1
|
Zhang X, Aziz S, Salahuddin B, Zhu Z. Bioinspired Hydro- and Hydrothermally Responsive Tubular Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59202-59215. [PMID: 39435866 DOI: 10.1021/acsami.4c11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Soft actuators made of thermoresponsive polymers have great potential for intelligent robotics and biomedical devices due to their reversible deformation capability in response to temperature fluctuations. However, they are constrained by a predefined phase transition temperature, limited directional deformation, and nonbiocompatible formulations, thereby restricting their practical utility. Herein a new biomimicry approach is presented to overcome these limitations by developing hydro- and hydrothermally responsive soft actuators made of biocompatible and pliable materials i.e. cotton yarn and polyurethane. We mimic the tubular shape of elephant trunks with their unique muscle orientation by embedding a helical cotton yarn within a hydrophilic polyurethane tube, followed by targeted surface patterning. Unlike the narrow-range shape morphing across the phase transition temperature boundary of typical thermoresponsive hydrogel actuators, we harness hydrothermal stiffness variations in polyurethane to obtain consistent morphing capabilities over a much wider temperature range. The developed actuators can perform versatile activities such as linear, bending, curvilinear, and rotating movements, overcoming the unidirectional motion limitations of conventional soft actuators. The cell viability assay on the building block materials also confirms the high biocompatibility of the actuators. The reported facile fabrication strategy provides new insights for designing complex yet free-standing soft actuators from readily available supple materials.
Collapse
Affiliation(s)
- Xi Zhang
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Seo W, Haines CS, Kim H, Park CL, Kim SH, Park S, Kim DG, Choi J, Baughman RH, Ware TH, Lee H, Kim H. Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406493. [PMID: 39428897 DOI: 10.1002/smll.202406493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Indexed: 10/22/2024]
Abstract
As actuated devices become smaller and more complex, there is a need for smart materials and structures that directly function as complete mechanical units without an external power supply. The strategy uses light-powered, twisted, and coiled azobenzene-functionalized semicrystalline liquid crystal elastomer (AC-LCE) springs. This twisting and coiling, which has previously been used for only thermally, electrochemically, or absorption-powered muscles, maximizes uniaxial and radial actuation. The specially designed photochemical muscles can undergo about 60% tensile stroke and provide 15 kJ m-3 of work capacity in response to light, thus providing about three times and two times higher performance, respectively, than previous azobenzene actuators. Since this actuation is photochemical, driven by ultraviolet (UV) light and reversed by visible light, isothermal actuation can occur in a range of environmental conditions, including underwater. In addition, photoisomerization of the AC-LCEs enables unique latch-like actuation, eliminating the need for continuous energy application to maintain the stroke. Also, as the light-powered muscles processed to be either homochiral or heterochiral, the direction of actuation can be reversed. The presented approach highlights the novel capabilities of photochemical actuator materials that can be manipulated in untethered, isothermal, and wet environmental conditions, thus suggesting various potential applications, including underwater soft robotics.
Collapse
Affiliation(s)
- Wonbin Seo
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Carter S Haines
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hongdeok Kim
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chae-Lin Park
- HYU-KITECH Joint Department, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Shi Hyeong Kim
- HYU-KITECH Joint Department, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Habeom Lee
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
3
|
Ríos-Monje C, Plata CA, Guéry-Odelin D, Prados A. Optimal synchronization to a limit cycle. CHAOS (WOODBURY, N.Y.) 2024; 34:103146. [PMID: 39447077 DOI: 10.1063/5.0227287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
In the absence of external forcing, all trajectories on the phase plane of the van der Pol oscillator tend to a closed, periodic trajectory-the limit cycle-after infinite time. Here, we drive the van der Pol oscillator with an external time-dependent force to reach the limit cycle in a given finite time. Specifically, we are interested in minimizing the non-conservative contribution to the work when driving the system from a given initial point on the phase plane to any final point belonging to the limit cycle. There appears a speed-limit inequality, which expresses a trade-off between the connection time and cost-in terms of the non-conservative work. We show how the above results can be generalized to the broader family of non-linear oscillators given by the Liénard equation. Finally, we also look into the problem of minimizing the total work done by the external force.
Collapse
Affiliation(s)
- C Ríos-Monje
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - C A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - D Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, FeRMI, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
4
|
Madani Z, Silva PES, Baniasadi H, Vaara M, Das S, Arias JC, Seppälä J, Sun Z, Vapaavuori J. Light-Driven Multidirectional Bending in Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405917. [PMID: 39044611 DOI: 10.1002/adma.202405917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Using light to drive polymer actuators can enable spatially selective complex motions, offering a wealth of opportunities for wireless control of soft robotics and active textiles. Here, the integration of photothermal components is reported into shape memory polymer actuators. The fabricated twist-coiled artificial muscles show on-command multidirectional bending, which can be controlled by both the illumination intensity, as well as the chirality, of the prepared artificial muscles. Importantly, the direction in which these artificial muscles bend does not depend on intrinsic material characteristics. Instead, this directionality is achieved by localized untwisting of the actuator, driven by selective irradiation. The reaction times of this bending system are significantly - at least two orders of magnitude - faster than heliotropic biological systems, with a response time up to one second. The programmability of the artificial muscles is further demonstrated for selective, reversible, and sustained actuation when integrated in butterfly-shaped textiles, along with the capacity to autonomously orient toward a light source. This functionality is maintained even on a rotating platform, with angular velocities of 6°/s, independent of the rotation direction. These attributes collectively represent a breakthrough in the field of artificial muscles, intended to adaptive shape-changing soft systems and biomimetic technologies.
Collapse
Affiliation(s)
- Zahra Madani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Pedro E S Silva
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Maija Vaara
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Susobhan Das
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, 02150, Finland
| | - Juan Camilo Arias
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, 02150, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Zhipei Sun
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, 02150, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| |
Collapse
|
5
|
Wang Y, Wang X, Zhao Y, Dong L, Zhou T, Yong Z, Di J. Reversible Electrochemical Swelling of Straight Carbon Nanotube Yarns for High-Performance Linear Actuation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405277. [PMID: 39189539 DOI: 10.1002/smll.202405277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Coiled artificial muscle yarns outperform their straight counterparts in contractile strokes. However, challenges persist in the fabrication complexity and the susceptibility of the coiled yarns to becoming stuck by surrounding objects during contraction and recovery. Additionally, torsional stability remains a concern. In this study, it is reported that straight carbon nanotube (CNT) yarns when driven by a low-voltage electrochemical approach, can achieve a contractile stroke that surpasses even NiTi shape memory alloy fibers. The key lies in the suitable match between a yarn consisting of randomly aligned CNTs and the reversible and substantial electrochemical swelling induced by solvated ions. Wrinkled structures are formed on the surface of the CNT yarn to adapt to the swelling process. This not only assures torsional stability but also enhances the surface area for improved electrode-electrolyte interaction during electrochemical actuation. Remarkably, the CNT artificial muscle yarn generates a contractile stroke of 8.8% and an isometric stress of 7.5 MPa under 2.5 V actuation voltages, demonstrating its potential for applications requiring low energy consumption while maintaining high operational efficiency. This study highlights the crucial impact of CNT orientation on the effectiveness of electrochemically-driven artificial muscles, signaling new possibilities in smart material and biomechanical system development.
