-coding RNA (lncRNA) organizes the proinflammatory gene expressions in the dorsal root ganglion (DRG) in chronic intractable neuropathic pain in rats. Neat1 was abundantly expressed in the DRG and was upregulated after peripheral nerve injury. Neat1 overexpression in primary sensory neurons caused mechanical and thermal hypersensitivity, whereas its knockdown alleviated neuropathic pain. Bioinformatics analysis of comprehensive transcriptome changes indicated the inflammatory response was the most relevant function of genes upregulated through Neat1. Consistent with this, upregulation of proinflammatory genes in the DRG following nerve injury was suppressed by Neat1 knockdown. Expression changes of these proinflammatory genes were regulated through Neat1-mRNA interaction-dependent and -independent mechanisms. Notably, Neat1 increased proinflammatory genes by stabilizing its interacting mRNAs in neuropathic pain. Finally, Neat1 in primary sensory neurons contributed to spinal inflammatory processes that mediated peripheral neuropathic pain. These findings demonstrate that Neat1 lncRNA is a key regulator of neuro-immune communication in neuropathic pain.
Collapse
Affiliation(s)
- Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Japan
- Division of Laboratory Animal Science, Nippon Medical School, Bunkyo-ku, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Shinjuku-ku, Japan
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Shinjuku-ku, Japan
- Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Japan
| |
Collapse
|
21
|
Feuillet V, Ugolini S, Reynders A. Differential regulation of cutaneous immunity by sensory neuron subsets. Trends Neurosci 2023:S0166-2236(23)00128-5. [PMID: 37277277 DOI: 10.1016/j.tins.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
The nervous and immune systems have classically been studied as separate entities, but there is now mounting evidence for bidirectional communication between them in various organs, including the skin. The skin is an epithelial tissue with important sensory and immune functions. The skin is highly innervated with specialized subclasses of primary sensory neurons (PSNs) that can be in contact with skin-resident innate and adaptive immune cells. Neuroimmune crosstalk in the skin, through interactions of PSNs with the immune system, has been shown to regulate host cutaneous defense, inflammation, and tissue repair. Here, we review current knowledge about the cellular and molecular mechanisms involved in this crosstalk, as depicted via mouse model studies. We highlight the ways in which different immune challenges engage specialized subsets of PSNs to produce mediators acting on immune cell subsets and modulating their function.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Ana Reynders
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
22
|
Hanč P, Gonzalez RJ, Mazo IB, Wang Y, Lambert T, Ortiz G, Miller EW, von Andrian UH. Multimodal control of dendritic cell functions by nociceptors. Science 2023; 379:eabm5658. [PMID: 36996219 PMCID: PMC10642951 DOI: 10.1126/science.abm5658] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/17/2023] [Indexed: 04/01/2023]
Abstract
It is known that interactions between nociceptors and dendritic cells (DCs) can modulate immune responses in barrier tissues. However, our understanding of the underlying communication frameworks remains rudimentary. Here, we show that nociceptors control DCs in three molecularly distinct ways. First, nociceptors release the calcitonin gene-related peptide that imparts a distinct transcriptional profile on steady-state DCs characterized by expression of pro-interleukin-1β and other genes implicated in DC sentinel functions. Second, nociceptor activation induces contact-dependent calcium fluxes and membrane depolarization in DCs and enhances their production of proinflammatory cytokines when stimulated. Finally, nociceptor-derived chemokine CCL2 contributes to the orchestration of DC-dependent local inflammation and the induction of adaptive responses against skin-acquired antigens. Thus, the combined actions of nociceptor-derived chemokines, neuropeptides, and electrical activity fine-tune DC responses in barrier tissues.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rodrigo J Gonzalez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Irina B Mazo
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Talley Lambert
- Cell Biology Microscopy Facility, Harvard Medical School, Boston, MA 02115, USA
| | - Gloria Ortiz
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Evan W Miller
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
24
|
Staurengo-Ferrari L, Deng L, Chiu IM. Interactions between nociceptor sensory neurons and microbial pathogens in pain. Pain 2022; 163:S57-S68. [PMID: 36252233 PMCID: PMC9586460 DOI: 10.1097/j.pain.0000000000002721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Larissa Staurengo-Ferrari
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Liwen Deng
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Isaac M. Chiu
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
26
|
Abstract
Progress in neuroimmunology established that the nervous and the immune systems are two functionally related physiological systems. Unique sensory and immune receptors enable them to control interactions of the organism with the inner and the outer worlds. Both systems undergo an experience-driven selection process during their ontogeny. They share the same mediators/neurotransmitters and use synapses for intercellular communication. They keep a memory of previous experiences. Immune cells can affect nervous cells, nervous cells can affect immune cells, and they regulate each other. I however argue that the two systems differ by three major points: 1) Unlike the nervous system, the immune system has a loose anatomical structure, in which molecular and cellular events mostly occur at random; 2) The immune system can respond to molecules of the living world whereas the nervous system can respond to phenomena of the physical world; 3) Responses of the immune system act both on the organism and on the stimulus that triggered the response, whereas responses of the nervous system act on the organism only. The nervous and the immune systems therefore appear as two complementary systems of relations that closely work together, and whose reactivities are well-suited to deal with physical and biological stimuli, respectively. Its ability both to adapt the organism to the living world and to adapt the living world to the organism endows the immune system with powerful adaptive properties that enable the organism to live in peace with itself and with other living beings, whether pathogens or commensals.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d’histoire et de philosophie des sciences et des techniques, Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
