1
|
Panda G, Dehury S, Behuria HG, Biswal BK, Jena AK, Mohanty I, Hotta S, Padhi SK, Sahu SK. Gymnema saponin-induced lipid flip-flop identifies rigid membrane phenotype of methicillin resistant S. aureus and enhances it's antibiotic susceptibility. Arch Biochem Biophys 2025; 765:110303. [PMID: 39805384 DOI: 10.1016/j.abb.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S. aureus (MRSA) membrane that has intrinsically higher aminoacylated lipid content compared to methicillin sensitive S. aureus (MSSA) is poorly characterized. Gymnema saponins, gymnemic acid I and IV significantly increased the antibiotic susceptibility in both MSSA and MRSA. MRSA exhibited a rigid membrane with lipid diffusion coefficient 0.0002 μm2/s compared to the MSSA membrane lipids with diffusion coefficient 1.48 μm2/s. Further, unlike MSSA, MRSA cells inhibited fusion of fluid liposomes with their plasma membrane. In vitro assay on reconstituted membrane vesicles revealed that Gymnema saponins induced 60 % lipid flipping in MSSA membrane compared to only 20 % lipid flipping in MRSA, indicating significantly lower Gymnema saponin-induced trans-bilayer lipid mobility in MRSA. Gymnema saponins induced significantly lower crystal violet uptake, release of cellular protein, cell shrinkage and lysis in MRSA compared to MSSA. Gymnema saponins led to dose-dependent inhibition of lipid-aminoacylation in both MSSA and MRSA making their membranes more negative compared to untreated control cells. In silico analysis reveals binding of both gymnemic acid I and IV to multiple peptide resistance factor (binding energy ∼ 7.5 kCal), the protein responsible for lipid aminoacylation in S. aureus. For the first time, our study reveals that MRSA membrane with higher aminoacyl-PG compared to MSSA shows significantly lower rate of diffusion and trans-bilayer flip-flop of lipids. Further, gymnemic acids are useful probes for identification, characterization and drug sensitization of rigid membrane MRSA phenotypes.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Swagatika Dehury
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Himadri Gourav Behuria
- Multi-disciplinary Research Unit, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Bijesh Kumar Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ashis Kumar Jena
- Department of Chemistry, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Indrani Mohanty
- Department of Microbiology, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Sasmita Hotta
- Department of Microbiology, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Santosh Kumar Padhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India.
| |
Collapse
|
2
|
Sawasato K, Dowhan W, Bogdanov M. Its own architect: Flipping cardiolipin synthase. SCIENCE ADVANCES 2025; 11:eads0244. [PMID: 39752486 PMCID: PMC11698083 DOI: 10.1126/sciadv.ads0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of Escherichia coli is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown. We engineered a conditionally lethal phosphatidylethanolamine (PE)-deficient mutant in which the presence of cardiolipin (CL) on the periplasmic leaflet of the IM is essential for viability, revealing a mechanism that provides CL on the desired leaflet of the IM. CL synthase (ClsA) flips its catalytic cytoplasmic domain upon depletion of PE to supply nonbilayer-prone CL in the periplasmic leaflet of the IM for cell viability. In the presence of a physiological amount of PE, osmotic down-shock induces a topological inversion of ClsA, establishing the biological relevance of membrane protein reorientations in wild-type cells. These findings support a flippase-less mechanism for maintaining membrane lipid asymmetry in biogenic membranes by self-organization of a lipid-synthesizing enzyme.