Collapse
Affiliation(s)
- Yulian Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaobo Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yueran Zhao
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tao Zhou
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Zhenzhong Yong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Jiangtao Di
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| |
Collapse
|
6
|
Sun Y, Men Y, Liu S, Wang X, Li C. Liquid crystalline elastomer self-oscillating fiber actuators fabricated from soft tubular molds. SOFT MATTER 2024; 20:4246-4256. [PMID: 38747973 DOI: 10.1039/d4sm00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The self-oscillation of objects that perform continuous and periodic motions upon unchanging and constant stimuli is highly important for intelligent actuators, advanced robotics, and biomedical machines. Liquid crystalline elastomer (LCE) materials are superior to traditional stimuli-responsive polymeric materials in the development of self-oscillators because of their reversible, large and anisotropic shape-changing ability, fast response ability and versatile structural design. In addition, fiber-shaped oscillators have attracted much interest due to their agility, flexibility and diverse oscillation modes. Herein, we present a strategy for fabricating fiber-shaped LCE self-oscillators using soft tubes as molds. Through the settlement of different configuration states of the soft tubes, the prepared fiber-shaped LCE oscillators can perform continuous rotational self-oscillation or up-and-down shifting self-oscillation under constant light stimuli, which are realized by photoinduced repetitive self-winding motion and self-waving motion, respectively. The mechanism of self-oscillating movements is attributed to the local temperature oscillation of LCE fibers caused by repetitive self-shadowing effects. LCE self-oscillators can operate stably over many oscillating cycles without obvious performance attenuation, revealing good robustness. Our work offers a versatile way by which LCE self-oscillators can be conveniently designed and fabricated in bulk and at low cost, and broadens the road for developing self-oscillating materials for biological robotics and health care machines.
Collapse
Affiliation(s)
- Yuying Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanli Men
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Shiyu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
7
|
Wu D, Li X, Zhang Y, Cheng X, Long Z, Ren L, Xia X, Wang Q, Li J, Lv P, Feng Q, Wei Q. Novel Biomimetic "Spider Web" Robust, Super-Contractile Liquid Crystal Elastomer Active Yarn Soft Actuator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400557. [PMID: 38419378 PMCID: PMC11077665 DOI: 10.1002/advs.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Indexed: 03/02/2024]
Abstract
In nature, spider web is an interwoven network with high stability and elasticity from silk threads secreted by spider. Inspired by the structure of spider webs, light-driven liquid crystal elastomer (LCE) active yarn is designed with super-contractile and robust weavability. Herein, a novel biomimetic gold nanorods (AuNRs) @LCE yarn soft actuator with hierarchical structure is fabricated by a facile electrospinning and subsequent photocrosslinking strategies. Meanwhile, the inherent mechanism and actuation performances of the as-prepared yarn actuator with interleaving network are systematically analyzed. Results demonstrate that thanks to the unique "like-spider webs" structure between fibers, high molecular orientation within the LCE microfibers and good flexibility, they can generate super actuation strain (≈81%) and stable actuation performances. Importantly, benefit from the robust covalent bonding at the organic-inorganic interface, photopolymerizable AuNRs molecules are uniformly introduced into the polymer backbone of electrospun LCE yarn to achieve tailorable shape-morphing under different light intensity stimulation. As a proof-of-concept illustration, light-driven artificial muscles, micro swimmers, and hemostatic bandages are successfully constructed. The research disclosed herein can offer new insights into continuous production and development of LCE-derived yarn actuator that are of paramount significance for many applications from smart fabrics to flexible wearable devices.
Collapse
Affiliation(s)
- Dingsheng Wu
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
- Key Laboratory of Textile Fabrics, College of Textiles and ClothingAnhui Polytechnic UniversityAnhui241000China
| | - Xin Li
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Yuxin Zhang
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Xinyue Cheng
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Zhiwen Long
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Lingyun Ren
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Xin Xia
- College of Textile and ClothingXinjiang UniversityUrumchiXinjiang830046China
| | - Qingqing Wang
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Jie Li
- Jiangsu Textile Quality Services Inspection Testing InstituteJiangsu210007China
| | - Pengfei Lv
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| | - Quan Feng
- Key Laboratory of Textile Fabrics, College of Textiles and ClothingAnhui Polytechnic UniversityAnhui241000China
| | - Qufu Wei
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan UniversityJiangsu214122China
| |
Collapse
|
8
|
Wang J, Zhou H, Fan Y, Hou W, Zhao T, Hu Z, Shi E, Lv JA. Adaptive nanotube networks enabling omnidirectionally deformable electro-driven liquid crystal elastomers towards artificial muscles. MATERIALS HORIZONS 2024; 11:1877-1888. [PMID: 38516937 DOI: 10.1039/d4mh00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Artificial muscles that can convert electrical energy into mechanical energy promise broad scientific and technological applications. However, existing electro-driven artificial muscles have been plagued with problems that hinder their practical applications: large electro-mechanical attenuation during deformation, high-driving voltages, small actuation strain, and low power density. Here, we design and create novel electro-thermal-driven artificial muscles rationally composited by hierarchically structured carbon nanotube (HS-CNT) networks and liquid crystal elastomers (LCEs), which possess adaptive sandwiched nanotube networks with angulated-scissor-like microstructures, thus effectively addressing above problems. These HS-CNT/LCE artificial muscles demonstrate not only large strain (>40%), but also remarkable conductive robustness (R/R0 < 1.03 under actuation), excellent Joule heating efficiency (≈ 233 °C at 4 V), and high load-bearing capacity (R/R0 < 1.15 at 4000 times its weight loaded). In addition, our artificial muscles exhibit real-muscle-like morphing intelligence that enables preventing mechanical damage in response to excessively heavyweight loading. These high-performance artificial muscles uniquely combining omnidirectional stretchability, robust electrothermal actuation, low driving voltage, and powerful mechanical output would exert significant technological impacts on engineering applications such as soft robotics and wearable flexible electronics.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hao Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| | - Yangyang Fan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wenhao Hou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tonghui Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhiming Hu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Enzheng Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
9
|
Zhang Z, Fan W, Long Y, Dai J, Luo J, Tang S, Lu Q, Wang X, Wang H, Chen G. Hybrid-Driven Origami Gripper with Variable Stiffness and Finger Length. CYBORG AND BIONIC SYSTEMS 2024; 5:0103. [PMID: 38617112 PMCID: PMC11014077 DOI: 10.34133/cbsystems.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/07/2024] [Indexed: 04/16/2024] Open
Abstract
Soft grippers due to their highly compliant material and self-adaptive structures attract more attention to safe and versatile grasping tasks compared to traditional rigid grippers. However, those flexible characteristics limit the strength and the manipulation capacity of soft grippers. In this paper, we introduce a hybrid-driven gripper design utilizing origami finger structures, to offer adjustable finger stiffness and variable grasping range. This gripper is actuated via pneumatic and cables, which allows the origami structure to be controlled precisely for contraction and extension, thus achieving different finger lengths and stiffness by adjusting the cable lengths and the input pressure. A kinematic model of the origami finger is further developed, enabling precise control of its bending angle for effective grasping of diverse objects and facilitating in-hand manipulation. Our proposed design method enriches the field of soft grippers, offering a simple yet effective approach to achieve safe, powerful, and highly adaptive grasping and in-hand manipulation capabilities.
Collapse
Affiliation(s)
- Zhuang Zhang
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Engineering,
Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Weicheng Fan
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzhou Long
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiabei Dai
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junjie Luo
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujie Tang
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiujie Lu
- Academy for Engineering and Technology,
Fudan University, 200433, Shanghai, China
- Reds Lab, Dyson School of Design Engineering,
Imperial College London, London, SW7 2DB, U.K.
| | - Xinran Wang
- Reds Lab, Dyson School of Design Engineering,
Imperial College London, London, SW7 2DB, U.K.
| | - Hao Wang
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genliang Chen
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
- META Robotics Institute,
Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Kim YB, Yang S, Kim DS. Sidewinder-Inspired Self-Adjusting, Lateral-Rolling Soft Robots for Autonomous Terrain Exploration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308350. [PMID: 38286667 PMCID: PMC11005722 DOI: 10.1002/advs.202308350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Helical structures of liquid crystal elastomers (LCEs) hold promise in soft robotics for self-regulated rolling motions. The understanding of their motion paths and potentials for terrain exploration remains limited. This study introduces a self-adjusting, lateral-rolling soft robot inspired by sidewinder snakes. The spring-like LCE helical filaments (HFs) autonomously respond to thermal cues, demonstrating dynamic and sustainable locomotion with adaptive rolling along non-linear paths. By fine-tuning the diameter, pitch, and modulus of the LCE HFs, and the environmental temperature, the movements of the LCE HFs, allowing for exploration of diverse terrains over a 600 cm2 area within a few minutes, can be programmed. LCE HFs are showcased to navigate through over nine obstacles, including maze escaping, terrain exploration, target hunting, and successfully surmounting staircases through adaptable rolling.
