1
|
Kennedy VE, Smith CC. FLT3 targeting in the modern era: from clonal selection to combination therapies. Int J Hematol 2024; 120:528-540. [PMID: 38112995 PMCID: PMC11513752 DOI: 10.1007/s12185-023-03681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is the most frequently mutated gene in acute myeloid leukemia (AML). Modern targeting of FLT3 with inhibitors has improved clinical outcomes and FLT3 inhibitors have been incorporated into the treatment of AML in all phases of the disease, including the upfront, relapsed/refractory and maintenance settings. This review will discuss the current understanding of FLT3 biology, the clinical use of FLT3 inhibitors, resistance mechanisms and emerging combination treatment strategies.
Collapse
Affiliation(s)
- Vanessa E Kennedy
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, 505 Parnassus Ave, Box 1270, San Francisco, CA, 94143, USA
| | - Catherine C Smith
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, 505 Parnassus Ave, Box 1270, San Francisco, CA, 94143, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Urrutia S, Takahashi K. Precision medicine in AML: overcoming resistance. Int J Hematol 2024; 120:439-454. [PMID: 39085680 DOI: 10.1007/s12185-024-03827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The development of molecularly targeted therapy for acute myeloid leukemia is progressing at an accelerated pace. Therapies targeting FLT3, IDH1, IDH2, and BCL2 have been approved in the last 5 years. As we exploit these biological vulnerabilities, various mechanisms of resistance arise. Emergence of competing clones with different genetic drivers and acquisition of constitutional mutations in the target renders therapies ineffective, and enzymatic isoform changes can lead to reappearance of the disease phenotype. Understanding the timing and circumstances of resistance origination will allow clinicians to develop combinatorial and sequential therapeutic approaches to deepen responses and improve survival. The objective of this review is to illustrate the biological underpinnings of each therapy and the landscape of resistance mechanisms and discuss strategies to overcome on- and off-target resistance.
Collapse
Affiliation(s)
- Samuel Urrutia
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, 4SCR6.2085, Houston, TX, 77030-4009, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
3
|
Kehmann L, Jördens M, Loosen SH, Luedde T, Roderburg C, Leyh C. Evolving therapeutic landscape of advanced biliary tract cancer: from chemotherapy to molecular targets. ESMO Open 2024; 9:103706. [PMID: 39366294 PMCID: PMC11489061 DOI: 10.1016/j.esmoop.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
Biliary tract cancer, the second most common type of liver cancer, remains a therapeutic challenge due to its late diagnosis and poor prognosis. In recent years, it has become evident that classical chemotherapy might not be the optimal treatment for patients with biliary tract cancer, especially after failure of first-line therapy. Finding new treatment options and strategies to improve the survival of these patients is therefore crucial. With the rise and increasing availability of genetic testing in patients with tumor, novel treatment approaches targeting specific genetic alterations have recently been proposed and have demonstrated their safety and efficacy in numerous clinical trials. In this review, we will first consider chemotherapy options and the new possibility of combining chemotherapy with immune checkpoint inhibitors in first-line treatment. We will then provide an overview of genomic alterations and their potential for targeted therapy especially in second-line therapy. In addition to the most common alterations such as isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations, fibroblast growth factor receptor 2 (FGFR2) fusions, and alterations, we will also discuss less frequently encountered alterations such as BRAF V600E mutation and neurotrophic tyrosine kinase receptor gene (NTRK) fusion. We highlight the importance of molecular profiling in guiding therapeutic decisions and emphasize the need for continued research to optimize and expand targeted treatment strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- L Kehmann
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin, Germany; Servier Deutschland GmbH, München, Germany
| | - M Jördens
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - S H Loosen
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - T Luedde
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Roderburg
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Leyh
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
4
|
Fobare S, Sharpe C, Quinn K, Bryant K, Miles LA, Bowman RL, Cheney C, Furby C, Long M, Fyock K, Wronowski B, Lerma JR, Mullaney A, Mrózek K, Nicolet D, Sesterhenn T, Johnstone ME, Rai SN, Pasare C, Zimmermann N, Carroll AJ, Stone RM, Wang ES, Kolitz JE, Powell BL, Perentesis JP, Eisfeld AK, Hertlein E, Byrd JC. PTPN11 Mutation Clonal Hierarchy in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612239. [PMID: 39345464 PMCID: PMC11429687 DOI: 10.1101/2024.09.18.612239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mutations in protein tyrosine phosphatase non-receptor type 11 ( PTPN11 ) have been considered late acquired mutations in acute myeloid leukemia (AML) development. To interrogate the ontogeny of PTPN11 mutations, we utilized single-cell DNA sequencing and identified that PTPN11 mutations can occur as initiating events in some AML patients when accompanied by strong oncogenic drivers, commonly NPM1 mutations. The co-driver role of PTPN11 mutations was confirmed in a novel murine model that exhibits an AML phenotype with early expansion of a diverse set of variably differentiated myeloid cells that engrafted into immunodeficient and immunocompetent mice. This immune diversity was reconstituted from early precursor cells when engrafted into immunodeficient mice. Moreover, immune diversity was also observed in the blast component of patient samples with NPM1 and PTPN11 mutations, providing novel antigen targets for immune based approaches in this subset of AML that is resistant to multiple targeted therapies.
Collapse
|
5
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-05963-x. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
6
|
Hu D, Shen K, Guo Y, Bao XB, Dong N, Chen S. The clinical implications of BCOR mutations in a large cohort of acute myeloid leukemia patients: a 5-year single-center retrospective study. Leuk Lymphoma 2024:1-10. [PMID: 39126311 DOI: 10.1080/10428194.2024.2387730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
To elucidate the effect of BCOR mutation (BCORmut) on clinical outcomes, we included a total of 899 consecutive AML patients in a single-center during July 2016 to December 2021. Fifty cases (5.6%) had BCOR mutations, which co-occurred with mutations of RUNX1, DNMT3A, IDH2, BCORL1, STAG2, SF3B1 and U2AF1, but were exclusive with KIT and CEBPA mutations. BCORmut was also found to be exclusive with t(8;21)(q22;q22.1) AML in all patients and MLL rearrangements in the European Leukemia Net (ELN) adverse group. In those receiving intensive chemotherapy regimens, BCORmut was associated with lower complete remission (CR) rates and worse prognosis. Subgroup analysis showed that BCORmut mainly conferred a poor prognosis in the intermediate and adverse groups of the ELN2017 risk. These results suggest that BCOR mutation is an independent prognostic parameter in AML, implying BCOR mutation as a novel marker for chemorefractory disease and inferior prognosis.
Collapse
Affiliation(s)
- Deyuan Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P.R. China
| | - Kai Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P.R. China
| | - YuSha Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P.R. China
| | - Xie Bing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P.R. China
| | - Ningzheng Dong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P.R. China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P.R. China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P. R. China
| |
Collapse
|
7
|
Kowalczyk A, Zarychta J, Lejman M, Latoch E, Zawitkowska J. Clinical Implications of Isocitrate Dehydrogenase Mutations and Targeted Treatment of Acute Myeloid Leukemia with Mutant Isocitrate Dehydrogenase Inhibitors-Recent Advances, Challenges and Future Prospects. Int J Mol Sci 2024; 25:7916. [PMID: 39063158 PMCID: PMC11276768 DOI: 10.3390/ijms25147916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the better understanding of the molecular mechanisms contributing to the pathogenesis of acute myeloid leukemia (AML) and improved patient survival in recent years, AML therapy still remains a clinical challenge. For this reason, it is important to search for new therapies that will enable the achievement of remission. Recently, the Food and Drug Administration approved three mutant IDH (mIDH) inhibitors for the treatment of AML. However, the use of mIDH inhibitors in monotherapy usually leads to the development of resistance and the subsequent recurrence of the cancer, despite the initial effectiveness of the therapy. A complete understanding of the mechanisms by which IDH mutations influence the development of leukemia, as well as the processes that enable resistance to mIDH inhibitors, may significantly improve the efficacy of this therapy through the use of an appropriate synergistic approach. The aim of this literature review is to present the role of IDH1/IDH2 mutations in the pathogenesis of AML and the results of clinical trials using mIDH1/IDH2 inhibitors in AML and to discuss the challenges related to the use of mIDH1/IDH2 inhibitors in practice and future prospects related to the potential methods of overcoming resistance to these agents.