Collapse
Affiliation(s)
- Katsuhiro Sawasato
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Leeten K, Jacques N, Esquembre LA, Schneider DC, Straetener J, Henriksen C, Musumeci L, Putters F, Melo S, Sánchez-López E, Giera M, Penoy N, Piel G, Verlaine O, Amoroso A, Joris B, Slavetinsky CJ, Goffin E, Pirotte B, Frees D, Brötz-Oesterhelt H, Lancellotti P, Oury C. Ticagrelor alters the membrane of Staphylococcus aureus and enhances the activity of vancomycin and daptomycin without eliciting cross-resistance. mBio 2024; 15:e0132224. [PMID: 39311589 PMCID: PMC11481878 DOI: 10.1128/mbio.01322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Infections with multidrug-resistant bacteria pose a major healthcare problem which urges the need for novel treatment options. Besides its potent antiplatelet properties, ticagrelor has antibacterial activity against Gram-positive bacteria, including methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). Several retrospective studies in cardiovascular patients support an antibacterial effect of this drug which is not related to its antiplatelet activity. We investigated the mechanism of action of ticagrelor in Staphylococcus aureus and model Bacillus subtilis, and assessed cross-resistance with two conventional anti-MRSA antibiotics, vancomycin and daptomycin. Bacillus subtilis bioreporter strains revealed ticagrelor-induced cell envelope-related stress responses. Sub-inhibitory drug concentrations caused membrane depolarization, impaired positioning of both the peripheral membrane protein MinD and the peptidoglycan precursor lipid II, and it affected cell shape. At the MIC, ticagrelor destroyed membrane integrity, indicated by the influx of membrane impermeable dyes, and lipid aggregate formation. Whole-genome sequencing of in vitro-generated ticagrelor-resistant MRSA clones revealed mutations in genes encoding ClpP, ClpX, and YjbH. Lipidomic analysis of resistant clones displayed changes in levels of the most abundant lipids of the Staphylococcus aureus membrane, for example, cardiolipins, phosphatidylglycerols, and diacylglycerols. Exogeneous cardiolipin, phosphatidylglycerol, or diacylglycerol antagonized the antibacterial properties of ticagrelor. Ticagrelor enhanced MRSA growth inhibition and killing by vancomycin and daptomycin in both exponential and stationary phases. Finally, no cross-resistance was observed between ticagrelor and daptomycin, or vancomycin. Our study demonstrates that ticagrelor targets multiple lipids in the cytoplasmic membrane of Gram-positive bacteria, thereby retaining activity against multidrug-resistant staphylococci including daptomycin- and vancomycin-resistant strains.IMPORTANCEInfections with multidrug-resistant bacteria pose a major healthcare problem with an urgent need for novel treatment options. The antiplatelet drug ticagrelor possesses antibacterial activity against Gram-positive bacteria including methicillin-resistant and vancomycin-resistant Staphylococcus aureus strains. We report a unique, dose-dependent, antibacterial mechanism of action of ticagrelor, which alters the properties and integrity of the bacterial cytoplasmic membrane. Ticagrelor retains activity against multidrug-resistant staphylococci, including isolates carrying the most common in vivo selected daptomycin resistance mutations and vancomycin-intermediate Staphylococcus aureus. Our data support the use of ticagrelor as adjunct therapy against multidrug-resistant strains. Because of the presence of multiple non-protein targets of this drug within the bacterial membrane, resistance development is expected to be slow. All these findings corroborate the accumulating observational clinical evidence for a beneficial anti-bacterial effect of ticagrelor in cardiovascular patients in need of such treatment.
Collapse
Affiliation(s)
- Kirsten Leeten
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| | - Lidia Alejo Esquembre
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Dana C. Schneider
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Camilla Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucia Musumeci
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| | - Florence Putters
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| | - Sofia Melo
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| | - Elena Sánchez-López
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Noémie Penoy
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Olivier Verlaine
- Bacterial physiology and genetics–Centre d’Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Ana Amoroso
- Bacterial physiology and genetics–Centre d’Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Bernard Joris
- Bacterial physiology and genetics–Centre d’Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Christoph J. Slavetinsky
- Pediatric Surgery and Urology, University Children’s Hospital Tübingen, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
| | - Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
| | - Patrizio Lancellotti
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Research Institute, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Nguyen A, Roy JJS, Kim JH, Yun KH, Lee W, Kim KK, Kim T, Chaurasia AK. Repeated Exposure of Vancomycin to Vancomycin-Susceptible Staphylococcus aureus (VSSA) Parent Emerged VISA and VRSA Strains with Enhanced Virulence Potentials. J Microbiol 2024; 62:535-553. [PMID: 38814539 DOI: 10.1007/s12275-024-00139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
The emergence of resistance against the last-resort antibiotic vancomycin in staphylococcal infections is a serious concern for human health. Although various drug-resistant pathogens of diverse genetic backgrounds show higher virulence potential, the underlying mechanism behind this is not yet clear due to variability in their genetic dispositions. In this study, we investigated the correlation between resistance and virulence in adaptively evolved isogenic strains. The vancomycin-susceptible Staphylococcus aureus USA300 was exposed to various concentrations of vancomycin repeatedly as a mimic of the clinical regimen to obtain mutation(s)-accrued-clonally-selected (MACS) strains. The phenotypic analyses followed by expression of the representative genes responsible for virulence and resistance of MACS strains were investigated. MACS strains obtained under 2 and 8 µg/ml vancomycin, named Van2 and Van8, respectively; showed enhanced vancomycin minimal inhibitory concentrations (MIC) to 4 and 16 µg/ml, respectively. The cell adhesion and invasion of MACS strains increased in proportion to their MICs. The correlation between resistance and virulence potential was partially explained by the differential expression of genes known to be involved in both virulence and resistance in MACS strains compared to parent S. aureus USA300. Repeated treatment of vancomycin against vancomycin-susceptible S. aureus (VSSA) leads to the emergence of vancomycin-resistant strains with variable levels of enhanced virulence potentials.