Collapse
Affiliation(s)
- Young Been Kim
- Department of Polymer EngineeringPukyong National University45 Yongso‐ro, Nam‐guBusan48513South Korea
| | - Shu Yang
- Department of Materials Science and EngineeringUniversity of Pennsylvania3231 Walnut StreetPhiladelphiaPA19104USA
| | - Dae Seok Kim
- Department of Polymer EngineeringPukyong National University45 Yongso‐ro, Nam‐guBusan48513South Korea
| |
Collapse
|
11
|
Nie ZZ, Wang M, Yang H. Self-sustainable autonomous soft actuators. Commun Chem 2024; 7:58. [PMID: 38503863 PMCID: PMC10951225 DOI: 10.1038/s42004-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Self-sustainable autonomous locomotion is a non-equilibrium phenomenon and an advanced intelligence of soft-bodied organisms that exhibit the abilities of perception, feedback, decision-making, and self-sustainment. However, artificial self-sustaining architectures are often derived from algorithms and onboard modules of soft robots, resulting in complex fabrication, limited mobility, and low sensitivity. Self-sustainable autonomous soft actuators have emerged as naturally evolving systems that do not require human intervention. With shape-morphing materials integrating in their structural design, soft actuators can direct autonomous responses to complex environmental changes and achieve robust self-sustaining motions under sustained stimulation. This perspective article discusses the recent advances in self-sustainable autonomous soft actuators. Specifically, shape-morphing materials, motion characteristics, built-in negative feedback loops, and constant stimulus response patterns used in autonomous systems are summarized. Artificial self-sustaining autonomous concepts, modes, and deformation-induced functional applications of soft actuators are described. The current challenges and future opportunities for self-sustainable actuation systems are also discussed.
Collapse
Affiliation(s)
- Zhen-Zhou Nie
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
12
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
13
|
Feng W, He Q, Zhang L. Embedded Physical Intelligence in Liquid Crystalline Polymer Actuators and Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312313. [PMID: 38375751 DOI: 10.1002/adma.202312313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Indexed: 02/21/2024]
Abstract
Responsive materials possess the inherent capacity to autonomously sense and respond to various external stimuli, demonstrating physical intelligence. Among the diverse array of responsive materials, liquid crystalline polymers (LCPs) stand out for their remarkable reversible stimuli-responsive shape-morphing properties and their potential for creating soft robots. While numerous reviews have extensively detailed the progress in developing LCP-based actuators and robots, there exists a need for comprehensive summaries that elucidate the underlying principles governing actuation and how physical intelligence is embedded within these systems. This review provides a comprehensive overview of recent advancements in developing actuators and robots endowed with physical intelligence using LCPs. This review is structured around the stimulus conditions and categorizes the studies involving responsive LCPs based on the fundamental control and stimulation logic and approach. Specifically, three main categories are examined: systems that respond to changing stimuli, those operating under constant stimuli, and those equip with learning and logic control capabilities. Furthermore, the persisting challenges that need to be addressed are outlined and discuss the future avenues of research in this dynamic field.
Collapse
Affiliation(s)
- Wei Feng
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiguang He
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Zhang C, Fei G, Lu X, Xia H, Zhao Y. Liquid Crystal Elastomer Artificial Tendrils with Asymmetric Core-Sheath Structure Showing Evolutionary Biomimetic Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307210. [PMID: 37805917 DOI: 10.1002/adma.202307210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The sophisticated and complex haptonastic movements in response to environmental-stimuli of living organisms have always fascinated scientists. However, how to fundamentally mimic the sophisticated hierarchical architectures of living organisms to provide the artificial counterparts with similar or even beyond-natural functions based on the underlying mechanism remains a major scientific challenge. Here, liquid crystal elastomer (LCE) artificial tendrils showing evolutionary biomimetic locomotion are developed following the structure-function principle that is used in nature to grow climbing plants. These elaborately designed tendril-like LCE actuators possess an asymmetric core-sheath architecture which shows a higher-to-lower transition in the degree of LC orientation from the sheath-to-core layer across the semi-ellipse cross-section. Upon heating and cooling, the LCE artificial tendril can undergo reversible tendril-like shape-morphing behaviors, such as helical coiling/winding, and perversion. The fundamental mechanism of the helical shape-morphing of the artificial tendril is revealed by using theoretical models and finite element simulations. Besides, the incorporation of metal-ligand coordination into the LCE network provides the artificial tendril with reconfigurable shape-morphing performances such as helical transitions and rotational deformations. Finally, the abilities of helical and rotational deformations are integrated into a new reprogrammed flagellum-like architecture to perform evolutionary locomotion mimicking the haptonastic movements of the natural flagellum.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yue Zhao
- Département de chimie Université de Sherbrooke Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
15
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
16
|
Sun X, Dai Y, Li K, Xu P. Self-Sustained Chaotic Jumping of Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers (Basel) 2023; 15:4651. [PMID: 38139903 PMCID: PMC10747744 DOI: 10.3390/polym15244651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Self-sustained chaotic jumping systems composed of active materials are characterized by their ability to maintain motion through drawing energy from the steady external environment, holding significant promise in actuators, medical devices, biomimetic robots, and other fields. In this paper, an innovative light-powered self-sustained chaotic jumping system is proposed, which comprises a liquid crystal elastomer (LCE) balloon and an elastic substrate. The corresponding theoretical model is developed by combining the dynamic constitutive model of an LCE with Hertz contact theory. Under steady illumination, the stationary LCE balloon experiences contraction and expansion, and through the work of contact expansion between LCE balloon and elastic substrate, it ultimately jumps up from the elastic substrate, achieving self-sustained jumping. Numerical calculations reveal that the LCE balloon exhibits periodic jumping and chaotic jumping under steady illumination. Moreover, we reveal the mechanism underlying self-sustained periodic jumping of the balloon in which the damping dissipation is compensated through balloon contact with the elastic substrate, as well as the mechanism involved behind self-sustained chaotic jumping. Furthermore, we provide insights into the effects of system parameters on the self-sustained jumping behaviors. The emphasis in this study is on the self-sustained chaotic jumping system, and the variation of the balloon jumping modes with parameters is illustrated through bifurcation diagrams. This work deepens the understanding of chaotic motion, contributes to the research of motion behavior control of smart materials, and provides ideas for the bionic design of chaotic vibrators and chaotic jumping robots.
Collapse
Affiliation(s)
| | | | | | - Peibao Xu
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (X.S.); (Y.D.); (K.L.)
| |
Collapse
|
17
|
Yuan Z, Liu J, Qian G, Dai Y, Li K. Self-Rotation of Electrothermally Responsive Liquid Crystal Elastomer-Based Turntable in Steady-State Circuits. Polymers (Basel) 2023; 15:4598. [PMID: 38232009 PMCID: PMC10708095 DOI: 10.3390/polym15234598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Self-excited motions, characterized by their ability to harness energy from a consistent environment and self-regulate, exhibit significant potential in micro-devices, autonomous robotics, sensor technology, and energy generation. This study introduces an innovative turntable system based on an electrothermally responsive liquid crystal elastomer (LCE). This system facilitates self-rotation within a steady-state circuit. Employing an electrothermal LCE model, we have modeled and numerically analyzed the nonlinear dynamics of an LCE-rope within steady-state circuits, utilizing the four-order Runge-Kutta method for calculations. The numerical results reveal the emergence of two distinct motion patterns in the turntable system under steady-state conditions: a self-rotation pattern and a static pattern. The self-rotation is initiated when the system's absorbed energy surpasses the energy lost due to damping effects. Furthermore, this paper delves into the critical conditions necessary for initiating self-rotation and examines the influence of various key dimensionless parameters on the system's rotation amplitude and frequency. These parameters include gravitational acceleration, the initial position of the mass ball, elastic stiffness of the LCE and spring, limiting temperature, heating zone angle, thermal shrinkage coefficient, and damping factor. Our computational findings establish that these parameters exert a modulatory impact on the rotation amplitude and period. This research enhances the understanding of self-excited motions and offers promising avenues for applications in energy harvesting, monitoring, soft robotics, medical devices, and micro- and nano-devices.