Collapse
Affiliation(s)
- Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Jen WY, Kantarjian H, Kadia TM, DiNardo CD, Issa GC, Short NJ, Yilmaz M, Borthakur G, Ravandi F, Daver NG. Combination therapy with novel agents for acute myeloid leukaemia: Insights into treatment of a heterogenous disease. Br J Haematol 2024; 205:30-47. [PMID: 38724457 DOI: 10.1111/bjh.19519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/27/2024] [Indexed: 07/13/2024]
Abstract
The treatment landscape of acute myeloid leukaemia (AML) is evolving rapidly. Venetoclax in combination with intensive chemotherapy or doublets or triplets with targeted or immune therapies is the focus of numerous ongoing trials. The development of mutation-targeted therapies has greatly enhanced the treatment armamentarium, with FLT3 inhibitors and isocitrate dehydrogenase inhibitors improving outcomes in frontline and relapsed/refractory (RR) AML, and menin inhibitors showing efficacy in RR NPM1mut and KMT2A-rearranged AML. With so many new drugs approved, the number of potential combinatorial approaches to leverage the maximal benefit of these agents has increased dramatically, while at the same time introducing clinical challenges, such as key preclinical and clinical data supporting the development of combinatorial therapy, how to optimally combine or sequence these novel agents, how to optimise dose and duration to maintain safety while enhancing efficacy, the optimal duration of therapy and the role of measurable residual disease in decision-making in both intensive and low-intensity therapy settings. In this review, we will outline the evidence leading to the approval of key agents in AML, their on-label current approvals and how they may be optimally combined in a safe and deliverable fashion to further improve outcomes in AML.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Qin G, Dai J, Chien S, Martins TJ, Loera B, Nguyen QH, Oakes ML, Tercan B, Aguilar B, Hagen L, McCune J, Gelinas R, Monnat RJ, Shmulevich I, Becker PS. Mutation Patterns Predict Drug Sensitivity in Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:2659-2671. [PMID: 38619278 PMCID: PMC11176916 DOI: 10.1158/1078-0432.ccr-23-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 12/08/2023] [Indexed: 04/16/2024]
Abstract
PURPOSE The inherent genetic heterogeneity of acute myeloid leukemia (AML) has challenged the development of precise and effective therapies. The objective of this study was to elucidate the genomic basis of drug resistance or sensitivity, identify signatures for drug response prediction, and provide resources to the research community. EXPERIMENTAL DESIGN We performed targeted sequencing, high-throughput drug screening, and single-cell genomic profiling on leukemia cell samples derived from patients with AML. Statistical approaches and machine learning models were applied to identify signatures for drug response prediction. We also integrated large public datasets to understand the co-occurring mutation patterns and further investigated the mutation profiles in the single cells. The features revealed in the co-occurring or mutual exclusivity pattern were further subjected to machine learning models. RESULTS We detected genetic signatures associated with sensitivity or resistance to specific agents, and identified five co-occurring mutation groups. The application of single-cell genomic sequencing unveiled the co-occurrence of variants at the individual cell level, highlighting the presence of distinct subclones within patients with AML. Using the mutation pattern for drug response prediction demonstrates high accuracy in predicting sensitivity to some drug classes, such as MEK inhibitors for RAS-mutated leukemia. CONCLUSIONS Our study highlights the importance of considering the gene mutation patterns for the prediction of drug response in AML. It provides a framework for categorizing patients with AML by mutations that enable drug sensitivity prediction.
Collapse
Affiliation(s)
| | - Jin Dai
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Sylvia Chien
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Timothy J. Martins
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Brenda Loera
- City of Hope National Medical Center, Duarte, California
| | - Quy H. Nguyen
- University of California, Irvine, Irvine, California
| | | | - Bahar Tercan
- Institute for Systems Biology, Seattle, Washington
| | | | - Lauren Hagen
- Institute for Systems Biology, Seattle, Washington
| | | | | | - Raymond J. Monnat
- Lab Medicine|Pathology and Genome Sciences, University of Washington, Seattle, Washington
| | | | - Pamela S. Becker
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- City of Hope National Medical Center, Duarte, California
| |
Collapse
|
10
|
Wen F, Gui G, Wang X, Qin A, Ma T, Chen H, Li C, Zha X. Discovery of Novel Dual Inhibitors Targeting Mutant IDH1 and NAMPT for the Treatment of Glioma with IDH1Mutation. J Med Chem 2024; 67:8667-8692. [PMID: 38651495 DOI: 10.1021/acs.jmedchem.3c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The targeting of cancer cell intrinsic metabolism has emerged as a promising strategy for antitumor intervention. In the study, we identified the first-in-class small molecules that effectively inhibit both mutant isocitrate dehydrogenase 1 (mIDH1) and nicotinamide phosphoribosyltransferase (NAMPT), two crucial targets in cancer metabolism, through structure-based drug design. Notably, compound 23h exhibits excellent and balanced inhibitory activities against both mIDH1 (IC50 = 14.93 nM) and NAMPT (IC50 = 12.56 nM), leading to significant suppression of IDH1-mutated glioma cell (U87 MG-IDH1R132H) proliferation. Significantly, compound 23h has the ability to cross the blood-brain barrier (B/P ratio, 0.76) and demonstrates remarkable in vivo antitumor efficacy (20 mg/kg) in the U87 MG-IDH1R132H orthotopic transplantation mouse models without any notable toxicity. This proof-of-concept investigation substantiates the viability of discovering small molecules that concurrently target mIDH1 and NAMPT, providing valuable leads for the treatment of glioma and an efficient approach for the discovery of multitarget antitumor drugs.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tianfang Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hui Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chunzheng Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
11
|
Konopleva MY, Dail M, Daver NG, Garcia JS, Jonas BA, Yee KWL, Kelly KR, Vey N, Assouline S, Roboz GJ, Paolini S, Pollyea DA, Tafuri A, Brandwein JM, Pigneux A, Powell BL, Fenaux P, Olin RL, Visani G, Martinelli G, Onishi M, Wang J, Huang W, Dunshee DR, Hamidi H, Ott MG, Hong WJ, Andreeff M. Venetoclax and Cobimetinib in Relapsed/Refractory AML: A Phase 1b Trial. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:364-374. [PMID: 38378362 DOI: 10.1016/j.clml.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Therapies for relapsed/refractory acute myeloid leukemia remain limited and outcomes poor, especially amongst patients who are ineligible for cytotoxic chemotherapy or targeted therapies. PATIENTS AND METHODS This phase 1b trial evaluated venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, plus cobimetinib, a MEK1/2 inhibitor, in patients with relapsed/refractory acute myeloid leukemia, ineligible for cytotoxic chemotherapy. Two-dimensional dose-escalation was performed for venetoclax dosed daily, and for cobimetinib dosed on days 1-21 of each 28-day cycle. RESULTS Thirty patients (median [range] age: 71.5 years [60-84]) received venetoclax-cobimetinib. The most common adverse events (AEs; in ≥40.0% of patients) were diarrhea (80.0%), nausea (60.0%), vomiting (40.0%), febrile neutropenia (40.0%), and fatigue (40.0%). Overall, 66.7% and 23.3% of patients experienced AEs leading to dose modification/interruption or treatment withdrawal, respectively. The composite complete remission (CRc) rate (complete remission [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery) was 15.6%; antileukemic response rate (CRc + morphologic leukemia-free state/partial remission) was 18.8%. For the recommended phase 2 dose (venetoclax: 600 mg; cobimetinib: 40 mg), CRc and antileukemic response rates were both 12.5%. Failure to achieve an antileukemic response was associated with elevated baseline phosphorylated ERK and MCL-1 levels, but not BCL-xL. Baseline mutations in ≥1 signaling gene or TP53 were noted in nonresponders and emerged on treatment. Pharmacodynamic biomarkers revealed inconsistent, transient inhibition of the mitogen-activated protein kinase (MAPK) pathway. CONCLUSION Venetoclax-cobimetinib showed limited preliminary efficacy similar to single-agent venetoclax, but with added toxicity. Our findings will inform future trials of BCL-2/MAPK pathway inhibitor combinations.
Collapse
Affiliation(s)
| | | | - Naval G Daver
- University of Texas, MD Anderson Cancer Center, Houston, TX
| | | | - Brian A Jonas
- University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Karen W L Yee
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Norbert Vey
- Hematologie Clinique, Institut Paoli Calmettes, Marseille, France
| | | | - Gail J Roboz
- Weill-Cornell Medical College, New York Presbyterian, New York, NY
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, University Hospital Sant'Andrea-Sapienza, Rome, Italy
| | | | - Arnaud Pigneux
- Bordeaux Haut-Leveque University Hospital, Pessac, France
| | - Bayard L Powell
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Pierre Fenaux
- Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Rebecca L Olin
- University of California San Francisco, San Francisco, CA
| | | | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Jue Wang
- Genentech, Inc., South San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
12
|
Alawieh D, Cysique-Foinlan L, Willekens C, Renneville A. RAS mutations in myeloid malignancies: revisiting old questions with novel insights and therapeutic perspectives. Blood Cancer J 2024; 14:72. [PMID: 38658558 PMCID: PMC11043080 DOI: 10.1038/s41408-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
NRAS and KRAS activating point mutations are present in 10-30% of myeloid malignancies and are often associated with a proliferative phenotype. RAS mutations harbor allele-specific structural and biochemical properties depending on the hotspot mutation, contributing to variable biological consequences. Given their subclonal nature in most myeloid malignancies, their clonal architecture, and patterns of cooperativity with other driver genetic alterations may potentially have a direct, causal influence on the prognosis and treatment of myeloid malignancies. RAS mutations overall tend to be associated with poor clinical outcome in both chronic and acute myeloid malignancies. Several recent prognostic scoring systems have incorporated RAS mutational status. While RAS mutations do not always act as independent prognostic factors, they significantly influence disease progression and survival. However, their clinical significance depends on the type of mutation, disease context, and treatment administered. Recent evidence also indicates that RAS mutations drive resistance to targeted therapies, particularly FLT3, IDH1/2, or JAK2 inhibitors, as well as the venetoclax-azacitidine combination. The investigation of novel therapeutic strategies and combinations that target multiple axes within the RAS pathway, encompassing both upstream and downstream components, is an active field of research. The success of direct RAS inhibitors in patients with solid tumors has brought renewed optimism that this progress will be translated to patients with hematologic malignancies. In this review, we highlight key insights on RAS mutations across myeloid malignancies from the past decade, including their prevalence and distribution, cooperative genetic events, clonal architecture and dynamics, prognostic implications, and therapeutic targeting.
