1
|
Mote N, Kubik S, Polacheck WJ, Baker BM, Trappmann B. A nanoporous hydrogel-based model to study chemokine gradient-driven angiogenesis under luminal flow. LAB ON A CHIP 2024; 24:4892-4906. [PMID: 39308400 DOI: 10.1039/d4lc00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The growth of new blood vessels through angiogenesis is a highly coordinated process, which is initiated by chemokine gradients that activate endothelial cells within a perfused parent vessel to sprout into the surrounding 3D tissue matrix. While both biochemical signals from pro-angiogenic factors, as well as mechanical cues originating from luminal fluid flow that exerts shear stress on the vessel wall, have individually been identified as major regulators of endothelial cell sprouting, it remains unclear whether and how both types of cues synergize. To fill this knowledge gap, here, we created a 3D biomimetic model of chemokine gradient-driven angiogenic sprouting, in which a micromolded tube inside a hydrogel matrix is seeded with endothelial cells and connected to a perfusion system to control fluid flow rates and resulting shear forces on the vessel wall. To allow for the formation of chemokine gradients despite the presence of luminal flow, a nanoporous synthetic hydrogel that supports angiogenesis but limits the interstitial flow proved crucial. Using this system, we find that luminal flow and resulting shear stress is a major regulator of the speed and morphogenesis of angiogenic sprouting, whose action is mediated through changes in vascular permeability.
Collapse
Affiliation(s)
- Nidhi Mote
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Sarah Kubik
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI, 48109 USA
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
| |
Collapse
|
2
|
Bulut S, Günther D, Bund M, Haats C, Bissing T, Bastard C, Wessling M, De Laporte L, Pich A. Cellular Architects at Work: Cells Building their Own Microgel Houses. Adv Healthc Mater 2024; 13:e2302957. [PMID: 37988182 DOI: 10.1002/adhm.202302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are investigated for their application as injectable 3D constructs in the field of regenerative medicine and tissue repair. While available MAP scaffolds provide a stable interlinked matrix of microgels for cell culture, the infiltration depth and space for cells to grow inside the scaffolds is pre-determined by the void fraction during the assembly. In the case of MAP scaffolds fabricated from interlinked spherical microgels, a cellularity gradient can be observed with the highest cell density on the scaffold surface. Additionally, the interlinked microgel network limits the ability of cells to remodel their environment, which contradicts native tissue dynamics. In this work, a cell-induced interlinking method for MAP scaffold formation is established, which avoids the necessity of chemical crosslinkers and pre-engineered pores to achieve micro- or macropores in these 3D frameworks. This method enables cells to self-organize with microgels into dynamic tissue constructs, which can be further controlled by altering the microgel properties, the cell/microgel ratio, and well shape. To form a cell-induced interlinked scaffold, the cells are mixed with dextran-based microgels and function as a glue between the microgels, resulting in a more homogenous cell distribution throughout the scaffold with efficient cell-cell interactions.
Collapse
Affiliation(s)
- Selin Bulut
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Daniel Günther
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Michelle Bund
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Christina Haats
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Thomas Bissing
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Department of Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| |
Collapse
|
3
|
Narasimhan BN, Fraley SI. Degradability tunes ECM stress relaxation and cellular mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605514. [PMID: 39131364 PMCID: PMC11312499 DOI: 10.1101/2024.07.28.605514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In native extracellular matrices (ECM), cells can use matrix metalloproteinases (MMPs) to degrade and remodel their surroundings. Likewise, synthetic matrices have been engineered to facilitate MMP-mediated cleavage that enables cell spreading, migration, and interactions. However, the intersection of matrix degradability and mechanical properties has not been fully considered. We hypothesized that immediate mechanical changes result from the action of MMPs on the ECM and that these changes are sensed by cells. Using atomic force microscopy (AFM) to measure cell-scale mechanical properties, we find that both fibrillar collagen and synthetic degradable matrices exhibit enhanced stress relaxation after MMP exposure. Cells respond to these relaxation differences by altering their spreading and focal adhesions. We demonstrate that stress relaxation can be tuned through the rational design of matrix degradability. These findings establish a fundamental link between matrix degradability and stress relaxation, which may impact a range of biological applications.