Collapse
Affiliation(s)
- An Nguyen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - J Jean Sophy Roy
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Hee Yun
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
6
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
7
|
Gill CP, Phan C, Platt V, Worrell D, Andl T, Roy H. The MprF homolog LysX synthesizes lysyl-diacylglycerol contributing to antibiotic resistance and virulence. Microbiol Spectr 2023; 11:e0142923. [PMID: 37768052 PMCID: PMC10580965 DOI: 10.1128/spectrum.01429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 09/29/2023] Open
Abstract
Lysyl-diacylglycerol (Lys-DAG) was identified three decades ago in Mycobacterium phlei, but the biosynthetic pathway and function of this aminoacylated lipid have since remained uncharacterized. Combining genetic methods, mass spectrometry, and biochemical approaches, we show that the multiple peptide resistance factor (MprF) homolog LysX from Corynebacterium pseudotuberculosis and two mycobacterial species is responsible for Lys-DAG synthesis. LysX is conserved in most Actinobacteria and was previously implicated in the synthesis of another modified lipid, lysyl-phosphatidylglycerol (Lys-PG), in Mycobacterium tuberculosis. Although we detected low levels of Lys-PG in the membrane of C. pseudotuberculosis, our data suggest that Lys-PG is not directly synthesized by LysX and may require an additional downstream pathway, which is as yet undefined. Our results show that LysX in C. pseudotuberculosis is a major factor of resistance against a variety of positively charged antibacterial agents, including cationic antimicrobial peptides (e.g., human peptide LL-37 and polymyxin B) and aminoglycosides (e.g., gentamycin and apramycin). Deletion of lysX caused an increase in cellular membrane permeability without dissipation of the membrane potential, suggesting that loss of the protein does not result in mechanical damage to the cell membrane. Furthermore, lysX-deficient cells exhibited an attenuated virulence phenotype in a Galleria mellonella infection model, supporting a role for LysX during infection. Altogether, Lys-DAG represents a novel molecular determinant for antimicrobial resistance and virulence that may be widespread in Actinobacteria and points to a richer landscape than previously realized of lipid components contributing to overall membrane physiology in this important bacterial phylum. IMPORTANCE In the past two decades, tRNA-dependent modification of membrane phosphatidylglycerol has been implicated in altering the biochemical properties of the cell surface, thereby enhancing the antimicrobial resistance and virulence of various bacterial pathogens. Here, we show that in several Actinobacteria, the multifunctional protein LysX attaches lysine to diacylglycerol instead of phosphatidylglycerol. We found that lysyl-diacylglycerol (Lys-DAG) confers high levels of resistance against various cationic antimicrobial peptides and aminoglycosides and also enhances virulence. Our data show that Lys-DAG is a lipid commonly found in important actinobacterial pathogens, including Mycobacterium and Corynebacterium species.