Collapse
Affiliation(s)
- Dana Alawieh
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Leila Cysique-Foinlan
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Christophe Willekens
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Aline Renneville
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France.
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France.
| |
Collapse
|
13
|
Rey V, Tornín J, Alba-Linares JJ, Robledo C, Murillo D, Rodríguez A, Gallego B, Huergo C, Viera C, Braña A, Astudillo A, Heymann D, Szuhai K, Bovée JVMG, Fernández AF, Fraga MF, Alonso J, Rodríguez R. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine 2024; 102:105090. [PMID: 38547578 PMCID: PMC10990714 DOI: 10.1016/j.ebiom.2024.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).
Collapse
Affiliation(s)
- Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Jose Alba-Linares
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Cristina Viera
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Alejandro Braña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Traumatology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab. Université de Nantes, 44805, Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustín F Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
14
|
Murdock HM, Ho VT, Garcia JS. Innovations in conditioning and post-transplant maintenance in AML: genomically informed revelations on the graft-versus-leukemia effect. Front Immunol 2024; 15:1359113. [PMID: 38571944 PMCID: PMC10987864 DOI: 10.3389/fimmu.2024.1359113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is the prototype of cancer genomics as it was the first published cancer genome. Large-scale next generation/massively parallel sequencing efforts have identified recurrent alterations that inform prognosis and have guided the development of targeted therapies. Despite changes in the frontline and relapsed standard of care stemming from the success of small molecules targeting FLT3, IDH1/2, and apoptotic pathways, allogeneic stem cell transplantation (alloHSCT) and the resulting graft-versus-leukemia (GVL) effect remains the only curative path for most patients. Advances in conditioning regimens, graft-vs-host disease prophylaxis, anti-infective agents, and supportive care have made this modality feasible, reducing transplant related mortality even among patients with advanced age or medical comorbidities. As such, relapse has emerged now as the most common cause of transplant failure. Relapse may occur after alloHSCT because residual disease clones persist after transplant, and develop immune escape from GVL, or such clones may proliferate rapidly early after alloHSCT, and outpace donor immune reconstitution, leading to relapse before any GVL effect could set in. To address this issue, genomically informed therapies are increasingly being incorporated into pre-transplant conditioning, or as post-transplant maintenance or pre-emptive therapy in the setting of mixed/falling donor chimerism or persistent detectable measurable residual disease (MRD). There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect. By maximizing the synergistic action of molecularly targeted agents, immunomodulating agents, conventional chemotherapy, and the GVL effect, there is hope for improving outcomes for patients with this often-devastating disease.
Collapse
Affiliation(s)
- H. Moses Murdock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vincent T. Ho
- Bone Marrow Transplant Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
15
|
Bhatia K, Sandhu V, Wong MH, Iyer P, Bhatt S. Therapeutic biomarkers in acute myeloid leukemia: functional and genomic approaches. Front Oncol 2024; 14:1275251. [PMID: 38410111 PMCID: PMC10894932 DOI: 10.3389/fonc.2024.1275251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is clinically and genetically a heterogeneous disease characterized by clonal expansion of abnormal hematopoietic progenitors. Genomic approaches to precision medicine have been implemented to direct targeted therapy for subgroups of AML patients, for instance, IDH inhibitors for IDH1/2 mutated patients, and FLT3 inhibitors with FLT3 mutated patients. While next generation sequencing for genetic mutations has improved treatment outcomes, only a fraction of AML patients benefit due to the low prevalence of actionable targets. In recent years, the adoption of newer functional technologies for quantitative phenotypic analysis and patient-derived avatar models has strengthened the potential for generalized functional precision medicine approach. However, functional approach requires robust standardization for multiple variables such as functional parameters, time of drug exposure and drug concentration for making in vitro predictions. In this review, we first summarize genomic and functional therapeutic biomarkers adopted for AML therapy, followed by challenges associated with these approaches, and finally, the future strategies to enhance the implementation of precision medicine.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Mei Hsuan Wong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Cai SF, Huang Y, Lance JR, Mao HC, Dunbar AJ, McNulty SN, Druley T, Li Y, Baer MR, Stock W, Kovacsovics T, Blum WG, Schiller GJ, Olin RL, Foran JM, Litzow M, Lin T, Patel P, Foster MC, Boyiadzis M, Collins RH, Chervin J, Shoben A, Vergilio JA, Heerema NA, Rosenberg L, Chen TL, Yocum AO, Druggan F, Marcus S, Stefanos M, Druker BJ, Mims AS, Borate U, Burd A, Byrd JC, Levine RL, Stein EM. A study to assess the efficacy of enasidenib and risk-adapted addition of azacitidine in newly diagnosed IDH2-mutant AML. Blood Adv 2024; 8:429-440. [PMID: 37871309 PMCID: PMC10827405 DOI: 10.1182/bloodadvances.2023010563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998.
Collapse
Affiliation(s)
- Sheng F. Cai
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Huang
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jennie R. Lance
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Hsiaoyin Charlene Mao
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J. Dunbar
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Yan Li
- Bristol Myers Squibb, New York, NY
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Wendy Stock
- Department of Hematology and Oncology, University of Chicago Medical Center, Chicago, IL
| | | | - William G. Blum
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Gary J. Schiller
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Rebecca L. Olin
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Mark Litzow
- Department of Hematology, Mayo Clinic, Rochester, MN
| | - Tara Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Kansas City, KS
| | - Prapti Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Michael Boyiadzis
- Division of Hematolog/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Robert H. Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jordan Chervin
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abigail Shoben
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Nyla A. Heerema
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Timothy L. Chen
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Franchesca Druggan
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Mona Stefanos
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Alice S. Mims
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Uma Borate
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Amy Burd
- Leukemia and Lymphoma Society, Rye Brook, NY
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Ross L. Levine
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eytan M. Stein
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Ali T, Usman R, Shah SA, Parvez A, Anwar S, Muneer Z, Saeed M. Aberrant HIF1- α and SIX-1 Expression is Associated with Poor Prognosis in Acute Myeloid Leukemia Patients with Isocitrate Dehydrogenase 1 Mutations. Cancer Control 2024; 31:10732748241271714. [PMID: 39110525 PMCID: PMC11307363 DOI: 10.1177/10732748241271714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND IDH1 mutations are common in many cancers, however, their role in promoting the Warburg effect remains elusive. This study elucidates the putative involvement of mutant-IDH1 in regulating hypoxia-inducible factor (HIF1-α) and Sine-Oculis Homeobox-1 (SIX-1) expression. METHODOLOGY Genetic screening was performed using the ARMS-PCR in acute myeloid leukemia (AML), brain, and breast cancer (BC) cohorts, while transcript expression was determined using qPCR. Further, a meta-analysis of risk factors associated with the R132 mutation was performed. RESULTS Approximately 32% of AML and ∼60% of glioma cases were mutants, while no mutation was found in the BC cohort. 'AA' and TT' were associated with higher disease risk (OR = 12.18 & 4.68) in AML and had significantly upregulated IDH1 expression. Moreover, downregulated HIF1-α and upregulated SIX-1 expression was also observed in these patients, suggesting that mutant-IDH1 may alter glucose metabolism. Perturbed IDH1 and HIF-α levels exhibited poor prognosis in univariate and multivariate analysis, while age and gender were found to be contributory factors as well. Based on the ROC model, these had a good potential to be used as prognostic markers. A significant variation in frequencies of R132 mutations in AML among different populations was observed. Cytogenesis (R2 = 12.2%), NMP1 mutation status (R2 = 18.5%), and ethnic contributions (R2 = 73.21%) were critical moderators underlying these mutations. Women had a higher risk of R132 mutation (HR = 1.3, P < 0.04). The pooled prevalence was calculated to be 0.29 (95% CI 0.26-0.33, P < 0.01), indicating that IDH1 mutations are a significant prognostic factor in AML. CONCLUSION IDH1 and HIF1-α profiles are linked to poor survival and prognosis, while high SIX-1 expression in IDH1 mutants suggests a role in leukemic transformation and therapy response in AML.