Collapse
Affiliation(s)
- Zongsong Yuan
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Y.); (G.Q.); (Y.D.)
| | - Junxiu Liu
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Y.); (G.Q.); (Y.D.)
- Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Guqian Qian
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Y.); (G.Q.); (Y.D.)
| | - Yuntong Dai
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Y.); (G.Q.); (Y.D.)
| | - Kai Li
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Y.); (G.Q.); (Y.D.)
- Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
18
|
Li K, Chen J, Hu H, Wu H, Dai Y, Yu Y. A Light-Powered Liquid Crystal Elastomer Roller. Polymers (Basel) 2023; 15:4221. [PMID: 37959899 PMCID: PMC10650120 DOI: 10.3390/polym15214221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Achieving and controlling the desired movements of active machines is generally accomplished through precise control of artificial muscles in a distributed and serialized manner, which is a significant challenge. The emerging motion control strategy based on self-oscillation in active machines has unique advantages, including directly harvesting energy from constant ambient light, and it has no need for complex controllers. Inspired by the roller, we have innovatively developed a self-rolling roller that consists of a roller and a liquid crystal elastomer (LCE) fiber. By utilizing a well-established dynamic LCE model and subjecting it to constant illumination, we have investigated the dynamic behavior of the self-rolling roller. Based on numerical calculations, it has been discovered that the roller, when subjected to steady illumination, exhibits two distinct motion regimes: the static regime and the self-rolling regime. The self-rolling regime, characterized by continuous periodic rolling, is sustained by the interaction between light energy and damping dissipation. The continuous periodic rolling observed in the self-rolling regime is maintained through the interplay between the dissipation of damping and the absorption of light energy. In the static state, the rolling angle of the roller begins to decrease rapidly and then converges to zero. Detailed investigations have been conducted to determine the critical conditions required to initiate self-rolling, as well as the essential system parameters that influence its frequency and amplitude. The proposed self-rolling roller has superiorities in its simple structure, light weight, alternative to manual labor, and speediness. This advancement is expected to inspire greater design diversity in micromachines, soft robotics, energy harvesters, and similar areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (K.L.); (J.C.); (H.H.); (H.W.); (Y.D.)
| |
Collapse
|
19
|
Mezzasalma SA, Kruse J, Merkens S, Lopez E, Seifert A, Morandotti R, Grzelczak M. Light-Driven Self-Oscillation of Thermoplasmonic Nanocolloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302987. [PMID: 37343949 DOI: 10.1002/adma.202302987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Self-oscillation-the periodic change of a system under a non-periodic stimulus-is vital for creating low-maintenance autonomous devices in soft robotics technologies. Soft composites of macroscopic dimensions are often doped with plasmonic nanoparticles to enhance energy dissipation and generate periodic response. However, while it is still unknown whether a dispersion of photonic nanocrystals may respond to light as a soft actuator, a dynamic analysis of nanocolloids self-oscillating in a liquid is also lacking. This study presents a new self-oscillator model for illuminated colloidal systems. It predicts that the surface temperature of thermoplasmonic nanoparticles and the number density of their clusters jointly oscillate at frequencies ranging from infrasonic to acoustic values. New experiments with spontaneously clustering gold nanorods, where the photothermal effect alters the interplay of light (stimulus) with the disperse system on a macroscopic scale, strongly support the theory. These findings enlarge the current view on self-oscillation phenomena and anticipate the colloidal state of matter to be a suitable host for accommodating light-propelled machineries. In broad terms, a complex system behavior is observed, which goes from periodic solutions (Hopf-Poincaré-Andronov bifurcation) to a new dynamic attractor driven by nanoparticle interactions, linking thermoplasmonics to nonlinearity and chaos.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Laboratory of Optics and Optical Thin Films, Materials Physics Division, Ruđer Bošković Institute, Bijeniška cesta 54, Zagreb, 10000, Croatia
- LINXS - Institute for advanced Neutron and X-ray Science, Lund University, Ideon Building, Delta 5 Scheelevägen 19, 223 70, Lund, Sweden
| | - Joscha Kruse
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 5, Donostia-San Sebastián, 20018, Spain
| | - Stefan Merkens
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-Sebastián, 20018, Spain
| | - Eneko Lopez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-Sebastián, 20018, Spain
| | - Andreas Seifert
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Roberto Morandotti
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3X 1S2, Canada
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 5, Donostia-San Sebastián, 20018, Spain
| |
Collapse
|
20
|
Li K, Liu Y, Dai Y, Yu Y. Self-Vibration of a Liquid Crystal Elastomer Fiber-Cantilever System under Steady Illumination. Polymers (Basel) 2023; 15:3397. [PMID: 37631454 PMCID: PMC10458184 DOI: 10.3390/polym15163397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
A new type of self-oscillating system has been developed with the potential to expand its applications in fields such as biomedical engineering, advanced robotics, rescue operations, and military industries. This system is capable of sustaining its own motion by absorbing energy from the stable external environment without the need for an additional controller. The existing self-sustained oscillatory systems are relatively complex in structure and difficult to fabricate and control, thus limited in their implementation in practical and complex scenarios. In this paper, we creatively propose a novel light-powered liquid crystal elastomer (LCE) fiber-cantilever system that can perform self-sustained oscillation under steady illumination. Considering the well-established LCE dynamic model, beam theory, and deflection formula, the control equations for the self-oscillating system are derived to theoretically study the dynamics of self-vibration. The LCE fiber-cantilever system under steady illumination is found to exhibit two motion regimes, namely, the static and self-vibration regimes. The positive work done by the tension of the light-powered LCE fiber provides some compensation against the structural resistance from cantilever and the air damping. In addition, the influences of system parameters on self-vibration amplitude and frequency are also studied. The newly constructed light-powered LCE fiber-cantilever system in this paper has a simple structure, easy assembly/disassembly, easy preparation, and strong expandability as a one-dimensional fiber-based system. It is expected to meet the application requirements of practical complex scenarios and has important application value in fields such as autonomous robots, energy harvesters, autonomous separators, sensors, mechanical logic devices, and biomimetic design.
Collapse
Affiliation(s)
| | | | | | - Yong Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
21
|
Li K, Wu H, Zhang B, Dai Y, Yu Y. Heat-Driven Synchronization in Coupled Liquid Crystal Elastomer Spring Self-Oscillators. Polymers (Basel) 2023; 15:3349. [PMID: 37631406 PMCID: PMC10458843 DOI: 10.3390/polym15163349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Self-oscillating coupled machines are capable of absorbing energy from the external environment to maintain their own motion and have the advantages of autonomy and portability, which also contribute to the exploration of the field of synchronization and clustering. Based on a thermally responsive liquid crystal elastomer (LCE) spring self-oscillator in a linear temperature field, this paper constructs a coupling and synchronization model of two self-oscillators connected by springs. Based on the existing dynamic LCE model, this paper theoretically reveals the self-oscillation mechanism and synchronization mechanism of two self-oscillators. The results show that adjusting the initial conditions and system parameters causes the coupled system to exhibit two synchronization modes: in-phase mode and anti-phase mode. The work conducted by the driving force compensates for the damping dissipation of the system, thus maintaining self-oscillation. The phase diagrams of different system parameters are drawn to illuminate the self-oscillation and synchronization mechanism. For weak interaction, changing the initial conditions may obtain the modes of in-phase and anti-phase. Under conditions of strong interactions, the system consistently exhibits an in-phase mode. Furthermore, an investigation is conducted on the influence of system parameters, such as the LCE elastic coefficient and spring elastic coefficient, on the amplitudes and frequencies of the two synchronization modes. This study aims to enhance the understanding of self-oscillator synchronization and its potential applications in areas such as energy harvesting, power generation, detection, soft robotics, medical devices and micro/nanodevices.