Collapse
Affiliation(s)
- Cameron P. Gill
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Christopher Phan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Vivien Platt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Danielle Worrell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hervé Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Goedseels M, Michiels CW. Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in Listeria monocytogenes. Microorganisms 2023; 11:2024. [PMID: 37630584 PMCID: PMC10457916 DOI: 10.3390/microorganisms11082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated two HBA-resistant mutants with mutations in the mprF gene, which codes for the Multiple Peptide Resistance Factor, an enzyme that confers resistance to cationic peptides and antibiotics in several Gram-positive bacteria by lysinylating membrane phospholipids. Besides the deletion of mprF, the deletion of dltA, which mediates the alanylation of teichoic acids, resulted in increased HBA resistance, suggesting that resistance may be caused by a reduction in positive charges on the cell surface. Additionally, we found that this resistance is maintained at low pH, indicating that the resistance mechanism is not solely based on electrostatic interactions of HBA with the cell surface. Finally, we showed that the HBA-resistant mutants display collateral sensitivity to the cationic antimicrobials polymyxin B and nisin, which may open perspectives for combining antimicrobials to prevent resistance development.
Collapse
Affiliation(s)
| | - Chris W. Michiels
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
9
|
Villalobos-Escobedo JM, Mercado-Esquivias MB, Adams C, Kauffman WB, Malmstrom RR, Deutschbauer AM, Glass NL. Genome-wide fitness profiling reveals molecular mechanisms that bacteria use to interact with Trichoderma atroviride exometabolites. PLoS Genet 2023; 19:e1010909. [PMID: 37651474 PMCID: PMC10516422 DOI: 10.1371/journal.pgen.1010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/22/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Trichoderma spp. are ubiquitous rhizosphere fungi capable of producing several classes of secondary metabolites that can modify the dynamics of the plant-associated microbiome. However, the bacterial-fungal mechanisms that mediate these interactions have not been fully characterized. Here, a random barcode transposon-site sequencing (RB-TnSeq) approach was employed to identify bacterial genes important for fitness in the presence of Trichoderma atroviride exudates. We selected three rhizosphere bacteria with RB-TnSeq mutant libraries that can promote plant growth: the nitrogen fixers Klebsiella michiganensis M5aI and Herbaspirillum seropedicae SmR1, and Pseudomonas simiae WCS417. As a non-rhizosphere species, Pseudomonas putida KT2440 was also included. From the RB-TnSeq data, nitrogen-fixing bacteria competed mainly for iron and required the siderophore transport system TonB/ExbB for optimal fitness in the presence of T. atroviride exudates. In contrast, P. simiae and P. putida were highly dependent on mechanisms associated with membrane lipid modification that are required for resistance to cationic antimicrobial peptides (CAMPs). A mutant in the Hog1-MAP kinase (Δtmk3) gene of T. atroviride showed altered expression patterns of many nonribosomal peptide synthetase (NRPS) biosynthetic gene clusters with potential antibiotic activity. In contrast to exudates from wild-type T. atroviride, bacterial mutants containing lesions in genes associated with resistance to antibiotics did not show fitness defects when RB-TnSeq libraries were exposed to exudates from the Δtmk3 mutant. Unexpectedly, exudates from wild-type T. atroviride and the Δtmk3 mutant rescued purine auxotrophic mutants of H. seropedicae, K. michiganensis and P. simiae. Metabolomic analysis on exudates from wild-type T. atroviride and the Δtmk3 mutant showed that both strains excrete purines and complex metabolites; functional Tmk3 is required to produce some of these metabolites. This study highlights the complex interplay between Trichoderma-metabolites and soil bacteria, revealing both beneficial and antagonistic effects, and underscoring the intricate and multifaceted nature of this relationship.
Collapse
Affiliation(s)
- José Manuel Villalobos-Escobedo
- Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Maria Belen Mercado-Esquivias
- Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Catharine Adams
- Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - W. Berkeley Kauffman
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - N. Louise Glass
- Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
10
|
Tzortzini E, Kolocouris A. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A 2A Adenosine Receptor. Biomolecules 2023; 13:957. [PMID: 37371538 DOI: 10.3390/biom13060957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
11
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 2023; 14:1194923. [PMID: 37266428 PMCID: PMC10230078 DOI: 10.3389/fimmu.2023.1194923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most important infectious agents worldwide and causes more than 1.5 million deaths annually. To make matters worse, the drug resistance among Mtb strains has risen substantially in the last few decades. Nowadays, it is not uncommon to find patients infected with Mtb strains that are virtually resistant to all antibiotics, which has led to the urgent search for new molecules and therapies. Over previous decades, several studies have demonstrated the efficiency of antimicrobial peptides to eliminate even multidrug-resistant bacteria, making them outstanding candidates to counterattack this growing health problem. Nevertheless, the complexity of the Mtb cell wall makes us wonder whether antimicrobial peptides can effectively kill this persistent Mycobacterium. In the present review, we explore the complexity of the Mtb cell wall and analyze the effectiveness of antimicrobial peptides to eliminate the bacilli.