Collapse
Affiliation(s)
- Tariq Ali
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rohma Usman
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Alasar Shah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Aamir Parvez
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Summayya Anwar
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zahid Muneer
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
18
|
Gangat N, McCullough K, Abdelmagid M, Karrar O, Powell M, Al-Kali A, Alkhateeb H, Begna K, Mangaonkar A, Saliba A, Torghabeh MH, Litzow M, Hogan W, Shah M, Patnaik M, Pardanani A, Badar T, Foran J, Palmer J, Sproat L, Yi CA, Tefferi A. Molecular predictors of response and survival following IDH1/2 inhibitor monotherapy in acute myeloid leukemia. Haematologica 2024; 109:187-292. [PMID: 37534525 PMCID: PMC10772527 DOI: 10.3324/haematol.2023.283732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | | | | | - Omer Karrar
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Kebede Begna
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Talha Badar
- Division of Hematology, Mayo Clinic, Jacksonville, FL
| | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL
| | | | - Lisa Sproat
- Division of Hematology, Mayo Clinic, Scottsdale, AZ
| | | | | |
Collapse
|
19
|
Morishima T, Takahashi K, Chin DWL, Wang Y, Tokunaga K, Arima Y, Matsuoka M, Suda T, Takizawa H. Phospholipid metabolic adaptation promotes survival of IDH2 mutant acute myeloid leukemia cells. Cancer Sci 2024; 115:197-210. [PMID: 37882467 PMCID: PMC10823289 DOI: 10.1111/cas.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Genetic mutations in the isocitrate dehydrogenase (IDH) gene that result in a pathological enzymatic activity to produce oncometabolite have been detected in acute myeloid leukemia (AML) patients. While specific inhibitors that target mutant IDH enzymes and normalize intracellular oncometabolite level have been developed, refractoriness and resistance has been reported. Since acquisition of pathological enzymatic activity is accompanied by the abrogation of the crucial WT IDH enzymatic activity in IDH mutant cells, aberrant metabolism in IDH mutant cells can potentially persist even after the normalization of intracellular oncometabolite level. Comparisons of isogenic AML cell lines with and without IDH2 gene mutations revealed two mutually exclusive signalings for growth advantage of IDH2 mutant cells, STAT phosphorylation associated with intracellular oncometabolite level and phospholipid metabolic adaptation. The latter came to light after the oncometabolite normalization and increased the resistance of IDH2 mutant cells to arachidonic acid-mediated apoptosis. The release of this metabolic adaptation by FDA-approved anti-inflammatory drugs targeting the metabolism of arachidonic acid could sensitize IDH2 mutant cells to apoptosis, resulting in their eradication in vitro and in vivo. Our findings will contribute to the development of alternative therapeutic options for IDH2 mutant AML patients who do not tolerate currently available therapies.
Collapse
Affiliation(s)
- Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Laboratory of Hematopoietic Stem Cell Engineering, IRCMSKumamoto UniversityKumamotoJapan
| | - Koichi Takahashi
- Departments of Leukemia and Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Desmond Wai Loon Chin
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Department of Hematology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kenji Tokunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichiro Arima
- Laboratory of Developmental Cardiology, IRCMSKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA)Kumamoto UniversityKumamotoJapan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of Stem Cell Regulation, IRCMSKumamoto UniversityKumamotoJapan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
20
|
Babakhanlou R, DiNardo C, Borthakur G. IDH2 mutations in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1733-1741. [PMID: 37462435 DOI: 10.1080/10428194.2023.2237153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 11/07/2023]
Abstract
Advances in the treatment of acute myeloid leukemia (AML) over the last 40 years have been limited. With an improved understanding of the pathophysiology of the disease, the advent of new treatment options has enriched the armamentarium of the physician to combat the disease. Mutations of the isocitrate dehydrogenase (IDHs) genes are common in AML and occur in 20-30% of cases. These mutations lead to DNA hypermethylation, aberrant gene expression, cell proliferation, and abnormal differentiation. Targeting mutant IDH, either as monotherapy or in combination with hypomethylating agents (HMAs) or BCL-2 inhibitors, has opened new avenues of therapy for these patients.This review will outline the function of IDHs and focus on the biological effects of IDH2 mutations in AML, their prognosis and treatment options.
Collapse
Affiliation(s)
- Rodrick Babakhanlou
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
21
|
Lang TJL, Damm F, Bullinger L, Frick M. Mechanisms of Resistance to Small Molecules in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4573. [PMID: 37760544 PMCID: PMC10526197 DOI: 10.3390/cancers15184573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, great progress has been made in the therapy of AML by targeting cellular processes associated with specific molecular features of the disease. Various small molecules inhibiting FLT3, IDH1/IDH2, and BCL2 have already gained approval from the respective authorities and are essential parts of personalized therapeutic regimens in modern therapy of AML. Unfortunately, primary and secondary resistance to these inhibitors is a frequent problem. Here, we comprehensively review the current state of knowledge regarding molecular processes involved in primary and secondary resistance to these agents, covering both genetic and nongenetic mechanisms. In addition, we introduce concepts and strategies for how these resistance mechanisms might be overcome.
Collapse
Affiliation(s)
- Tonio Johannes Lukas Lang
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mareike Frick
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Bruzzese A, Labanca C, Martino EA, Mendicino F, Lucia E, Olivito V, Neri A, Imovilli A, Morabito F, Vigna E, Gentile M. Ivosidenib in acute myeloid leukemia. Expert Opin Pharmacother 2023; 24:2093-2100. [PMID: 37874005 DOI: 10.1080/14656566.2023.2272659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Traditional treatment strategies for acute myeloid leukemia (AML) have primarily relied on standard chemotherapy regimens for four decades. Indeed, the landscape of AML therapy has evolved substantially in recent years, mainly due to the introduction of hypomethylating agents and small molecules.Bcl2 inhibitor venetoclax, Fms-like tyrosine kinase 3 (FLT3) inhibitors such as midostaurin and gilteritinib, and isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) inhibitors ivosidenib and enasidenib, as well as hedgehog (HH) pathway inhibitor glasdegib represented a significant step forward in AML therapeutic armamentarium. Smoothened (SMO) inhibitor in combination with low-dose cytarabine marks a recent milestone. AREAS COVERED Ivosidenib, the first-in-class, selective, allosteric IDH1R132 inhibitor, showed the capability to induce in vitro differentiation of primary mIDH1 AML blasts. Clinical data highlighted its exceptional safety profile, as a standalone therapy and in combination strategy. Additionally, comprehensive studies consistently demonstrated its effectiveness, both in monotherapy and in association with chemotherapy. EXPERT OPINION The identified ivosidenib's strengths, including its remarkable safety record and ability to yield positive therapeutic outcomes, position it as an ideal partner for both classic chemotherapy and biological treatments, i.e. hypometilant agents and/or venetoclax. Further studies are warranted to explore strategies for overcoming the occurrence of ivosidenib resistance.
Collapse
Affiliation(s)
- Antonella Bruzzese
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Caterina Labanca
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Enrica Antonia Martino
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Francesco Mendicino
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Eugenio Lucia
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Virginia Olivito
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS di Reggio Emilia, EmiliaRomagna, Reggio Emilia, Italy
| | - Annalisa Imovilli
- Department of Hematology, Azienda USL-IRCCS di Reggio Emilia, Emilia Romagna, Reggio Emilia, Italy
| | | | - Ernesto Vigna
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Department of Onco-Hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
23
|
Tangella AV, Gajre A, Kantheti VV. Isocitrate Dehydrogenase 1 Mutation and Ivosidenib in Patients With Acute Myeloid Leukemia: A Comprehensive Review. Cureus 2023; 15:e44802. [PMID: 37692182 PMCID: PMC10483130 DOI: 10.7759/cureus.44802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from immature myeloid progenitors, resulting in a stem-cell-like proliferative state. This leads to excessive pools of immature cells that cannot function, which usually happens at the cost of the production of mature functional cells, leading to deleterious consequences. The management of AML has intensified as newer targeted therapies have come into existence owing to deeper genetic analysis of the disease and patients. Isocitrate dehydrogenase (IDH) is a cytosolic enzyme that is a part of the Krebs cycle and is extremely important in maintaining the homeostasis of the cell. It is produced by two different genes: IDH1 and IDH2. Ivosidenib has been associated with IDH1 inhibition and has been studied in numerous cancers. This review highlights the studies that have dealt with ivosidenib, an IDH1 inhibitor, in AML, the side effect profile, and the possible future course of the drug. After a scoping review of the available literature, we have identified that studies have consistently shown positive outcomes and that ivosidenib is a promising avenue for the management of AML. But it also has to be kept in mind that resistance to IDH inhibitors is on the rise, and the need to identify ways to circumvent this is to be addressed.
Collapse
Affiliation(s)
| | - Ashwin Gajre
- Internal Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, IND
| | | |
Collapse
|
24
|
Palau A, Segerberg F, Lidschreiber M, Lidschreiber K, Naughton AJ, Needhamsen M, Jung LA, Jagodic M, Cramer P, Lehmann S, Carlsten M, Lennartsson A. Perturbed epigenetic transcriptional regulation in AML with IDH mutations causes increased susceptibility to NK cells. Leukemia 2023; 37:1830-1841. [PMID: 37495775 PMCID: PMC10457197 DOI: 10.1038/s41375-023-01972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Isocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30-40% of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for AML patients with IDH mutations. We characterized the transcriptional and epigenetic landscape with the IDH2i AG-221, using an IDH2 mutated AML cell line model and AML patient cohorts, and discovered a perturbed transcriptional regulatory network involving myeloid transcription factors that were partly restored after AG-221 treatment. In addition, hypermethylation of the HLA cluster caused a down-regulation of HLA class I genes, triggering an enhanced natural killer (NK) cell activation and an increased susceptibility to NK cell-mediated responses. Finally, analyses of DNA methylation data from IDHi-treated patients showed that non-responders still harbored hypermethylation in HLA class I genes. In conclusion, this study provides new insights suggesting that IDH mutated AML is particularly sensitive to NK cell-based personalized immunotherapy.