- *Correspondence: Marc Daëron,
| |
Collapse
|
27
|
Zhang Y, Li Y, Zhou L, Yuan X, Wang Y, Deng Q, Deng Z, Xu S, Wang Q, Xie H, Li J. Nav1.8 in keratinocytes contributes to ROS-mediated inflammation in inflammatory skin diseases. Redox Biol 2022; 55:102427. [PMID: 35952475 PMCID: PMC9372634 DOI: 10.1016/j.redox.2022.102427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS)-activated proinflammatory signals in keratinocytes play a crucial role in the immunoregulation of inflammatory skin diseases, including rosacea and psoriasis. Nav1.8 is a voltage-gated sodium ion channel, and its abnormal expression in the epidermal layer contributes to pain hypersensitivity in the skin. However, whether and how epidermal Nav1.8 is involved in skin immunoregulation remains unclear. This study was performed to identify the therapeutic role of Nav1.8 in inflammatory skin disorders. We found that Nav1.8 expression was significantly upregulated in the epidermis of rosacea and psoriasis skin lesions. Nav1.8 knockdown ameliorated skin inflammation in LL37-and imiquimod-induced inflammation mouse models. Transcriptome sequencing results indicated that Nav1.8 regulated the expression of pro-inflammatory mediators (IL1β and IL6) in keratinocytes, thereby contributing to immune infiltration in inflammatory skin disorders. In vitro, tumor necrosis factor alpha (TNFα), a cytokine that drives the development of various inflammatory skin disorders, increased Nav1.8 expression in keratinocytes. Knockdown of Nav1.8 eliminated excess ROS production, thereby attenuating the TNFα-induced production of inflammatory mediators; however, a Nav1.8 blocker did not have the same effect. Mechanistically, Nav1.8 reduced superoxide dismutase 2 (SOD2) activity by directly binding to SOD2 to prevent its deacetylation and mitochondrial localization, subsequently inducing ROS accumulation. Collectively, our study describes a central role for Nav1.8 in regulating pro-inflammatory responses in the skin and indicates a novel therapeutic strategy for rosacea and psoriasis.
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yuan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
28
|
Roger A, Reynders A, Hoeffel G, Ugolini S. Neuroimmune crosstalk in the skin: a delicate balance governing inflammatory processes. Curr Opin Immunol 2022; 77:102212. [DOI: 10.1016/j.coi.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
29
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
30
|
Kortekaas Krohn I, Aerts JL, Breckpot K, Goyvaerts C, Knol E, Van Wijk F, Gutermuth J. T-cell subsets in the skin and their role in inflammatory skin disorders. Allergy 2022; 77:827-842. [PMID: 34559894 DOI: 10.1111/all.15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
T lymphocytes (T cells) are major players of the adaptive immune response. Naive T cells are primed in the presence of cytokines, leading to polarization into distinct T-cell subsets with specific functions. These subsets are classified based on their T-cell receptor profile, expression of transcription factors, surface cytokine and chemokine receptors, and their cytokine production, which together determine their specific function. This review provides an overview of the various T-cell subsets and their function in several inflammatory skin disorders ranging from allergic inflammation to skin tumors. Moreover, we highlight similarities of T-cell responses across different skin disorders, demonstrating the presence of similar and opposing functions for the different T-cell subsets. Finally, we discuss the effects of currently available and promising therapeutic approaches to harness T cells in inflammatory skin diseases for which efficacy next to unwanted side effects provide new insights into the pathophysiology of skin disorders.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| | - Joeri L. Aerts
- Vrije Universiteit Brussel (VUB)Neuro‐Aging and Viro‐Immunotherapy (NAVI) Research Group Brussels Belgium
| | - Karine Breckpot
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Cleo Goyvaerts
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Edward Knol
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
| | - Femke Van Wijk
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| |
Collapse
|
31
|
Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci 2022; 23:157-171. [PMID: 34997214 DOI: 10.1038/s41583-021-00555-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Bidirectional communication between the peripheral nervous system (PNS) and the immune system is a crucial part of an effective but balanced mammalian response to invading pathogens, tissue damage and inflammatory stimuli. Here, we review how somatosensory and autonomic neurons regulate immune cellular responses at barrier tissues and in peripheral organs. Immune cells express receptors for neuronal mediators, including neuropeptides and neurotransmitters, allowing neurons to influence their function in acute and chronic inflammatory diseases. Distinct subsets of peripheral sensory, sympathetic, parasympathetic and enteric neurons are able to signal to innate and adaptive immune cells to modulate their cellular functions. In this Review, we highlight recent studies defining the molecular mechanisms by which neuroimmune signalling mediates tissue homeostasis and pathology. Understanding the neural circuitry that regulates immune responses can offer novel targets for the treatment of a wide array of diseases.
