1
|
Bleier J, Furtado de Mendonca PR, Habrian CH, Stanley C, Vyklicky V, Isacoff EY. Subtype-specific conformational landscape of NMDA receptor gating. Cell Rep 2024; 43:114634. [PMID: 39154344 PMCID: PMC11446236 DOI: 10.1016/j.celrep.2024.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
N-methyl-D-aspartate receptors are ionotropic glutamate receptors that mediate synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties. To understand this diversity, we use single-molecule fluorescence resonance energy transfer (smFRET) to measure the conformations of the ligand binding domain and modulatory amino-terminal domain of the common GluN1 subunit in receptors with different GluN2 subunits. Our results demonstrate a strong influence of the GluN2 subunits on GluN1 rearrangements, both in non-agonized and partially agonized activation intermediates, which have been elusive to structural analysis, and in the fully liganded state. Chimeric analysis reveals structural determinants that contribute to these subtype differences. Our study provides a framework for understanding the conformational landscape that supports highly divergent levels of activity, desensitization, and agonist potency in receptors with different GluN2s and could open avenues for the development of subtype-specific modulators.
Collapse
Affiliation(s)
- Julia Bleier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Chris H Habrian
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cherise Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vojtech Vyklicky
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Weill Neurohub, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Seljeset S, Sintsova O, Wang Y, Harb HY, Lynagh T. Constitutive activity of ionotropic glutamate receptors via hydrophobic substitutions in the ligand-binding domain. Structure 2024; 32:966-978.e6. [PMID: 38677289 DOI: 10.1016/j.str.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Neurotransmitter ligands electrically excite neurons by activating ionotropic glutamate receptor (iGluR) ion channels. Knowledge of the iGluR amino acid residues that dominate ligand-induced activation would enable the prediction of function from sequence. We therefore explored the molecular determinants of activity in rat N-methyl-D-aspartate (NMDA)-type iGluRs (NMDA receptors), complex heteromeric iGluRs comprising two glycine-binding GluN1 and two glutamate-binding GluN2 subunits, using amino acid sequence analysis, mutagenesis, and electrophysiology. We find that a broadly conserved aspartate residue controls both ligand potency and channel activity, to the extent that certain substitutions at this position bypass the need for ligand binding in GluN1 subunits, generating NMDA receptors activated solely by glutamate. Furthermore, we identify a homomeric iGluR from the placozoan Trichoplax adhaerens that has utilized native mutations of this crucial residue to evolve into a leak channel that is inhibited by neurotransmitter binding, pointing to a dominant role of this residue throughout the iGluR superfamily.
Collapse
Affiliation(s)
- Sandra Seljeset
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Oksana Sintsova
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Yuhong Wang
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Hassan Y Harb
- Concept Life Sciences Limited, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG High Peak, UK
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| |
Collapse
|
3
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Korinek M, Candelas Serra M, Abdel Rahman F, Dobrovolski M, Kuchtiak V, Abramova V, Fili K, Tomovic E, Hrcka Krausova B, Krusek J, Cerny J, Vyklicky L, Balik A, Smejkalova T. Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology. Physiol Res 2024; 73:S413-S434. [PMID: 38836461 PMCID: PMC11412357 DOI: 10.33549/physiolres.935346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Collapse
Affiliation(s)
- M Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kellner S, Berlin S. Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants. Cell Mol Life Sci 2024; 81:235. [PMID: 38795169 PMCID: PMC11127902 DOI: 10.1007/s00018-024-05243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.
Collapse
Affiliation(s)
- Shai Kellner
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel
| | - Shai Berlin
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|
6
|
Bleier J, de Mendonca PRF, Habrian C, Stanley C, Vyklicky V, Isacoff EY. Conformational basis of subtype-specific allosteric control of NMDA receptor gating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579740. [PMID: 38370786 PMCID: PMC10871359 DOI: 10.1101/2024.02.10.579740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
N-methyl-D-aspartate receptors are ionotropic glutamate receptors that are integral to synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties, which support their individual physiological roles in the nervous system. To understand the conformational basis of this diversity, we assessed the conformation of the common GluN1 subunit in receptors with different GluN2 subunits using single-molecule fluorescence resonance energy transfer (smFRET). We established smFRET sensors in the ligand binding domain and modulatory amino-terminal domain to study an apo-like state and partially liganded activation intermediates, which have been elusive to structural analysis. Our results demonstrate a strong, subtype-specific influence of apo and glutamate-bound GluN2 subunits on GluN1 rearrangements, suggesting a conformational basis for the highly divergent levels of receptor activity, desensitization and agonist potency. Chimeric analysis reveals structural determinants that contribute to the subtype differences. Our study provides a framework for understanding GluN2-dependent functional properties and could open new avenues for subtype-specific modulation.