Collapse
Affiliation(s)
| | | | | | | | - Yong Yu
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
22
|
Ge D, Dai Y, Li K. Self-Oscillating Liquid Crystal Elastomer Helical Spring Oscillator with Combined Tension and Torsion. Polymers (Basel) 2023; 15:3294. [PMID: 37571189 PMCID: PMC10422366 DOI: 10.3390/polym15153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Self-oscillation is the autonomous maintenance of continuous periodic motion through energy absorption from non-periodic external stimuli, making it particularly attractive for fabricating soft robots, energy-absorbing devices, mass transport devices, and so on. Inspired by the self-oscillating system that presents high degrees of freedom and diverse complex oscillatory motions, we created a self-oscillating helical spring oscillator with combined tension and torsion under steady illumination, among which a mass block and a liquid crystal elastomer (LCE) helical spring made with LCE wire are included. Considering the well-established helical spring model and the dynamic LCE model, a nonlinear dynamic model of the LCE helical spring oscillator under steady illumination is proposed. From numerical calculation, the helical spring oscillator upon exposure to steady illumination possesses two motion regimes, which are the static regime and the self-tension-torsion regime. Contraction of the LCE wire under illumination is necessary to generate the self-tension-torsion of the helical spring oscillator, with its continuous periodic motion being maintained by the mutual balance between light energy input and damping dissipation. Additionally, the critical conditions for triggering the self-tension-torsion, as well as the vital system parameters affecting its frequencies and amplitudes of the translation and the rotation, were investigated in detail. This self-tension-torsion helical spring oscillator is unique in its customizable mechanical properties via its structural design, small material strain but large structural displacement, and ease of manufacture. We envision a future of novel designs for soft robotics, energy harvesters, active machinery, and so on.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230001, China
| | - Yuntong Dai
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
| |
Collapse
|
23
|
Liu J, Yuan Z, Zhao J, Dai Y, Li K. Self-Sustained Oscillation of Electrothermally Responsive Liquid Crystal Elastomer Film in Steady-State Circuits. Polymers (Basel) 2023; 15:2814. [PMID: 37447460 DOI: 10.3390/polym15132814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Self-excited oscillations have the advantages of absorbing energy from a stable environment and Self-control; therefore, Self-excited motion patterns have broader applications in micro devices, autonomous robots, sensors and energy-generating devices. In this paper, a Self-sustained curling liquid crystal elastomer (LCE) film-mass system is proposed on the basis of electrothermally responsive materials, which can realize Self-oscillation under a steady-state current. Based on the contact model and dynamic LCE model, a nonlinear dynamics model of LCE film in steady-state circuits is developed and numerical calculations are carried out using the Runge-Kutta method. Through numerical calculations, it is demonstrated that LCE film-mass systems have two motion patterns in steady-state circuits: namely, a Self-oscillation pattern and a stationary pattern. Self-sustained curling of LCE film originates from the fact that the energy absorbed by the system exceeds the energy dissipated due to the damping effect. In addition, the critical conditions for triggering Self-oscillation and the effects of several key dimensionless system parameters on the amplitude and period of Self-oscillation are investigated in detail. Calculation results show that the height of electrolyte solution, gravitational acceleration, elastic modulus of LCE film, limit temperature, curvature coefficient, thermal shrinkage coefficient and damping factor all have a modulating effect on the amplitude and period of Self-oscillation. This research may deepen the understanding of Self-excited oscillation, with promising applications in energy harvesting, power generation, monitoring, soft robotics, medical devices, and micro and nano devices.
Collapse
Affiliation(s)
- Junxiu Liu
- Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Zongsong Yuan
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Junjie Zhao
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yuntong Dai
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
24
|
Zhao Y, Li Q, Liu Z, Alsaid Y, Shi P, Khalid Jawed M, He X. Sunlight-powered self-excited oscillators for sustainable autonomous soft robotics. Sci Robot 2023; 8:eadf4753. [PMID: 37075101 DOI: 10.1126/scirobotics.adf4753] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
As the field of soft robotics advances, full autonomy becomes highly sought after, especially if robot motion can be powered by environmental energy. This would present a self-sustained approach in terms of both energy supply and motion control. Now, autonomous movement can be realized by leveraging out-of-equilibrium oscillatory motion of stimuli-responsive polymers under a constant light source. It would be more advantageous if environmental energy could be scavenged to power robots. However, generating oscillation becomes challenging under the limited power density of available environmental energy sources. Here, we developed fully autonomous soft robots with self-sustainability based on self-excited oscillation. Aided by modeling, we have successfully reduced the required input power density to around one-Sun level through a liquid crystal elastomer (LCE)-based bilayer structure. The autonomous motion of the low-intensity LCE/elastomer bilayer oscillator "LiLBot" under low energy supply was achieved by high photothermal conversion, low modulus, and high material responsiveness simultaneously. The LiLBot features tunable peak-to-peak amplitudes from 4 to 72 degrees and frequencies from 0.3 to 11 hertz. The oscillation approach offers a strategy for designing autonomous, untethered, and sustainable small-scale soft robots, such as a sailboat, walker, roller, and synchronized flapping wings.
Collapse
Affiliation(s)
- Yusen Zhao
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Qiaofeng Li
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Zixiao Liu
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Yousif Alsaid
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Pengju Shi
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mohammad Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Ximin He
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
- California Nanosystems Institute, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Zhang Z, Long Y, Chen G, Wu Q, Wang H, Jiang H. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. SCIENCE ADVANCES 2023; 9:eadg1203. [PMID: 37043577 PMCID: PMC10096572 DOI: 10.1126/sciadv.adg1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Soft structures and actuation allow robots, conventionally consisting of rigid components, to perform more compliant, adaptive interactions similar to living creatures. Although numerous functions of these types of actuators have been demonstrated in the literature, their hyperelastic designs generally suffer from limited workspaces and load-carrying capabilities primarily due to their structural stretchability factor. Here, we describe a series of pneumatic actuators based on soft but less stretchable fabric that can simultaneously perform tunable workspace and bear a high payload. The motion mode of the actuator is programmable, combinable, and predictable and is informed by rapid response to low input pressure. A robotic gripper using three fabric actuators is also presented. The gripper demonstrates a grasping force of over 150 N and a grasping range from 70 to 350 millimeters. The design concept and comprehensive guidelines presented would provide design and analysis foundations for applying less stretchable yet soft materials in soft robots to further enhance their practicality.
Collapse
Affiliation(s)
- Zhuang Zhang
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yongzhou Long
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genliang Chen
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qichen Wu
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Wang
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
26
|
Hou W, Wang J, Lv JA. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211800. [PMID: 36812485 DOI: 10.1002/adma.202211800] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Leveraging liquid crystal elastomers (LCEs) to realize scalable fabrication of high-performing fibrous artificial muscles is of particular interest because these active soft materials can provide large, reversible, programmable deformations upon environmental stimuli. High-performing fibrous LCEs require the used processing technology to enable shaping LCEs into micro-scale fine fibers as thin as possible while achieving macroscopic LC orientation, which however remains a daunting challenge. Here, a bioinspired spinning technology is reported that allows for continuous, high-speed production (fabrication speed up to 8400 m h-1 ) of thin and aligned LCE microfibers combined with rapid deformation (actuation strain rate up to 810% s-1 ), powerful actuation (actuation stress up to 5.3 MPa), high response frequency (50 Hz), and long cycle life (250 000 cycles without obvious fatigue). Inspired by liquid crystalline spinning of spiders that takes advantage of multiple drawdowns to thin and align their dragline silks, internal drawdown via tapered-wall-induced-shearing and external drawdown via mechanical stretching are employed to shape LCEs into long, thin, aligned microfibers with the desirable actuation performances, which few processing technologies can achieve. This bioinspired processing technology capable of scalable production of high-performing fibrous LCEs would benefit the development of smart fabrics, intelligent wearable devices, humanoid robotics, and other areas.