Collapse
|
32
|
Hiroki CH, Sarden N, Hassanabad MF, Yipp BG. Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Front Immunol 2021; 12:785355. [PMID: 34975876 PMCID: PMC8716370 DOI: 10.3389/fimmu.2021.785355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.
Collapse
Affiliation(s)
- Carlos H. Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mortaza F. Hassanabad
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
The Neuroscientist Comments. Neuroscientist 2021; 27:579. [PMID: 34755564 DOI: 10.1177/10738584211060321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Bhutta MS, Sausen DG, Reed KM, Gallo ES, Hair PS, Lassiter BP, Krishna NK, Cunnion KM, Borenstein R. Peptide Inhibitor of Complement C1, RLS-0071, Reduces Zosteriform Spread of Herpes Simplex Virus Type 1 Skin Infection and Promotes Survival in Infected Mice. Viruses 2021; 13:v13081422. [PMID: 34452288 PMCID: PMC8402672 DOI: 10.3390/v13081422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact, especially on and around mucosal surfaces where there is contact with contaminated saliva during periods of viral shedding. It is estimated that 90% of adults worldwide have HSV-1 antibodies. Cutaneous HSV-1 infections are characterized by a sensation of tingling or numbness at the initial infection site followed by an eruption of vesicles and then painful ulcers with crusting. These symptoms can take ten days to several weeks to heal, leading to significant morbidity. Histologically, infections cause ballooning degeneration of keratinocytes and formation of multinucleated giant cells, ultimately resulting in a localized immune response. Commonly prescribed treatments against HSV-1 infections are nucleoside analogs, such as acyclovir (ACV). However, the emergence of ACV-resistant HSV (ACVR-HSV) clinical isolates has created an urgent need for the development of compounds to control symptoms of cutaneous infections. RLS-0071, also known as peptide inhibitor of complement C1 (PIC1), is a 15-amino-acid anti-inflammatory peptide that inhibits classical complement pathway activation and modulates neutrophil activation. It has been previously shown to aid in the healing of chronic diabetic wounds by inhibiting the excessive activation of complement component C1 and infiltration of leukocytes. Here, we report that treatment of cutaneous infections of HSV-1 and ACVR-HSV-1 in BALB/cJ mice with RLS-0071 significantly reduced the rate of mortality, decreased zosteriform spread, and enhanced the healing of the infection-associated lesions compared to control-treated animals. Therefore, RLS-0071 may work synergistically with other antiviral drugs to aid in wound healing of HSV-1 cutaneous infection and may potentially aid in rapid wound healing of other pathology not limited to HSV-1.
Collapse
Affiliation(s)
- Maimoona S. Bhutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
| | - Kirstin M. Reed
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
| | - Elisa S. Gallo
- Board-Certified Dermatologist and Independent Researcher, Norfolk, VA 23507, USA
| | - Pamela S. Hair
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
| | - Brittany P. Lassiter
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
| | - Neel K. Krishna
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
| | - Kenji M. Cunnion
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Children’s Specialty Group, 811 Redgate Avenue, Norfolk, VA 23507, USA
- Children’s Hospital of The King’s Daughters, Norfolk, VA 23507, USA
| | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
- Correspondence:
| |
Collapse
|