1
|
Grabner D, Pickett PD, McAfee T, Collins BA. Molecular Weight-Independent "Polysoap" Nanostructure Characterized via In Situ Resonant Soft X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7444-7455. [PMID: 38552143 DOI: 10.1021/acs.langmuir.3c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Studying polymer micelle structure and loading dynamics under environmental conditions is critical for nanocarrier applications but challenging due to a lack of in situ nanoprobes. Here, the structure and loading of amphiphilic polyelectrolyte copolymer micelles, formed by 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and n-dodecyl acrylamide (DDAM), were investigated using a multimodal approach centered around in situ resonant soft X-ray scattering (RSoXS). We observe aqueous micelles formed from polymers of wide-ranging molecular weights and aqueous concentrations. Despite no measurable critical micelle concentration (CMC), structural analyses point toward multimeric structures for most molecular weights, with the lowest molecular weight micelles containing mixed coronas and forming loose micelle clusters that enhance hydrocarbon uptake. The sizes of the micelle substructures are independent of both the concentration and molecular weight. Combining these results with a measured molecular weight-invariant surface charge and zeta potential strengthens the link between the nanoparticle size and ionic charge in solution that governs the polysoap micelle structure. Such control would be critical for nanocarrier applications, such as drug delivery and water remediation.
Collapse
Affiliation(s)
- Devin Grabner
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Phillip D Pickett
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Korpanty J, Gianneschi NC. Exploration of Organic Nanomaterials with Liquid-Phase Transmission Electron Microscopy. Acc Chem Res 2023; 56:2298-2312. [PMID: 37580021 DOI: 10.1021/acs.accounts.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
ConspectusOrganic, soft materials with solution-phase nanoscale structures, such as emulsions, hydrogels, and thermally responsive materials, are inherently difficult to directly image via dry state and cryogenic-transmission electron microscopy (TEM). Therefore, we lack a routine microscopy method with sufficient resolution that can, in tandem with scattering techniques, probe the morphology and dynamics of these and many related systems. These challenges motivate liquid cell (LC) TEM method development, aimed at making the technique generally available and routine. To date, the field has been and continues to be dominantly focused on analyzing solution-phase inorganic materials. These mostly metallic nanoparticles have been studied at electron fluxes that can allow for high-resolution imaging, in the range of hundreds to thousands of e- Å-2 s-1. Despite excellent contrast, in these cases, one often contends with knock-on damage, direct radiolysis, and sensitization of the solvent by virtue of enhanced secondary electron production by the impinging electron beam. With an interest in soft materials, we face both related and distinct challenges, especially in achieving a high-enough contrast within solvated liquid cells. Additionally, we must be aware of artifacts associated with high-flux imaging conditions in terms of direct radiolysis of the solvent and the sensitive materials themselves. Regardless, with care, it has become possible to gain real insight into both static and dynamic organic nanomaterials in solution. This is due, in large part, to key advances that have been made, including improved sample preparation protocols, image capture technologies, and image analysis, which have allowed LCTEM to have utility. To enable solvated soft matter characterization by LCTEM, a generalizable multimodal workflow was developed by leveraging both experimental and theoretical precedents from across the LCTEM field and adjacent works concerned with solution radiolysis and nanoparticle tracking analyses. This workflow consists of (1) modeling electron beam-solvent interactions, (2) studying electron beam-sample interactions via LCTEM coupled with post-mortem analysis, (3) the construction of "damage plots" displaying sample integrity under varied imaging and sample conditions, (4) optimized LCTEM imaging, (5) image processing, and (6) correlative analysis via X-ray or light scattering. In this Account, we present this outlook and the challenges we continue to overcome in the direct imaging of dynamic solvated nanoscale soft materials.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Korpanty J, Wang C, Gianneschi NC. Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scattering. Nat Commun 2023; 14:3441. [PMID: 37301949 DOI: 10.1038/s41467-023-38781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Here, we study the upper critical solution temperature triggered phase transition of thermally responsive poly(ethylene glycol)-block-poly(ethylene glycol) methyl ether acrylate-co-poly(ethylene glycol) phenyl ether acrylate-block-polystyrene nanoassemblies in isopropanol. To gain mechanistic insight into the organic solution-phase dynamics of the upper critical solution temperature polymer, we leverage variable temperature liquid-cell transmission electron microscopy correlated with variable temperature liquid resonant soft X-ray scattering. Heating above the upper critical solution temperature triggers a reduction in particle size and a morphological transition from a spherical core shell particle with a complex, multiphase core to a micelle with a uniform core and Gaussian polymer chains attached to the surface. These correlated solution phase methods, coupled with mass spectral validation and modeling, provide unique insight into these thermoresponsive materials. Moreover, we detail a generalizable workflow for studying complex, solution-phase nanomaterials via correlative methods.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Lin X, Cai L, Cao X, Zhao Y. Stimuli-responsive silk fibroin for on-demand drug delivery. SMART MEDICINE 2023; 2:e20220019. [PMID: 39188280 PMCID: PMC11235688 DOI: 10.1002/smmd.20220019] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 08/28/2024]
Abstract
Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
5
|
Yang Y, Roh I, Louisia S, Chen C, Jin J, Yu S, Salmeron MB, Wang C, Yang P. Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreduction. J Am Chem Soc 2022; 144:8927-8931. [PMID: 35575474 DOI: 10.1021/jacs.2c03662] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the chemical environment and interparticle dynamics of nanoparticle electrocatalysts under operating conditions offers valuable insights into tuning their activity and selectivity. This is particularly important to the design of Cu nanocatalysts for CO2 electroreduction due to their dynamic nature under bias. Here, we have developed operando electrochemical resonant soft X-ray scattering (EC-RSoXS) to probe the chemical identity of active sites during the dynamic structural transformation of Cu nanoparticle (NP) ensembles through 1 μm thick electrolyte. Operando scattering-enhanced X-ray absorption spectroscopy (XAS) serves as a powerful technique to investigate the size-dependent catalyst stability under beam exposure while monitoring the potential-dependent surface structural changes. Small NPs (7 nm) in aqueous electrolyte were found to experience a predominant soft X-ray beam-induced oxidation to CuO despite only sub-second X-ray exposure. In comparison, large NPs (18 nm) showed improved resistivity to beam damage, which allowed the reliable observation of surface Cu2O electroreduction to metallic Cu. Small-angle X-ray scattering (SAXS) statistically probes the particle-particle interactions of large ensembles of NPs. This study points out the need for rigorous examination of beam effects for operando X-ray studies on electrocatalysts. The strategy of using EC-RSoXS that combines soft XAS and SAXS can serve as a general approach to simultaneously investigate the chemical environment and interparticle information on nanocatalysts.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sunmoon Yu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Miquel B Salmeron
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Zhong W, Zhang M, Freychet G, Su GM, Ying L, Huang F, Cao Y, Zhang Y, Wang C, Liu F. Decoupling Complex Multi-Length-Scale Morphology in Non-Fullerene Photovoltaics with Nitrogen K-Edge Resonant Soft X-ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107316. [PMID: 34750871 DOI: 10.1002/adma.202107316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Complex morphology in organic photovoltaics (OPVs) and other functional soft materials commonly dictates performance. Such complexity in OPVs originates from the mesoscale kinetically trapped non-equilibrium state, which governs device charge generation and transport. Resonant soft X-ray scattering (RSoXS) has been revolutionary in the exploration of OPV morphology in the past decade due to its chemical and orientation sensitivity. However, for non-fullerene OPVs, RSoXS analysis near the carbon K-edge is challenging, due to the chemical similarity of the materials used in active layers. An innovative approach is provided by nitrogen K-edge RSoXS (NK-RSoXS), utilizing the spatial and orientational contrasts from the cyano groups in the acceptor materials, which allows for determination of phase separation. NK-RSoXS clearly visualizes the combined feature sizes in PM6:Y6 blends from crystallization and liquid-liquid demixing, while PM6:Y6:Y6-BO ternary blends with reduced phase-separation size and enhanced material crystallization can lead to current amplification in devices. Nitrogen is common in organic semiconductors and other soft materials, and the strong and directional N 1s → π* resonances make NK-RSoXS a powerful tool to uncover the mesoscale complexity and open opportunities to understand heterogeneous systems.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Gregory M Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Del Mundo JT, Rongpipi S, Gomez ED, Gomez EW. Characterization of biological materials with soft X-ray scattering. Methods Enzymol 2022; 677:357-383. [DOI: 10.1016/bs.mie.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|