Collapse
|
12
|
Roney IJ, Rudner DZ. The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes. Proc Natl Acad Sci U S A 2023; 120:e2301979120. [PMID: 37155911 PMCID: PMC10193950 DOI: 10.1073/pnas.2301979120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in Bacillus subtilis and Bacillus megaterium revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, Proc. Natl. Acad. Sci. U.S.A. 74, 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery. Recently, members of the DedA superfamily have been implicated in flipping the bacterial lipid carrier undecaprenyl phosphate and in scrambling eukaryotic phospholipids in vitro. Here, using the antimicrobial peptide duramycin that targets outward-facing PE, we show that Bacillus subtilis cells lacking the DedA paralog PetA (formerly YbfM) have increased resistance to duramycin. Sensitivity to duramycin is restored by expression of B. subtilis PetA or homologs from other bacteria. Analysis of duramycin-mediated killing upon induction of PE synthesis indicates that PetA is required for efficient PE transport. Finally, using fluorescently labeled duramycin we demonstrate that cells lacking PetA have reduced PE in their outer leaflet compared to wildtype. We conclude that PetA is the long-sought PE transporter. These data combined with bioinformatic analysis of other DedA paralogs argue that the primary role of DedA superfamily members is transporting distinct lipids across the membrane bilayer.
Collapse
Affiliation(s)
- Ian J. Roney
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Guyet A, Alofi A, Daniel RA. Insights into the Roles of Lipoteichoic Acids and MprF in Bacillus subtilis. mBio 2023; 14:e0266722. [PMID: 36744964 PMCID: PMC9973362 DOI: 10.1128/mbio.02667-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Gram-positive bacterial cells are protected from the environment by a cell envelope that is comprised of a thick layer of peptidoglycan that maintains cell shape and teichoic acid polymers whose biological function remains unclear. In Bacillus subtilis, the loss of all class A penicillin-binding proteins (aPBPs), which function in peptidoglycan synthesis, is conditionally lethal. Here, we show that this lethality is associated with an alteration of lipoteichoic acids (LTAs) and the accumulation of the major autolysin LytE in the cell wall. Our analysis provides further evidence that the length and abundance of LTAs act to regulate the cellular level and activity of autolytic enzymes, specifically LytE. Importantly, we identify a novel function for the aminoacyl-phosphatidylglycerol synthase MprF in the modulation of LTA biosynthesis in both B. subtilis and Staphylococcus aureus. This finding has implications for our understanding of antimicrobial resistance (particularly to daptomycin) in clinically relevant bacteria and the involvement of MprF in the virulence of pathogens such as methicillin-resistant S. aureus (MRSA). IMPORTANCE In Gram-positive bacteria such as Bacillus subtilis and Staphylococcus aureus, the cell envelope is a structure that protects the cells from the environment but is also dynamic in that it must be modified in a controlled way to allow cell growth. In this study, we show that lipoteichoic acids (LTAs), which are anionic polymers attached to the membrane, have a direct role in modulating the cellular abundance of cell wall-degrading enzymes. We also find that the apparent length of the LTA is modulated by the activity of the enzyme MprF, previously implicated in modifications of the cell membrane leading to resistance to antimicrobial peptides. These findings are important contributions to our understanding of how bacteria balance cell wall synthesis and degradation to permit controlled growth and division. These results also have implications for the interpretation of antibiotic resistance, particularly for the clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- Aurélie Guyet
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amirah Alofi
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Moreira R, Taylor SD. The impact of lysyl-phosphatidylglycerol on the interaction of daptomycin with model membranes. Org Biomol Chem 2022; 20:9319-9329. [PMID: 36129316 DOI: 10.1039/d2ob01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Daptomycin is an important clinical antibiotic for which resistance is rising. Daptomycin resistant strains of S. aureus often have increased 1,2-diacyl-sn-glycero-3-[phospho-1-(3-lysyl(1-glycerol))] (lysyl-PG) and mutations to the proteins directly involved in the synthesis and translocation of lysyl-PG are implicated in resistance mechanisms. To study the interaction of daptomycin with lysyl-DMPG-containing model membranes a new stereospecific and regioselective synthesis of lysyl-DMPG was developed. Studies on model membranes containing lysyl-DMPG demonstrate that: (1) daptomycin is not significantly repelled by the cationic charge of lysyl-DMPG; (2) daptomycin binds less avidly to lysyl-DMPG compared to DMPG; (3) the presence of lysyl-DMPG does not impact the membrane bound backbone conformation of daptomycin in a significant way; (4) lysyl-DMPG increases oligomer formation; (5) lysyl-DMPG does not impact model membrane fluidity at lysyl-PG : PG ratios that are relevant to daptomycin resistance. The results of these studies suggest that increased lysyl-PG content does not confer resistance to daptomycin by altering membrane fluidity or reducing membrane affinity but may confer resistance by altering the structure of daptomycin oligomers.