Collapse
Affiliation(s)
- Wenhao Hou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
27
|
Liu J, Zhao J, Wu H, Dai Y, Li K. Self-Oscillating Curling of a Liquid Crystal Elastomer Beam under Steady Light. Polymers (Basel) 2023; 15:polym15020344. [PMID: 36679225 PMCID: PMC9863816 DOI: 10.3390/polym15020344] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Self-oscillation absorbs energy from a steady environment to maintain its own continuous motion, eliminating the need to carry a power supply and controller, which will make the system more lightweight and promising for applications in energy harvesting, soft robotics, and microdevices. In this paper, we present a self-oscillating curling liquid crystal elastomer (LCE) beam-mass system, which is placed on a table and can self-oscillate under steady light. Unlike other self-sustaining systems, the contact surface of the LCE beam with the tabletop exhibits a continuous change in size during self-sustaining curling, resulting in a dynamic boundary problem. Based on the dynamic LCE model, we establish a nonlinear dynamic model of the self-oscillating curling LCE beam considering the dynamic boundary conditions, and numerically calculate its dynamic behavior using the Runge-Kutta method. The existence of two motion patterns in the LCE beam-mass system under steady light are proven by numerical calculation, namely self-curling pattern and stationary pattern. When the energy input to the system exceeds the energy dissipated by air damping, the LCE beam undergoes self-oscillating curling. Furthermore, we investigate the effects of different dimensionless parameters on the critical conditions, the amplitude and the period of the self-curling of LCE beam. Results demonstrate that the light source height, curvature coefficient, light intensity, elastic modulus, damping factor, and gravitational acceleration can modulate the self-curling amplitude and period. The self-curling LCE beam system proposed in this study can be applied to autonomous robots, energy harvesters, and micro-instruments.
Collapse
Affiliation(s)
- Junxiu Liu
- Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Junjie Zhao
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Haiyang Wu
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yuntong Dai
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
28
|
Ge D, Dai Y, Li K. Self-Sustained Euler Buckling of an Optically Responsive Rod with Different Boundary Constraints. Polymers (Basel) 2023; 15:polym15020316. [PMID: 36679197 PMCID: PMC9862129 DOI: 10.3390/polym15020316] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Self-sustained oscillations can directly absorb energy from the constant environment to maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon, the Euler compression rod can rapidly release elastic strain energy and undergo large displacement during buckling. In addition, its boundary configuration is usually easy to be modulated. In this paper, we develop a self-sustained Euler buckling system based on optically responsive liquid crystal elastomer (LCE) rod with different boundary constraints. The buckling of LCE rod results from the light-induced expansion and compressive force, and the self-buckling is maintained by the energy competition between the damping dissipation and the net work done by the effective elastic force. Based on the dynamic LCE model, the governing equations for dynamic Euler buckling of the LCE rod is formulated, and the approximate admissible trigonometric functions and Runge-Kutta method are used to solve the dynamic Euler buckling. Under different illumination parameters, there exists two motion modes of the Euler rod: the static mode and the self-buckling mode, including alternating and unilateral self-buckling modes. The triggering conditions, frequency, and amplitude of the self-sustained Euler buckling can be modulated by several system parameters and boundary constraints. Results indicate that strengthening the boundary constraint can increase the frequency and reduce the amplitude. It is anticipated that this system may open new avenues for energy harvesters, signal sensors, mechano-logistic devices, and autonomous robots.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230001, China
| | - Yuntong Dai
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
29
|
Zhu F, Du C, Dai Y, Li K. Thermally Driven Continuous Rolling of a Thick-Walled Cylindrical Rod. MICROMACHINES 2022; 13:2035. [PMID: 36422464 PMCID: PMC9698442 DOI: 10.3390/mi13112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Self-sustained motion can take advantage of direct energy extraction from a steady external environment to maintain its own motion, and has potential applications in energy harvesting, robotic motion, and transportation. Recent experiments have found that a thermally responsive rod can perform self-sustained rolling on a flat hot plate with an angular velocity determined by the competition between the thermal driving moment and the friction moment. A rod with a hollow cross section tends to greatly reduce the frictional resistance, while promising improvements in thermal conversion efficiency. In this paper, through deriving the equilibrium equations for steady-state self-sustained rolling of the thick-walled cylindrical rod, estimating the temperature field on the rod cross-section, and solving the analytical solution of the thermally induced driving moment, the dynamic behavior of the thermally driven self-sustained rolling of the thick-walled cylindrical rod is theoretically investigated. In addition, we investigate in detail the effects of radius ratio, heat transfer coefficient, heat flux, contact angle, thermal expansion coefficient, and sliding friction coefficient on the angular velocity of the self-sustained rolling of the thick-walled cylindrical rod to obtain the optimal ratio of internal and external radius. The results are instructive for the application of thick-walled cylindrical rods in the fields of waste heat harvesters and soft robotics.
Collapse
|
30
|
Tu CM, Chao CH, Hung SC, Ou SY, Zhuang CH, Liu CY. Bio-inspired thermal responsible liquid crystal actuators showing shape and color variations simultaneously. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Kim DS, Lee YJ, Wang Y, Park J, Winey KI, Yang S. Self-Folding Liquid Crystal Network Filaments Patterned with Vertically Aligned Mesogens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50171-50179. [PMID: 36282177 DOI: 10.1021/acsami.2c14947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fibrous soft actuators with high molecular anisotropy are of interest for shape morphing from 1D to 2D and 3D in response to external stimuli with high actuation efficiency. Nevertheless, few have fabricated fibrous actuators with controlled molecular orientations and stiffness. Here, we fabricate filaments from liquid crystal networks (LCNs) with segmental crosslinking density and gradient porosity from a mixture of di-acrylate mesogenic monomers and small-molecule nematic or smectic liquid crystals (LCs) filled in a capillary. During photopolymerization, phase separation between the small-molecule LCs and LCN occurs, making one side of the filament considerably denser than the other side. To direct its folding mode (bending or twisting), we control the alignment of LC molecules within the capillary, either along or perpendicular to the filament long axis. We show that the direction of UV exposure can determine the direction of phase separation, which in turn direct the deformation of the filament after removal of the small-molecule LCs. We find that the vertical alignment of LCs within the filament is essential to efficiently direct bending deformation. By photopatterning the filament with segmental crosslinking density, we can induce a reversible folding/unfolding into 2D and 3D geometries triggered by deswelling/swelling in an organic solvent. Moreover, by taking advantage of the large elastic modulus of LCNs and large contrast of the modulus before and after swelling, we show that the self-folded LCP filament could act as a strong gripper.
Collapse
Affiliation(s)
- Dae Seok Kim
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, South Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
Wireless Autonomous Soft Crawlers for Adjustable Climbing Actuation. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Oscillating light engine realized by photothermal solvent evaporation. Nat Commun 2022; 13:5621. [PMID: 36153322 PMCID: PMC9509359 DOI: 10.1038/s41467-022-33374-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Continuous mechanical work output can be generated by using combustion engines and electric motors, as well as actuators, through on/off control via external stimuli. Solar energy has been used to generate electricity and heat in human daily life; however, the direct conversion of solar energy to continuous mechanical work has not been realized. In this work, a solar engine is developed using an oscillating actuator, which is realized through an alternating volume decrease of each side of a polypropylene/carbon black polymer film induced by photothermal-derived solvent evaporation. The anisotropic solvent evaporation and fast gradient diffusion in the polymer film sustains oscillating bending actuation under the illumination of divergent light. This light-driven oscillator shows excellent oscillation performance, excellent loading capability, and high energy conversion efficiency, and it can never stop with solvent supply. The oscillator can cyclically lift up a load and output work, exhibiting a maximum specific work of 30.9 × 10−5 J g−1 and a maximum specific power of 15.4 × 10−5 W g−1 under infrared light. This work can inspire the development of autonomous devices and provide a design strategy for solar engines. Developing an oscillating actuator that can directly convert solar energy into mechanical energy is highly desirable. Here, authors report a solvent-assisted light-driven oscillator by porous film that achieves excellent oscillating actuation performance and can even oscillate by carrying a load under light irradiation.