Collapse
Affiliation(s)
- Anna Palau
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Filip Segerberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lidschreiber
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Lidschreiber
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Aonghus J Naughton
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Lisa Anna Jung
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Patrick Cramer
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Hematology Centre, Karolinska University Hospital, Stockholm, Sweden.
- Hematology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Gruber E, Kats LM. The curious case of IDH mutant acute myeloid leukaemia: biochemistry and therapeutic approaches. Biochem Soc Trans 2023; 51:1675-1686. [PMID: 37526143 PMCID: PMC10586776 DOI: 10.1042/bst20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Of the many genetic alterations that occur in cancer, relatively few have proven to be suitable for the development of targeted therapies. Mutations in isocitrate dehydrogenase (IDH) 1 and -2 increase the capacity of cancer cells to produce a normally scarce metabolite, D-2-hydroxyglutarate (2-HG), by several orders of magnitude. The discovery of the unusual biochemistry of IDH mutations spurred a flurry of activity that revealed 2-HG as an 'oncometabolite' with pleiotropic effects in malignant cells and consequences for anti-tumour immunity. Over the next decade, we learned that 2-HG dysregulates a wide array of molecular pathways, among them a large family of dioxygenases that utilise the closely related metabolite α-ketoglutarate (α-KG) as an essential co-substrate. 2-HG not only contributes to malignant transformation, but some cancer cells become addicted to it and sensitive to inhibitors that block its synthesis. Moreover, high 2-HG levels and loss of wild-type IDH1 or IDH2 activity gives rise to synthetic lethal vulnerabilities. Herein, we review the biology of IDH mutations with a particular focus on acute myeloid leukaemia (AML), an aggressive disease where selective targeting of IDH-mutant cells is showing significant promise.
Collapse
Affiliation(s)
- Emily Gruber
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lev M. Kats
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
26
|
Bhatnagar B, Kohlschmidt J, Orwick SJ, Buelow DR, Fobare S, Oakes CC, Kolitz JE, Uy G, Stock W, Powell BL, Nicolet D, Hertlein EK, Mrózek K, Blachly JS, Eisfeld AK, Baker SD, Byrd JC. Framework of clonal mutations concurrent with WT1 mutations in adults with acute myeloid leukemia: Alliance for Clinical Trials in Oncology study. Blood Adv 2023; 7:4671-4675. [PMID: 37603350 PMCID: PMC10448419 DOI: 10.1182/bloodadvances.2023010482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Bhavana Bhatnagar
- Department of Hematology and Medical Oncology, West Virginia University Cancer Institute, Wheeling Hospital, Wheeling, WV
| | - Jessica Kohlschmidt
- Alliance Statistics and Data Management Center, The Ohio State University, Columbus, OH
| | - Shelley J. Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Daelynn R. Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Sydney Fobare
- Department of Internal Medicine, Medical Student Training Program, College of Medicine, The Ohio State University, Columbus, OH
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Christopher C. Oakes
- Clara D. Bloomfield Center, The Ohio State Comprehensive Cancer Center, Columbus, OH
| | | | - Geoff Uy
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO
| | - Wendy Stock
- Division of Hematology-Oncology, Department of Internal Medicine, University of Chicago, Chicago, IL
| | - Bayard L. Powell
- Division of Hematology-Oncology, Department of Internal Medicine, Wake Forest University Health System, Winston-Salem, NC
| | - Deedra Nicolet
- Alliance Statistics and Data Management Center, The Ohio State University, Columbus, OH
| | - Erin K. Hertlein
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center, The Ohio State Comprehensive Cancer Center, Columbus, OH
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center, The Ohio State Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - John C. Byrd
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
27
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Lachowiez CA, Loghavi S, Zeng Z, Tanaka T, Kim YJ, Uryu H, Turkalj S, Jakobsen NA, Luskin MR, Duose DY, Tidwell RSS, Short NJ, Borthakur G, Kadia TM, Masarova L, Tippett GD, Bose P, Jabbour EJ, Ravandi F, Daver NG, Garcia-Manero G, Kantarjian H, Garcia JS, Vyas P, Takahashi K, Konopleva M, DiNardo CD. A Phase Ib/II Study of Ivosidenib with Venetoclax ± Azacitidine in IDH1-Mutated Myeloid Malignancies. Blood Cancer Discov 2023; 4:276-293. [PMID: 37102976 PMCID: PMC10320628 DOI: 10.1158/2643-3230.bcd-22-0205] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The safety and efficacy of combining the isocitrate dehydrogenase-1 (IDH1) inhibitor ivosidenib (IVO) with the BCL2 inhibitor venetoclax (VEN; IVO + VEN) ± azacitidine (AZA; IVO + VEN + AZA) were evaluated in four cohorts of patients with IDH1-mutated myeloid malignancies (n = 31). Most (91%) adverse events were grade 1 or 2. The maximal tolerated dose was not reached. Composite complete remission with IVO + VEN + AZA versus IVO + VEN was 90% versus 83%. Among measurable residual disease (MRD)-evaluable patients (N = 16), 63% attained MRD--negative remissions; IDH1 mutation clearance occurred in 64% of patients receiving ≥5 treatment cycles (N = 14). Median event-free survival and overall survival were 36 [94% CI, 23-not reached (NR)] and 42 (95% CI, 42-NR) months. Patients with signaling gene mutations appeared to particularly benefit from the triplet regimen. Longitudinal single-cell proteogenomic analyses linked cooccurring mutations, antiapoptotic protein expression, and cell maturation to therapeutic sensitivity of IDH1-mutated clones. No IDH isoform switching or second-site IDH1 mutations were observed, indicating combination therapy may overcome established resistance pathways to single-agent IVO. SIGNIFICANCE IVO + VEN + AZA is safe and active in patients with IDH1-mutated myeloid malignancies. Combination therapy appears to overcome resistance mechanisms observed with single-agent IDH-inhibitor use, with high MRD-negative remission rates. Single-cell DNA ± protein and time-of-flight mass-cytometry analysis revealed complex resistance mechanisms at relapse, highlighting key pathways for future therapeutic intervention. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Curtis A Lachowiez
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Sanam Loghavi
- The University of Texas MD Anderson Cancer Center, Department of Hematopathology, Houston, Texas
| | - Zhihong Zeng
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Tomoyuki Tanaka
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Yi June Kim
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Hidetaka Uryu
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marlise R Luskin
- Dana-Farber Cancer Institute, Leukemia Program, Boston, Massachusetts
| | - Dzifa Y Duose
- The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology, Houston, Texas
| | - Rebecca S S Tidwell
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas
| | - Nicholas J Short
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Gautam Borthakur
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Tapan M Kadia
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Lucia Masarova
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - George D Tippett
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Elias J Jabbour
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Farhad Ravandi
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Naval G Daver
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | | | - Hagop Kantarjian
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | | | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Koichi Takahashi
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| | - Courtney D DiNardo
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, Texas
| |
Collapse
|
29
|
Wang J, Tomlinson B, Lazarus HM. Update on Small Molecule Targeted Therapies for Acute Myeloid Leukemia. Curr Treat Options Oncol 2023; 24:770-801. [PMID: 37195589 DOI: 10.1007/s11864-023-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/18/2023]
Abstract
OPINION STATEMENT The search for effective therapies for the highly heterogenous disease acute myeloid leukemia (AML) has remained elusive. While cytotoxic therapies can induce complete remission and even, at times, long-term survival, this approach is associated with significant toxic effects to visceral organs and worsening of immune dysfunction and marrow suppression leading to death. Sophisticated molecular studies have revealed defects within the AML cell that can be exploited by utilizing small molecule agents to target these defects, often dubbed "target therapy." Several medications have already established new standards of care for many patients with AML, including FDA-approved agents that inhibitor IDH1, IDH2, FLT3, and BCL-2. Emerging small molecules hold additional to add to the armamentarium of AML treatment options including MCL-1 inhibitors, TP53 inhibitors, menin inhibitors, and E-selectin antagonists. Moreover, the increasing options also mean that future combinations of these agents need to be explored, including with cytotoxic drugs and other newer emerging strategies such as immunotherapies for AML. Recent investigations continue to show that overcoming many of the challenges of treating AML finally is on the horizon.