Collapse
Affiliation(s)
- Julia Bleier
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, 94720 USA
| | | | - Chris Habrian
- Department of Molecular & Cell Biology, University of California, Berkeley, California, 94720 USA
- Current address: Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Cherise Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, California, 94720 USA
| | - Vojtech Vyklicky
- Department of Molecular & Cell Biology, University of California, Berkeley, California, 94720 USA
- Current address: DIANA Biotechnologies, a.s. Průmyslová 596, 252 50 Vestec, Czech Republic
| | - Ehud Y. Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, 94720 USA
- Department of Molecular & Cell Biology, University of California, Berkeley, California, 94720 USA
- Weill Neurohub, University of California, Berkeley, California, 94720 USA
- Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| |
Collapse
|
7
|
Durham RJ, Jayaraman V. Single-Molecule FRET Analyses of NMDA Receptors. Methods Mol Biol 2024; 2799:225-242. [PMID: 38727910 PMCID: PMC11164542 DOI: 10.1007/978-1-0716-3830-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) enables the real-time observation of conformational changes in a single protein molecule of interest. These observations are achieved by attaching fluorophores to proteins of interest in a site-specific manner and investigating the FRET between the fluorophores. Here we describe the method wherein the FRET is studied by adhering the protein molecules to a slide using affinity-based interactions and measuring the fluorophores' fluorescence intensity from a single molecule over time. The resulting information can be used to derive distance values for a point-to-point measurement within a protein or to calculate kinetic transition rates between various conformational states of a protein. Comparing these parameters between different conditions such as the presence of protein binding partners, application of ligands, or changes in the primary sequence of the protein can provide insights into protein structural changes as well as kinetics of these changes (if in the millisecond to second timescale) that underlie functional effects. Here we describe the procedure for conducting analyses of NMDA receptor conformational changes using the above methodology and provide a discussion of various considerations that affect the design, execution, and interpretation of similar smFRET studies.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
9
|
Zhou C, Tajima N. Structural insights into NMDA receptor pharmacology. Biochem Soc Trans 2023; 51:1713-1731. [PMID: 37431773 PMCID: PMC10586783 DOI: 10.1042/bst20230122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) comprise a subfamily of ionotropic glutamate receptors that form heterotetrameric ligand-gated ion channels and play fundamental roles in neuronal processes such as synaptic signaling and plasticity. Given their critical roles in brain function and their therapeutic importance, enormous research efforts have been devoted to elucidating the structure and function of these receptors and developing novel therapeutics. Recent studies have resolved the structures of NMDARs in multiple functional states, and have revealed the detailed gating mechanism, which was found to be distinct from that of other ionotropic glutamate receptors. This review provides a brief overview of the recent progress in understanding the structures of NMDARs and the mechanisms underlying their function, focusing on subtype-specific, ligand-induced conformational dynamics.
Collapse
Affiliation(s)
- Changping Zhou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Nami Tajima
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
10
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
11
|
Wu S, Zhang W, Li W, Huang W, Kong Q, Chen Z, Wei W, Yan S. Dissecting the Protein Dynamics Coupled Ligand Binding with Kinetic Models and Single-Molecule FRET. Biochemistry 2022; 61:433-445. [PMID: 35226469 DOI: 10.1021/acs.biochem.1c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-ligand interactions are crucial to many biological processes. Ligand binding and dissociation are the basic steps that allow proteins to function. Protein conformational dynamics have been shown to play important roles in ligand binding and dissociation. However, it is challenging to determine the ligand binding kinetics of dynamic proteins. Here, we undertook comprehensive single-molecule FRET (smFRET) measurements and kinetic model analysis to characterize the conformational dynamics coupled ligand binding of glutamine-binding protein (GlnBP). We showed that hinge and T118A mutations of GlnBP affect its conformational dynamics as well as the ligand binding affinity. Based on smFRET measurements, the kinetic model of ligand-GlnBP interactions was constructed. Using experimentally measured parameters, we solved the rate equations of the model and obtained the undetectable parameters of the model which allowed us to understand the ligand binding kinetics fully. Our results demonstrate that modulation of the conformational dynamics of GlnBP affects the ligand binding and dissociation rates. This study provides insights into the binding kinetics of ligands, which are related to the protein function itself.
Collapse
Affiliation(s)
- Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Qian Kong
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Zhongjian Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenkang Wei
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| |
Collapse
|
12
|
Park DK, Stein IS, Zito K. Ion flux-independent NMDA receptor signaling. Neuropharmacology 2022; 210:109019. [PMID: 35278420 DOI: 10.1016/j.neuropharm.2022.109019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
NMDA receptors play vital roles in a broad array of essential brain functions, from synaptic transmission and plasticity to learning and memory. Historically, the fundamental roles of NMDARs were attributed to their specialized properties of ion flux. More recently, it has become clear that NMDARs also signal in an ion flux-independent manner. Here, we review these non-ionotropic NMDAR signaling mechanisms that have been reported to contribute to a broad array of neuronal functions and dysfunctions including synaptic transmission and plasticity, cell death and survival, and neurological disorders.
Collapse
Affiliation(s)
- Deborah K Park
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Ivar S Stein
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.
| |
Collapse
|