Collapse
|
34
|
Wang Q, Wu Z, Li J, Wei J, Guo J, Yin M. Spontaneous and Continuous Actuators Driven by Fluctuations in Ambient Humidity for Energy-Harvesting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38972-38980. [PMID: 35994317 DOI: 10.1021/acsami.2c11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-oscillating soft actuators that enable spontaneous and continuous motion under an external stimulus with no human intervention have attracted extensive attention due to the great value of the realization of more sustainable and low-power-consumption actuators. However, the achievement of such actuators that collect chemical energy from the fluctuations in ambient humidity is still a great challenge. Here, an actuator film based on spiropyran@agarose (SP@AG) that can spontaneously and continuously collect chemical energy from the fluctuations in ambient humidity is developed. It is noteworthy that the SP@AG film has excellent self-oscillation behavior and a high oscillation amplitude (184°) under the size (40 × 8 mm) or load of 116 mg (about 5.2 times of the film weight). Moreover, on the basis of the self-oscillating motion, an energy conversion device is constructed by integrating the soft actuator with a piezoelectric PVDF film, which can spontaneously and continuously generate an output voltage of about 30 mV. Finally, a proof of concept for an "intelligent light-controllable window" that can open under humidity stimulus and change color under light is proposed herein. Overall, the self-oscillating actuator driven by fluctuations in ambient humidity shows immense potential in response to the atmospheric humidity of day-night rhythm and humid-energy-harvesting devices.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Zhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Jie Wei
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| |
Collapse
|
35
|
Zhou L, Yu W, Li K. Dynamical Behaviors of a Translating Liquid Crystal Elastomer Fiber in a Linear Temperature Field. Polymers (Basel) 2022; 14:polym14153185. [PMID: 35956704 PMCID: PMC9371172 DOI: 10.3390/polym14153185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Liquid crystal elastomer (LCE) fiber with a fixed end in an inhomogeneous temperature field is capable of self-oscillating because of coupling between heat transfer and deformation, and the dynamics of a translating LCE fiber in an inhomogeneous temperature field are worth investigating to widen its applications. In this paper, we propose a theoretic constitutive model and the asymptotic relationship of a LCE fiber translating in a linear temperature field and investigate the dynamical behaviors of a corresponding fiber-mass system. In the three cases of the frame at rest, uniform, and accelerating translation, the fiber-mass system can still self-oscillate, which is determined by the combination of the heat-transfer characteristic time, the temperature gradient, and the thermal expansion coefficient. The self-oscillation is maintained by the energy input from the ambient linear temperature field to compensate for damping dissipation. Meanwhile, the amplitude and frequency of the self-oscillation are not affected by the translating frame for the three cases. Compared with the cases of the frame at rest, the translating frame can change the equilibrium position of the self-oscillation. The results are expected to provide some useful recommendations for the design and motion control in the fields of micro-robots, energy harvesters, and clinical surgical scenarios.
Collapse
Affiliation(s)
- Lin Zhou
- School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Wangyang Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
36
|
Self-Jumping of a Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers (Basel) 2022; 14:polym14142770. [PMID: 35890544 PMCID: PMC9319439 DOI: 10.3390/polym14142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Self-oscillation capable of maintaining periodic motion upon constant stimulus has potential applications in the fields of autonomous robotics, energy-generation devices, mechano-logistic devices, sensors, and so on. Inspired by the active jumping of kangaroos and frogs in nature, we proposed a self-jumping liquid crystal elastomer (LCE) balloon under steady illumination. Based on the balloon contact model and dynamic LCE model, a nonlinear dynamic model of a self-jumping LCE balloon under steady illumination was formulated and numerically calculated by the Runge–Kutta method. The results indicated that there exist two typical motion regimes for LCE balloon under steady illumination: the static regime and the self-jumping regime. The self-jumping of LCE balloon originates from its expansion during contact with a rigid surface, and the self-jumping can be maintained by absorbing light energy to compensate for the damping dissipation. In addition, the critical conditions for triggering self-jumping and the effects of several key system parameters on its frequency and amplitude were investigated in detail. The self-jumping LCE hollow balloon with larger internal space has greater potential to carry goods or equipment, and may open a new insight into the development of mobile robotics, soft robotics, sensors, controlled drug delivery, and other miniature device applications.
Collapse
|
37
|
Zhao T, Fan Y, Lv JA. Photomorphogenesis of Diverse Autonomous Traveling Waves in a Monolithic Soft Artificial Muscle. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23839-23849. [PMID: 35536103 DOI: 10.1021/acsami.2c02000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological organisms (e.g., batoid fish, etc.) possess the remarkable ability to morph their soft, sheet-like tissues into wavy morphologies and self-oscillate to make traveling waves, enabling myriad functionalities in propulsion, locomotion, and transportation. In contrast, current manmade soft robotic systems cannot adaptively make wavy morphologies and concurrently achieve wave propagation because the controllable actuation of desired 3D morphologies in entirely soft materials is a formidable challenge due to their continuously deformable bodies that own a large number of actuable degrees of freedom. Here, we report a bioinspired robotic system that not only allows photomorphogenesis of on-demand 3D wavy morphologies but also enables autonomous wave propagation in a monolithic soft artificial muscle (MSAM). This system employs a conceptually different design strategy based on a combination of two principles derived from plant morphogenesis and the undulatory motion of ray fish. The former offers a shaping principle based on differential growth that enables morphing MSAM into target wavy configurations, while the latter inspires a driving principle that induces autonomous propagation of shaped waves by rhythmic motor patterns. This waving system can be used as adaptive "soft engines/motors" that enable directional locomotion, intelligent transportation of cargo, and autonomous propulsion. It even produces programmable, complex artificial peristaltic waves. Our design allows controllable formation of 3D wavy morphologies and autonomous wave behaviors in the soft robotic system that would be useful for broad applications in adaptive, self-regulated mechanical systems for advanced robotics, soft machines, and energy harvest.
Collapse
Affiliation(s)
- Tonghui Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yangyang Fan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
38
|
Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109355. [PMID: 35083786 DOI: 10.1002/adma.202109355] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Indexed: 05/02/2023]
Abstract
The seamless integration of emerging triboelectric nanogenerator (TENG) technology with traditional wearable textile materials has given birth to the next-generation smart textiles, i.e., textile TENGs, which will play a vital role in the era of Internet of Things and artificial intelligences. However, low output power and inferior sensing ability have largely limited the development of textile TENGs. Among various approaches to improve the output and sensing performance, such as material modification, structural design, and environmental management, a 3D fabric structural scheme is a facile, efficient, controllable, and scalable strategy to increase the effective contact area for contact electrification of textile TENGs without cumbersome material processing and service area restrictions. Herein, the recent advances of the current reported textile TENGs with 3D fabric structures are comprehensively summarized and systematically analyzed in order to clarify their superiorities over 1D fiber and 2D fabric structures in terms of power output and pressure sensing. The forward-looking integration abilities of the 3D fabrics are also discussed at the end. It is believed that the overview and analysis of textile TENGs with distinctive 3D fabric structures will contribute to the development and realization of high-power output micro/nanowearable power sources and high-quality self-powered wearable sensors.
Collapse
Affiliation(s)
- Kai Dong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Renwei Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuan Ning
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yihan Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang, 325024, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
39
|
A Light-Powered Liquid Crystal Elastomer Spring Oscillator with Self-Shading Coatings. Polymers (Basel) 2022; 14:polym14081525. [PMID: 35458275 PMCID: PMC9028186 DOI: 10.3390/polym14081525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The self-oscillating systems based on stimuli-responsive materials, without complex controllers and additional batteries, have great application prospects in the fields of intelligent machines, soft robotics, and light-powered motors. Recently, the periodic oscillation of an LCE fiber with a mass block under periodic illumination was reported. This system requires periodic illumination, which limits the application of self-sustained systems. In this paper, we creatively proposed a light-powered liquid crystal elastomer (LCE) spring oscillator with self-shading coatings, which can self-oscillate continuously under steady illumination. On the basis of the well-established dynamic LCE model, the governing equation of the LCE spring oscillator is formulated, and the self-excited oscillation is studied theoretically. The numerical calculations show that the LCE spring oscillator has two motion modes, static mode and oscillation mode, and the self-oscillation arises from the coupling between the light-driven deformation and its movement. Furthermore, the contraction coefficient, damping coefficient, painting stretch, light intensity, spring constant, and gravitational acceleration all affect the self-excited oscillation of the spring oscillator, and each parameter is a critical value for triggering self-excited oscillation. This work will provide effective help in designing new optically responsive structures for engineering applications.