Collapse
Affiliation(s)
- Jiasheng Wang
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Benjamin Tomlinson
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Hillard M Lazarus
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
30
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
31
|
Lachowiez CA, DiNardo CD, Loghavi S. Molecularly Targeted Therapy in Acute Myeloid Leukemia: Current Treatment Landscape and Mechanisms of Response and Resistance. Cancers (Basel) 2023; 15:1617. [PMID: 36900407 PMCID: PMC10001191 DOI: 10.3390/cancers15051617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Treatment for acute myeloid leukemia (AML) has evolved rapidly over the last decade as improved understanding of cytogenetic and molecular drivers of leukemogenesis refined survival prognostication and enabled development of targeted therapeutics. Molecularly targeted therapies are now approved for the treatment of FLT3 and IDH1/2-mutated AML and additional molecularly and cellularly targeted therapeutics are in development for defined patient subgroups. Alongside these welcome therapeutic advancements, increased understanding of leukemic biology and treatment resistance has resulted in clinical trials investigating combinations of cytotoxic, cellular, and molecularly targeted therapeutics resulting in improved response and survival outcomes in patients with AML. Herein, we comprehensively review the current landscape of IDH and FLT3 inhibitors in clinical practice for the treatment of AML, highlight known resistance mechanisms, and discuss new cellular or molecularly targeted therapies currently under investigation in ongoing early phase clinical trials.
Collapse
Affiliation(s)
- Curtis A. Lachowiez
- Department of Medicine, Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Courtney D. DiNardo
- Department of Leukemia and Hematopathology, The University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Sanam Loghavi
- Department of Leukemia and Hematopathology, The University of Texas, MD Anderson, Houston, TX 77030, USA
| |
Collapse
|
32
|
Kayser S, Levis MJ. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica 2023; 108:308-320. [PMID: 36722402 PMCID: PMC9890016 DOI: 10.3324/haematol.2022.280801] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/02/2023] Open
Abstract
Research into the underlying pathogenic mechanisms of acute myeloid leukemia (AML) has led to remarkable advances in our understanding of the disease. Mutations now allow us to explore the enormous diversity among cytogenetically defined subsets of AML, particularly the large subset of cytogenetically normal AML. Despite the progress in unraveling the tumor genome, only a small number of recurrent mutations have been incorporated into risk-stratification schemes and have been proven to be clinically relevant, targetable lesions. The current World Health Organization Classification of myeloid neoplasms and leukemia includes eight AML categories defined by recurrent genetic abnormalities as well as three categories defined by gene mutations. We here discuss the utility of molecular markers in AML in prognostication and treatment decision-making. New therapies based on targetable markers include IDH inhibitors (ivosidenib, enasidenib), venetoclax-based therapy, FLT3 inhibitors (midostaurin, gilteritinib, and quizartinib), gemtuzumab ozogamicin, magrolimab and menin inhibitors.
Collapse
Affiliation(s)
- Sabine Kayser
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg.
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
33
|
Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica 2023; 108:353-366. [PMID: 36722405 PMCID: PMC9890038 DOI: 10.3324/haematol.2022.280800] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/02/2023] Open
Abstract
A major obstacle in the treatment of acute myeloid leukemia (AML) is refractory disease or relapse after achieving remission. The latter arises from a few therapy-resistant cells within minimal residual disease (MRD). Resistant cells with long-term self-renewal capacity that drive clonal outgrowth are referred to as leukemic stem cells (LSC). The cancer stem cell concept considers LSC as relapse-initiating cells residing at the top of each genetically defined AML subclone forming epigenetically controlled downstream hierarchies. LSC display significant phenotypic and epigenetic plasticity, particularly in response to therapy stress, which results in various mechanisms mediating treatment resistance. Given the inherent chemotherapy resistance of LSC, targeted strategies must be incorporated into first-line regimens to prevent LSC-mediated AML relapse. The combination of venetoclax and azacitidine is a promising current strategy for the treatment of AML LSC. Nevertheless, the selection of patients who would benefit either from standard chemotherapy or venetoclax + azacitidine treatment in first-line therapy has yet to be established and the mechanisms of resistance still need to be discovered and overcome. Clinical trials are currently underway that investigate LSC susceptibility to first-line therapies. The era of single-cell multi-omics has begun to uncover the complex clonal and cellular architectures and associated biological networks. This should lead to a better understanding of the highly heterogeneous AML at the inter- and intra-patient level and identify resistance mechanisms by longitudinal analysis of patients' samples. This review discusses LSC biology and associated resistance mechanisms, potential therapeutic LSC vulnerabilities and current clinical trial activities.
Collapse
Affiliation(s)
- Patrick Stelmach
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH),Department of Medicine V, Heidelberg University Hospital
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH); Faculty of Biosciences, Heidelberg University; German Cancer Consortium (DKTK), Heidelberg.
| |
Collapse
|
34
|
Mecklenbrauck R, Heuser M. Resistance to targeted therapies in acute myeloid leukemia. Clin Exp Metastasis 2023; 40:33-44. [PMID: 36318439 PMCID: PMC9898349 DOI: 10.1007/s10585-022-10189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
The introduction of new targeted therapies to the treatment algorithm of acute myeloid leukemia (AML) offers new opportunities, but also presents new challenges. Patients diagnosed with AML receiving targeted therapies as part of lower intensity regimens will relapse inevitably due to primary or secondary resistance mechanisms. In this review, we summarize the current knowledge on the main mechanisms of resistance to targeted therapies in AML. Resistance to FLT3 inhibitors is mainly mediated by on target mutations and dysregulation of downstream pathways. Switching the FLT3 inhibitor has a potential therapeutic benefit. During treatment with IDH inhibitors resistance can develop due to aberrant cell metabolism or secondary site IDH mutations. As a unique resistance mechanism the mutated IDH isotype may switch from IDH1 to IDH2 or vice versa. Resistance to gemtuzumab-ozogamicin is determined by the CD33 isotype and the degradation of the cytotoxin. The main mechanisms of resistance to venetoclax are the dysregulation of alternative pathways especially the upregulation of the BCL-2-analogues MCL-1 and BCL-XL or the induction of an aberrant cell metabolism. The introduction of therapies targeting immune processes will lead to new forms of therapy resistance. Knowing those mechanisms will help to develop strategies that can overcome resistance to treatment.
Collapse
Affiliation(s)
- Rabea Mecklenbrauck
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
35
|
O'Sullivan JM, Mead AJ, Psaila B. Single-cell methods in myeloproliferative neoplasms: old questions, new technologies. Blood 2023; 141:380-390. [PMID: 36322938 DOI: 10.1182/blood.2021014668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal stem cell-derived hematopoietic malignancies driven by aberrant Janus kinase-signal transducer and activator of transcription proteins (JAK/STAT) signaling. Although these are genetically simple diseases, MPNs are phenotypically heterogeneous, reflecting underlying intratumoral heterogeneity driven by the interplay of genetic and nongenetic factors. Their evolution is determined by factors that enable certain cellular subsets to outcompete others. Therefore, techniques that resolve cellular heterogeneity at the single-cell level are ideally placed to provide new insights into MPN biology. With these insights comes the potential to uncover new approaches to predict the clinical course and treat these cancers, ultimately improving outcomes for patients. MPNs present a particularly tractable model of cancer evolution, because most patients present in an early disease phase and only a small proportion progress to aggressive disease. Therefore, it is not surprising that many groundbreaking technological advances in single-cell omics have been pioneered by their application in MPNs. In this review article, we explore how single-cell approaches have provided transformative insights into MPN disease biology, which are broadly applicable across human cancers, and discuss how these studies might be swiftly translated into clinical pathways and may eventually underpin precision medicine.
Collapse
Affiliation(s)
- Jennifer Mary O'Sullivan
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam J Mead
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Bethan Psaila
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Fortin J, Chiang MF, Meydan C, Foox J, Ramachandran P, Leca J, Lemonnier F, Li WY, Gams MS, Sakamoto T, Chu M, Tobin C, Laugesen E, Robinson TM, You-Ten A, Butler DJ, Berger T, Minden MD, Levine RL, Guidos CJ, Melnick AM, Mason CE, Mak TW. Distinct and opposite effects of leukemogenic Idh and Tet2 mutations in hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2023; 120:e2208176120. [PMID: 36652477 PMCID: PMC9942850 DOI: 10.1073/pnas.2208176120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.
Collapse
Affiliation(s)
- Jerome Fortin
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- 2To whom correspondence may be addressed. , , or
| | - Ming-Feng Chiang
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Cem Meydan
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- dWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Jonathan Foox
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
| | | | - Julie Leca
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - François Lemonnier
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- eInstitut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil94010, France
| | - Wanda Y. Li
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- fCentre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Miki S. Gams
- gDepartment of Immunology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ONM5G 0A4, Canada
| | - Takashi Sakamoto
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- hDepartment of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Mandy Chu
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Chantal Tobin
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Eric Laugesen
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Troy M. Robinson
- iHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- jLouis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Annick You-Ten
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Daniel J. Butler
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
| | - Thorsten Berger
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Mark D. Minden
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Ross L. Levine
- iHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- kCenter for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY10065
- lCenter for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Cynthia J. Guidos
- gDepartment of Immunology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ONM5G 0A4, Canada
| | - Ari M. Melnick
- mDepartment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY10021
| | - Christopher E. Mason
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- dWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Tak W. Mak
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- fCentre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- nDepartment of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
37
|
Leighton J, Hu M, Sei E, Meric-Bernstam F, Navin NE. Reconstructing mutational lineages in breast cancer by multi-patient-targeted single-cell DNA sequencing. CELL GENOMICS 2023; 3:100215. [PMID: 36777188 PMCID: PMC9903705 DOI: 10.1016/j.xgen.2022.100215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/21/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Single-cell DNA sequencing (scDNA-seq) methods are powerful tools for profiling mutations in cancer cells; however, most genomic regions sequenced in single cells are non-informative. To overcome this issue, we developed a multi-patient-targeted (MPT) scDNA-seq method. MPT involves first performing bulk exome sequencing across a cohort of cancer patients to identify somatic mutations, which are then pooled together to develop a single custom targeted panel for high-throughput scDNA-seq using a microfluidics platform. We applied MPT to profile 330 mutations across 23,500 cells from 5 patients with triple negative-breast cancer (TNBC), which showed that 3 tumors were monoclonal and 2 tumors were polyclonal. From these data, we reconstructed mutational lineages and identified early mutational and copy-number events, including early TP53 mutations that occurred in all five patients. Collectively, our data suggest that MPT can overcome a major technical obstacle for studying tumor evolution using scDNA-seq by profiling information-rich mutation sites.