Collapse
Affiliation(s)
- Ryan Moreira
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
15
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
17
|
Thangaratnarajah C, Rheinberger J, Paulino C. Cryo-EM studies of membrane proteins at 200 keV. Curr Opin Struct Biol 2022; 76:102440. [PMID: 36029606 DOI: 10.1016/j.sbi.2022.102440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Single-particle cryogenic electron-microscopy (cryo-EM) has emerged as a powerful technique for the structural characterisation of membrane proteins, especially for targets previously thought to be intractable. Taking advantage of the latest hard- and software developments, high-resolution three-dimensional (3D) reconstructions of membrane proteins by cryo-EM has become routine, with 300-kV transmission electron microscopes (TEMs) being the current standard. The use of 200-kV cryo-TEMs is gaining increasingly prominence, showing the capabilities of reaching better than 2 Å resolution for soluble proteins and better than 3 Å resolution for membrane proteins. Here, we highlight the challenges working with membrane proteins and the impact of cryo-EM, and review the technical and practical benefits, achievements and limitations of imaging at lower electron acceleration voltages.
Collapse
Affiliation(s)
- Chancievan Thangaratnarajah
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy and Membrane Enzymology Group, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| | - Jan Rheinberger
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy and Membrane Enzymology Group, Nijenborgh 4, 9747 AG, Groningen, Netherlands. https://twitter.com/rheinbergerj
| | - Cristina Paulino
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy and Membrane Enzymology Group, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
18
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
19
|
Boldrin F, Cioetto Mazzabò L, Lanéelle MA, Rindi L, Segafreddo G, Lemassu A, Etienne G, Conflitti M, Daffé M, Garzino Demo A, Manganelli R, Marrakchi H, Provvedi R. LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain. BMC Microbiol 2022; 22:85. [PMID: 35365094 PMCID: PMC8974105 DOI: 10.1186/s12866-022-02493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aminoacyl-phosphatidylglycerol (aaPG) synthases are bacterial enzymes that usually catalyze transfer of aminoacyl residues to the plasma membrane phospholipid phosphatidylglycerol (PG). The result is introduction of positive charges onto the cytoplasmic membrane, yielding reduced affinity towards cationic antimicrobial peptides, and increased resistance to acidic environments. Therefore, these enzymes represent an important defense mechanism for many pathogens, including Staphylococcus aureus and Mycobacterium tuberculosis (Mtb), which are known to encode for lysyl-(Lys)-PG synthase MprF and LysX, respectively. Here, we used a combination of bioinformatic, genetic and bacteriological methods to characterize a protein encoded by the Mtb genome, Rv1619, carrying a domain with high similarity to MprF-like domains, suggesting that this protein could be a new aaPG synthase family member. However, unlike homologous domains of MprF and LysX that are positioned in the cytoplasm, we predicted that the MprF-like domain in LysX2 is in the extracytoplasmic region. RESULTS Using genetic fusions to the Escherichia coli proteins PhoA and LacZ of LysX2, we confirmed this unique membrane topology, as well as LysX and MprF as benchmarks. Expression of lysX2 in Mycobacterium smegmatis increased cell resistance to human β-defensin 2 and sodium nitrite, enhanced cell viability and delayed biofilm formation in acidic pH environment. Remarkably, MtLysX2 significantly reduced the negative charge on the bacterial surface upon exposure to an acidic environment. Additionally, we found LysX2 orthologues in major human pathogens and in rapid-growing mycobacteria frequently associated with human infections, but not in environmental and non-pathogenic mycobacteria. CONCLUSIONS Overall, our data suggest that LysX2 is a prototype of a new class within the MprF-like protein family that likely enhances survival of the pathogenic species through its catalytic domain which is exposed to the extracytoplasmic side of the cell membrane and is required to decrease the negative charge on the bacterial surface through a yet uncharacterized mechanism.