Collapse
|
40
|
Wang J, Yang B, Yu M, Yu H. Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15632-15640. [PMID: 35333059 DOI: 10.1021/acsami.2c00680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Light-activated self-oscillators have drawn enormous attention for their potential applications in mobile machines, energy harvesting, signal modulation, etc. Herein, we report one graphene oxide (GO)/liquid crystalline network (LCN) actuator that presents a unique light-activated oscillation with amplitude and frequency superposition. The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. Owing to the asymmetric contraction/expansion, changing the cutting direction gives rise to notably different actuation behaviors for GO/LCN composite films. Moreover, it twists a little during the deflection process as a result of experimental error during the cutting process, which may cause the strip to be cut inaccurately. When the composite film is embedded in a self-shadowing system, it produces an unconventional hybrid oscillation mode upon near-infrared light irradiation, i.e., bending and twisting oscillation coupled. Furthermore, when the aspect ratio of the film decreases, the twisting mode is suppressed and the actuator changes from a coupled mode to a single bending mode. The proposed strategy may extend the application of GO/LCN composite materials and enrich light-activated self-oscillating behaviors.
Collapse
Affiliation(s)
- Jianchuang Wang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Bowen Yang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
41
|
Hu J, Yu M, Wang M, Choy KL, Yu H. Design, Regulation, and Applications of Soft Actuators Based on Liquid-Crystalline Polymers and Their Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12951-12963. [PMID: 35259869 DOI: 10.1021/acsami.1c25103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft actuators designed from stimuli-responsive polymers often possess a certain amount of bionic functionality because of their versatile deformation. Liquid-crystalline polymers (LCPs) and their composites are among the most fascinating materials for soft actuators due to their great advantages of flexible structure design and easy regulation. In this Spotlight on Applications, we mainly focus on our group's latest research progress in soft actuators based on LCPs and their composites. Some representative research findings from other groups are also included for a better understanding of this research field. Above all, the essential principles for the responsive behavior and reconfigurable performance of the soft actuators are discussed, from the perspective of material morphology and structure design. Further on, we analyze recent work on how to precisely regulate the responsive modes and quantify the operating parameters of soft actuators. Finally, some application examples are given to demonstrate well-designed soft actuators with different functions under varied working environments, which is expected to provide inspiration for future research in developing more intelligent and multifunctional integrated soft actuators.
Collapse
Affiliation(s)
- Jing Hu
- College of Mechanical Engineering, Shenyang University, Shenyang 110044, People's Republic of China
- Institute of New Structural Materials, School of Materials Science and Engineering, and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mingqing Wang
- Institute for Materials Discovery, University College of London, London WC1E 7JE, United Kingdom
| | - Kwang-Leong Choy
- Institute for Materials Discovery, University College of London, London WC1E 7JE, United Kingdom
| | - Haifeng Yu
- Institute of New Structural Materials, School of Materials Science and Engineering, and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
42
|
Thermally Driven Self-Rotation of a Hollow Torus Motor. MICROMACHINES 2022; 13:mi13030434. [PMID: 35334726 PMCID: PMC8949297 DOI: 10.3390/mi13030434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Self-oscillating systems based on thermally responsive polymer materials can realize heat-mechanical transduction in a steady ambient temperature field and have huge application potential in the field of micro-active machines, micro-robotics and energy harvesters. Recently, experiments have found that a torus on a hot surface can rotate autonomously and continuously, and its rotating velocity is determined by the competition between the thermally induced driving moment and the sliding friction moment. In this article, we theoretically study the self-sustained rotation of a hollow torus on a hot surface and explore the effect of the radius ratio on its rotational angular velocity and energy efficiency. By establishing a theoretical model of heat-driven self-sustained rotation, its analytical driving moment is derived, and the equilibrium equation for its steady rotation is obtained. Numerical calculation shows that with the increase in the radius ratio, the angular velocity of its rotation monotonously increases, while the energy efficiency of the self-rotating hollow torus motor first increases and then decreases. In addition, the effects of several system parameters on the angular velocity of it are also extensively investigated. The results in this paper have a guiding role in the application of hollow torus motor in the fields of micro-active machines, thermally driven motors and waste heat harvesters.
Collapse
|
43
|
Self-Sustained Collective Motion of Two Joint Liquid Crystal Elastomer Spring Oscillator Powered by Steady Illumination. MICROMACHINES 2022; 13:mi13020271. [PMID: 35208395 PMCID: PMC8876739 DOI: 10.3390/mi13020271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
For complex micro-active machines or micro-robotics, it is crucial to clarify the coupling and collective motion of their multiple self-oscillators. In this article, we construct two joint liquid crystal elastomer (LCE) spring oscillators connected by a spring and theoretically investigate their collective motion based on a well-established dynamic LCE model. The numerical calculations show that the coupled system has three steady synchronization modes: in-phase mode, anti-phase mode, and non-phase-locked mode, and the in-phase mode is more easily achieved than the anti-phase mode and the non-phase-locked mode. Meanwhile, the self-excited oscillation mechanism is elucidated by the competition between network that is achieved by the driving force and the damping dissipation. Furthermore, the phase diagram of three steady synchronization modes under different coupling stiffness and different initial states is given. The effects of several key physical quantities on the amplitude and frequency of the three synchronization modes are studied in detail, and the equivalent systems of in-phase mode and anti-phase mode are proposed. The study of the coupled LCE spring oscillators will deepen people’s understanding of collective motion and has potential applications in the fields of micro-active machines and micro-robots with multiple coupled self-oscillators.
Collapse
|
44
|
Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting. MATERIALS 2021; 14:ma14216688. [PMID: 34772214 PMCID: PMC8587320 DOI: 10.3390/ma14216688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Linear displacement is used for positioning and scanning, e.g., in robotics at different scales or in scientific instrumentation. Most linear motors are either powered by rotary drives or are driven directly by pressure, electromagnetic forces or a shape change in a medium, such as piezoelectrics or shape-memory materials. Here, we present a centimeter-scale light-powered linear inchworm motor, driven by two liquid crystal elastomer (LCE) accordion-like actuators. The rubbing overwriting technique was used to fabricate the LCE actuators, made of elastomer film with patterned alignment. In the linear motor, a scanned green laser beam induces a sequence of travelling deformations in a pair of actuators that move a gripper, which couples to a shaft via friction moving it with an average speed in the order of millimeters per second. The prototype linear motor demonstrates how LCE light-driven actuators with a limited stroke can be used to drive more complex mechanisms, where large displacements can be achieved, defined only by the technical constrains (the shaft length in our case), and not by the limited strain of the material. Inchworm motors driven by LCE actuators may be scaled down to sub-millimeter size and can be used in applications where remote control and power supply with light, either delivered in free space beams or via fibers, is an advantage.
Collapse
|
45
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light‐Driven Self‐Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Bin Zi
- School of Mechanical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| |
Collapse
|
46
|
Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, Zi B, Bao N, Chen W, Wu Y. Light-Driven Self-Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angew Chem Int Ed Engl 2021; 60:20511-20517. [PMID: 34272927 DOI: 10.1002/anie.202108058] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Developing self-oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently-bridged black phosphorus-carbon nanotubes heterostructure with self-oscillation and phototactic locomotion under constant light irradiation is designed. Owing to the good photothermal effect of black phosphorus heterostructure and thermal deformation of the actuator components, the new actuator assembled by heterostructured black phosphorus, polymer and paper produces light-driven reversible deformation with fast and large response. By using this actuator as mechanical power and designing a robot configuration with self-feedback loop to generate self-oscillation, an inchworm-like actuator that can crawl autonomously towards the light source is constructed. Moreover, due to the anisotropy and tailorability of the actuator, an artificial crab robot that can simulate the sideways locomotion of crabs and simultaneously change color under light irradiation is also realized.
Collapse
Affiliation(s)
- Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qixiao Ji
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Majing Huang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chengchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Bin Zi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yucheng Wu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|