Collapse
Affiliation(s)
- Jake Leighton
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Hu
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emi Sei
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Precision Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas E. Navin
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Lyu J, Liu Y, Gong L, Chen M, Madanat YF, Zhang Y, Cai F, Gu Z, Cao H, Kaphle P, Kim YJ, Kalkan FN, Stephens H, Dickerson KE, Ni M, Chen W, Patel P, Mims AS, Borate U, Burd A, Cai SF, Yin CC, You MJ, Chung SS, Collins RH, DeBerardinis RJ, Liu X, Xu J. Disabling Uncompetitive Inhibition of Oncogenic IDH Mutations Drives Acquired Resistance. Cancer Discov 2023; 13:170-193. [PMID: 36222845 PMCID: PMC9827114 DOI: 10.1158/2159-8290.cd-21-1661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 01/16/2023]
Abstract
Mutations in IDH genes occur frequently in acute myeloid leukemia (AML) and other human cancers to generate the oncometabolite R-2HG. Allosteric inhibition of mutant IDH suppresses R-2HG production in a subset of patients with AML; however, acquired resistance emerges as a new challenge, and the underlying mechanisms remain incompletely understood. Here we establish isogenic leukemia cells containing common IDH oncogenic mutations by CRISPR base editing. By mutational scanning of IDH single amino acid variants in base-edited cells, we describe a repertoire of IDH second-site mutations responsible for therapy resistance through disabling uncompetitive enzyme inhibition. Recurrent mutations at NADPH binding sites within IDH heterodimers act in cis or trans to prevent the formation of stable enzyme-inhibitor complexes, restore R-2HG production in the presence of inhibitors, and drive therapy resistance in IDH-mutant AML cells and patients. We therefore uncover a new class of pathogenic mutations and mechanisms for acquired resistance to targeted cancer therapies. SIGNIFICANCE Comprehensive scanning of IDH single amino acid variants in base-edited leukemia cells uncovers recurrent mutations conferring resistance to IDH inhibition through disabling NADPH-dependent uncompetitive inhibition. Together with targeted sequencing, structural, and functional studies, we identify a new class of pathogenic mutations and mechanisms for acquired resistance to IDH-targeting cancer therapies. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Junhua Lyu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lihu Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yazan F. Madanat
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pranita Kaphle
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yoon Jung Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fatma N. Kalkan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Helen Stephens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn E. Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Prapti Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Uma Borate
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Amy Burd
- The Leukemia & Lymphoma Society, Rye Brook, New York
| | - Sheng F. Cai
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen S. Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert H. Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Corresponding Author: Jian Xu, Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75235. Phone: 214-648-6125; E-mail:
| |
Collapse
|
39
|
Steinhäuser S, Silva P, Lenk L, Beder T, Hartmann A, Hänzelmann S, Fransecky L, Neumann M, Bastian L, Lipinski S, Richter K, Bultmann M, Hübner E, Xia S, Röllig C, Vogiatzi F, Schewe DM, Yumiceba V, Schultz K, Spielmann M, Baldus CD. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia 2023; 37:134-142. [PMID: 36411356 PMCID: PMC9883162 DOI: 10.1038/s41375-022-01751-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.
Collapse
Affiliation(s)
- Sophie Steinhäuser
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Beder
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina Hartmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sonja Hänzelmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Neumann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kathrin Richter
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miriam Bultmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Emely Hübner
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shuli Xia
- Kennedy Krieger Institute, Baltimore, MD, USA
- School of Medicine, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Veronica Yumiceba
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kristin Schultz
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Malte Spielmann
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Claudia Dorothea Baldus
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany.
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
40
|
Liu ACH, Cathelin S, Yang Y, Dai DL, Ayyathan DM, Hosseini M, Minden MD, Tierens A, Chan SM. Targeting STAT5 Signaling Overcomes Resistance to IDH Inhibitors in Acute Myeloid Leukemia through Suppression of Stemness. Cancer Res 2022; 82:4325-4339. [PMID: 36150062 DOI: 10.1158/0008-5472.can-22-1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1) and IDH2 block the differentiation of acute myeloid leukemia (AML) cells through production of R-2-hydroxyglutarate (R-2-HG). IDH inhibitors can induce differentiation of AML cells by lowering R-2-HG but have limited clinical efficacy as single agents. Here, we performed a genome-wide CRISPR knockout screen in an Idh1-mutated hematopoietic progenitor cell line to identify genes that increased the differentiation response to ivosidenib, an IDH1 inhibitor. The screen identified C-type lectin member 5a (Clec5a), which encodes a spleen tyrosine kinase (SYK)-coupled surface receptor, as one of the top hits. Knockout of Clec5a and Syk rendered cells more sensitive to ivosidenib-induced differentiation through a reduction in STAT5-dependent expression of stemness-related genes, including genes in the homeobox (HOX) family. Importantly, direct inhibition of STAT5 activity was sufficient to increase the differentiation response to IDH inhibitors in primary human IDH1- and IDH2-mutated AML cells, including those harboring mutations in receptor tyrosine kinase (RTK) and MAPK genes that have been linked to drug resistance. In patient-derived xenograft models of IDH1-mutated AML, combination treatment with ivosidenib and the STAT5 inhibitor pimozide was superior to each agent alone in inducing differentiation in leukemic cells without compromising normal hematopoiesis. These findings demonstrate that STAT5 is a critical mediator of resistance to IDH inhibitors and provide the rationale for combining STAT5 and IDH inhibitors in the treatment of IDH-mutated AML. SIGNIFICANCE A CRISPR knockout screen identifies a mechanism of resistance to IDH inhibitors in AML involving activated STAT5 signaling, suggesting a potential strategy to improve the clinical efficacy of IDH inhibitors.
Collapse
Affiliation(s)
- Alex C H Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Severine Cathelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yitong Yang
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David L Dai
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anne Tierens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Chan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Rivera D, Kim K, Kanagal-Shamanna R, Borthakur G, Montalban-Bravo G, Daver N, Dinardo C, Short NJ, Yilmaz M, Pemmaraju N, Takahashi K, Jabbour EJ, Pierce S, Konopleva M, Bhalla K, Garcia-Manero G, Ravandi F, Kantarjian H, Kadia TM. Implications of RAS mutational status in subsets of patients with newly diagnosed acute myeloid leukemia across therapy subtypes. Am J Hematol 2022; 97:1599-1606. [PMID: 36117258 DOI: 10.1002/ajh.26731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/31/2023]
Abstract
Activating mutations in RAS have been reported in about 10-15% of patients with AML; previous studies have not identified a prognostic significance. However, RAS mutations have emerged as a potential resistance mechanism to treatment with inhibitors of FLT3, IDH, and BCL2. We aimed to determine the characteristics and outcomes of patients with RAS-mutated (RAS-mut) AML across therapy subsets of 1410 patients newly diagnosed (ND AML). RAS-mut was observed in 273 (20%) patients. Overall, patients with RAS-mut AML had an estimated 3-year survival rate of 38% vs. 28% in those with RAS wild type (RAS-wt), p = .01. Among patients with RAS-mut, favorable karyotype and concomitant NPM1 mutations were associated with a higher CR/CRi rate, OR 23.2 (95% CI: 2.7-192.7; p < .001) and OR 2.8 (95% CI: 1.1-6.9; p = .02), respectively, while secondary and treated secondary (ts)-AML were associated with low response rates, OR 0.34 (95% CI: 0.1-0.9; p = .04) and OR 0.22 (95% CI: 0.09-0.5; p = .001), respectively. Intensive chemotherapy was associated with high response rates OR 5.9 (95% CI: 2.9-12.2; p < .001). Better median OS was observed among those with favorable karyotype, HR 0.28 (95% CI: 0.1-0.6; p = .002), and those treated with intensive chemotherapy, HR 0.42 (95% CI: 0.2-0.6 p < .001). Conversely, ts- AML and co-occurrence of mutations in TP53 were associated with poor median OS; HR 2.3 (95% CI: 1.4-3.9; p = .001) and HR 1.7 (95% CI: 0.9-3.1; p = .06), respectively. The addition of venetoclax was associated with a non-significant improvement in CR/CRi and OS.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kunhwa Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney Dinardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
42
|
Brandi G, Rizzo A. IDH Inhibitors and Immunotherapy for Biliary Tract Cancer: A Marriage of Convenience? Int J Mol Sci 2022; 23:ijms231810869. [PMID: 36142781 PMCID: PMC9503989 DOI: 10.3390/ijms231810869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic treatments have traditionally reported limited efficacy for biliary tract cancer (BTC), and although targeted therapies and immune checkpoint inhibitors have been found to play an increasingly important role in treatment, several questions remain unanswered, including the identification of biomarkers of response. The tumor microenvironment (TME) has recently attracted the attention of the BTC medical community, and is currently being studied due to its potential role in modulating response and resistance to systemic therapies, including immunotherapy. In this perspective article, we discuss available evidence regarding the interplay between TME, IDH inhibitors, and immunotherapy, providing rationale for the design of future clinical trials.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
43
|
Gruber E, So J, Lewis AC, Franich R, Cole R, Martelotto LG, Rogers AJ, Vidacs E, Fraser P, Stanley K, Jones L, Trigos A, Thio N, Li J, Nicolay B, Daigle S, Tron AE, Hyer ML, Shortt J, Johnstone RW, Kats LM. Inhibition of mutant IDH1 promotes cycling of acute myeloid leukemia stem cells. Cell Rep 2022; 40:111182. [PMID: 35977494 DOI: 10.1016/j.celrep.2022.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Approximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression. Although single-agent AG-120 treatment does not fully eradicate the disease, it increases cycling of rare leukemia stem cells and triggers transcriptional upregulation of the pyrimidine salvage pathway. Accordingly, AG-120 sensitizes IDH1-mutant AML to azacitidine, with the combination of AG-120 and azacitidine showing vastly improved efficacy in vivo. Our data highlight the impact of non-genetic heterogeneity on treatment response and provide a mechanistic rationale for the observed combinatorial effect of AG-120 and azacitidine in patients.