Collapse
Affiliation(s)
| | | | - Marie-Antoinette Lanéelle
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Rindi
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marta Conflitti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alfredo Garzino Demo
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
20
|
Slavetinsky CJ, Hauser JN, Gekeler C, Slavetinsky J, Geyer A, Kraus A, Heilingbrunner D, Wagner S, Tesar M, Krismer B, Kuhn S, Ernst CM, Peschel A. Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF. eLife 2022; 11:66376. [PMID: 35044295 PMCID: PMC8806190 DOI: 10.7554/elife.66376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The pandemic of antibiotic resistance represents a major human health threat demanding new antimicrobial strategies. MprF is the synthase and flippase of the phospholipid lysyl-phosphatidylglycerol that increases virulence and resistance of methicillin-resistant Staphylococcus aureus (MRSA) and other pathogens to cationic host defense peptides and antibiotics. With the aim to design MprF inhibitors that could sensitize MRSA to antimicrobial agents and support the clearance of staphylococcal infections with minimal selection pressure, we developed MprF-targeting monoclonal antibodies, which bound and blocked the MprF flippase subunit. Antibody M-C7.1 targeted a specific loop in the flippase domain that proved to be exposed at both sides of the bacterial membrane, thereby enhancing the mechanistic understanding of bacterial lipid translocation. M-C7.1 rendered MRSA susceptible to host antimicrobial peptides and antibiotics such as daptomycin, and it impaired MRSA survival in human phagocytes. Thus, MprF inhibitors are recommended for new anti-virulence approaches against MRSA and other bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Cordula Gekeler
- Department of Infection Biology, Eberhard Karls University Tübingen
| | | | - André Geyer
- Department of Infection Biology, Eberhard Karls University Tübingen
| | | | | | - Samuel Wagner
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen
| | | | - Bernhard Krismer
- Department of Infection Biology, Eberhard Karls University Tübingen
| | - Sebastian Kuhn
- Department of Infection Biology, Eberhard Karls University Tübingen
| | - Christoph M Ernst
- Department of Molecular Biology and Center for Computational and Integrative Biology, Broad Institute
| | - Andreas Peschel
- Department of Infection Biology, Eberhard Karls University Tübingen
| |
Collapse
|
21
|
Hegedűs T, Geisler M, Lukács GL, Farkas B. Ins and outs of AlphaFold2 transmembrane protein structure predictions. Cell Mol Life Sci 2022; 79:73. [PMID: 35034173 PMCID: PMC8761152 DOI: 10.1007/s00018-021-04112-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Transmembrane (TM) proteins are major drug targets, but their structure determination, a prerequisite for rational drug design, remains challenging. Recently, the DeepMind's AlphaFold2 machine learning method greatly expanded the structural coverage of sequences with high accuracy. Since the employed algorithm did not take specific properties of TM proteins into account, the reliability of the generated TM structures should be assessed. Therefore, we quantitatively investigated the quality of structures at genome scales, at the level of ABC protein superfamily folds and for specific membrane proteins (e.g. dimer modeling and stability in molecular dynamics simulations). We tested template-free structure prediction with a challenging TM CASP14 target and several TM protein structures published after AlphaFold2 training. Our results suggest that AlphaFold2 performs well in the case of TM proteins and its neural network is not overfitted. We conclude that cautious applications of AlphaFold2 structural models will advance TM protein-associated studies at an unexpected level.
Collapse
Affiliation(s)
- Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- TKI, Eötvös Loránd Research Network, Budapest, Hungary.
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
22
|
Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci 2021; 22:7267. [PMID: 34298884 PMCID: PMC8306737 DOI: 10.3390/ijms22147267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.
Collapse
Affiliation(s)
| | | | - Chloé Martens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.J.); (T.v.O.)
| |
Collapse
|