Collapse
Affiliation(s)
- Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Joan So
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Rheana Franich
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Rachel Cole
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Luciano G Martelotto
- The University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Amy J Rogers
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Eva Vidacs
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Peter Fraser
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kym Stanley
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lisa Jones
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anna Trigos
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Niko Thio
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jason Li
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | | | - Scott Daigle
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139, USA; Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Adriana E Tron
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139, USA; Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Marc L Hyer
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139, USA; Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Jake Shortt
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3068, Australia; Monash Haematology, Monash Health, Clayton, VIC 3068, Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
44
|
Bewersdorf JP, Shallis RM, Derkach A, Goldberg AD, Stein A, Stein EM, Marcucci G, Zeidan AM, Shimony S, DeAngelo DJ, Stone RM, Aldoss I, Ball BJ, Stahl M. Efficacy of FLT3 and IDH1/2 Inhibitors in Patients with Acute Myeloid Leukemia Previously Treated with Venetoclax. Leuk Res 2022; 122:106942. [PMID: 36108424 DOI: 10.1016/j.leukres.2022.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022]
Abstract
Small molecule inhibitors targeting mutant FLT3, IDH1, and IDH2 as well as venetoclax-based combination therapies have expanded treatment options for patients with acute myeloid leukemia (AML). As the landmark trials leading to the approval of FLT3, IDH1, and IDH2 inhibitors in R/R-AML were conducted prior to the widespread use of venetoclax, it is unclear how these results apply in the current era of venetoclax based therapy frequently being used in the frontline treatment of AML. In this multicenter, retrospective cohort study, we included 53 patients who received FLT3, IDH1 or IDH2 inhibitors after disease progression on venetoclax-based therapy. Among patients treated with targeted agents after venetoclax, the overall response rate (ORR; composite of complete remission [CR]/CR with incomplete count recovery, partial remission, and morphologic leukemia free state) was 17.7 % (n = 9 patients) and median OS of 4.2 months. Eight of 9 patients responding to targeted agents after venetoclax received gilteritinib. None of the patients with RAS pathway mutations responded to targeted agents after venetoclax. Additionally, mutations in TP53 and KRAS were associated with shorter OS among patients treated targeted agents. Our data suggest that response rates to targeted therapies after venetoclax are low and novel therapeutic strategies are warranted.
Collapse
|
45
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
46
|
Zhuang X, Pei HZ, Li T, Huang J, Guo Y, Zhao Y, Yang M, Zhang D, Chang Z, Zhang Q, Yu L, He C, Zhang L, Pan Y, Chen C, Chen Y. The Molecular Mechanisms of Resistance to IDH Inhibitors in Acute Myeloid Leukemia. Front Oncol 2022; 12:931462. [PMID: 35814406 PMCID: PMC9260655 DOI: 10.3389/fonc.2022.931462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Gain-of-function mutations of isocitrate dehydrogenases 1/2 (IDH1/2) play crucial roles in the development and progression of acute myeloid leukemia (AML), which provide promising therapeutic targets. Two small molecular inhibitors, ivosidenib and enasidenib have been approved for the treatment of IDH1- and IDH2-mutant AML, respectively. Although these inhibitors benefit patients with AML clinically, drug resistance still occurs and have become a major problem for targeted therapies of IDH-mutant AML. A number of up-to-date studies have demonstrated molecular mechanisms of resistance, providing rationales of novel therapeutic strategies targeting mutant IDH1/2. In this review, we discuss mechanisms of resistance to ivosidenib and enasidenib in patients with AML.
Collapse
Affiliation(s)
- Xiaomei Zhuang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Han Zhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tianwen Li
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ming Yang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunxiao He
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liqing Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| |
Collapse
|
47
|
Desikan SP, Daver N, DiNardo C, Kadia T, Konopleva M, Ravandi F. Resistance to targeted therapies: delving into FLT3 and IDH. Blood Cancer J 2022; 12:91. [PMID: 35680852 PMCID: PMC9184476 DOI: 10.1038/s41408-022-00687-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Recent advances in FLT3 and IDH targeted inhibition have improved response rates and overall survival in patients with mutations affecting these respective proteins. Despite this success, resistance mechanisms have arisen including mutations that disrupt inhibitor-target interaction, mutations impacting alternate pathways, and changes in the microenvironment. Here we review the role of these proteins in leukemogenesis, their respective inhibitors, mechanisms of resistance, and briefly ongoing studies aimed at overcoming resistance.
Collapse
Affiliation(s)
- Sai Prasad Desikan
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Naval Daver
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Courtney DiNardo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Tapan Kadia
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Marina Konopleva
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Farhad Ravandi
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA.
| |
Collapse
|
48
|
The Promise of Single-cell Technology in Providing New Insights Into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e734. [PMID: 35651714 PMCID: PMC9148686 DOI: 10.1097/hs9.0000000000000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease.
Collapse
|
49
|
IDH mutation and cancer stem cell. Essays Biochem 2022; 66:413-422. [PMID: 35611837 DOI: 10.1042/ebc20220008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small population of cells in human malignancies that resemble the biology of human pluripotent stem cells. CSCs are closely related to the critical hallmarks in human cancers, ranging from oncogenesis to disease progression, therapeutic resistance, and overall outcome. Mutations in isocitrate dehydrogenase (IDH) were recently identified as founder mutations for human cancers. An increasing amount of evidence indicates that IDH mutations are closely related to the establishment and maintenance of CSCs. Biosynthesis of oncometabolite, metabolic reprogramming, and epigenetic shifts establish distinctive molecular signatures in IDH-mutated CSCs. Additionally, IDH mutation and IDH-related pathways could be valuable molecular targets to impact the CSC components in human cancers and to improve the disease outcome.
Collapse
|
50
|
Wu MJ, Shi L, Merritt J, Zhu AX, Bardeesy N. Biology of IDH mutant cholangiocarcinoma. Hepatology 2022; 75:1322-1337. [PMID: 35226770 DOI: 10.1002/hep.32424] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are the most frequently mutated metabolic genes across human cancers. These hotspot gain-of-function mutations cause the IDH enzyme to aberrantly generate high levels of the oncometabolite, R-2-hydroxyglutarate, which competitively inhibits enzymes that regulate epigenetics, DNA repair, metabolism, and other processes. Among epithelial malignancies, IDH mutations are particularly common in intrahepatic cholangiocarcinoma (iCCA). Importantly, pharmacological inhibition of mutant IDH (mIDH) 1 delays progression of mIDH1 iCCA, indicating a role for this oncogene in tumor maintenance. However, not all patients receive clinical benefit, and those who do typically show stable disease rather than significant tumor regressions. The elucidation of the oncogenic functions of mIDH is needed to inform strategies that can more effectively harness mIDH as a therapeutic target. This review will discuss the biology of mIDH iCCA, including roles of mIDH in blocking cell differentiation programs and suppressing antitumor immunity, and the potential relevance of these effects to mIDH1-targeted therapy. We also cover opportunities for synthetic lethal therapeutic interactions that harness the altered cell state provoked by mIDH1 rather than inhibiting the mutant enzyme. Finally, we highlight key outstanding questions in the biology of this fascinating and incompletely understood oncogene.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lei Shi
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joshua Merritt
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew X Zhu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Jiahui International Cancer CenterShanghaiChina
| | - Nabeel Bardeesy
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|