Collapse
Affiliation(s)
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, Rathod M, Biehl A, Aw WY, Freytes DO, Polacheck WJ. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Adv Healthc Mater 2024; 13:e2400192. [PMID: 38518808 PMCID: PMC11281875 DOI: 10.1002/adhm.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Grace Krohn
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Emily C Warren
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Alexandra Patton
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, 130 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| | - Mitesh Rathod
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Wen Yih Aw
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - William J Polacheck
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| |
Collapse
|
5
|
Nwokoye PN, Abilez OJ. Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids. Front Cardiovasc Med 2024; 11:1336910. [PMID: 38938652 PMCID: PMC11210405 DOI: 10.3389/fcvm.2024.1336910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024] Open
Abstract
Vascular pathologies are prevalent in a broad spectrum of diseases, necessitating a deeper understanding of vascular biology, particularly in overcoming the oxygen and nutrient diffusion limit in tissue constructs. The evolution of vascularized tissues signifies a convergence of multiple scientific disciplines, encompassing the differentiation of human pluripotent stem cells (hPSCs) into vascular cells, the development of advanced three-dimensional (3D) bioprinting techniques, and the refinement of bioinks. These technologies are instrumental in creating intricate vascular networks essential for tissue viability, especially in thick, complex constructs. This review provides broad perspectives on the past, current state, and advancements in key areas, including the differentiation of hPSCs into specific vascular lineages, the potential and challenges of 3D bioprinting methods, and the role of innovative bioinks mimicking the native extracellular matrix. We also explore the integration of biophysical cues in vascularized tissues in vitro, highlighting their importance in stimulating vessel maturation and functionality. In this review, we aim to synthesize these diverse yet interconnected domains, offering a broad, multidisciplinary perspective on tissue vascularization. Advancements in this field will help address the global organ shortage and transform patient care.
Collapse
Affiliation(s)
- Peter N. Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Oscar J. Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Division of Pediatric CT Surgery, Stanford University, Stanford, CA, United States
- Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, United States
- Bio-X Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Wang J, Yang X, Xu M, Liu H, Liu L, Tan Z. Distinct cellular microenvironment with cytotypic effects regulates orderly regeneration of vascular tissues. Mater Today Bio 2024; 26:101033. [PMID: 38533377 PMCID: PMC10963652 DOI: 10.1016/j.mtbio.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Regeneration of the architecturally complex blood vascular system requires precise temporal and spatial control of cell behaviours. Additional components must be integrated into the structure to achieve clinical success for in situ tissue engineering. Consequently, this study proposed a universal method for including any substrate type in vascular cell extracellular matrices (VCEM) via regulating selective adhesion to promote vascular tissue regeneration. The results uncovered that the VCEM worked as cell adhesion substrates, exhibited cell type specificity, and functioned as an address signal for recognition by vascular cells, which resulted in matching with the determined cells. The qPCR and immunofluorescence results revealed that a cell type-specific VCEM could be designed to promote or inhibit cell adhesion, consistenting with the expression patterns of eyes absent 3 (Eya3). In addition, a 3D vascular graft combined with VCEM which could recapitulate the vascular cell-like microenvironment was fabricated. The vascular graft revealed a prospective role for cellular microenvironment in the establishment of vascular cell distribution and tissue architecture, and potentiated the orderly regeneration and functional recovery of vascular tissues in vivo. The findings demonstrate that differential adhesion between cell types due to the cellular microenvironment is sufficient to drive the complex assembly of engineered blood vessel functional units, and underlies hierarchical organization during vascular regeneration.
Collapse
Affiliation(s)
- Jian Wang
- College of Biology, Hunan University, Changsha, 410082, China
- Institute of Shenzhen, Hunan University Shenzhen, 518000, China
| | - Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University), Shenzhen, 518028, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Hui Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University), Shenzhen, 518028, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, 410082, China
- Institute of Shenzhen, Hunan University Shenzhen, 518000, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| |
Collapse
|
8
|
Weiß MS, Trapani G, Long H, Trappmann B. Matrix Resistance Toward Proteolytic Cleavage Controls Contractility-Dependent Migration Modes During Angiogenic Sprouting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305947. [PMID: 38477409 PMCID: PMC11109655 DOI: 10.1002/advs.202305947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Tissue homeostasis and disease states rely on the formation of new blood vessels through angiogenic sprouting, which is tightly regulated by the properties of the surrounding extracellular matrix. While physical cues, such as matrix stiffness or degradability, have evolved as major regulators of cell function in tissue microenvironments, it remains unknown whether and how physical cues regulate endothelial cell migration during angiogenesis. To investigate this, a biomimetic model of angiogenic sprouting inside a tunable synthetic hydrogel is created. It is shown that endothelial cells sense the resistance of the surrounding matrix toward proteolytic cleavage and respond by adjusting their migration phenotype. The resistance cells encounter is impacted by the number of covalent matrix crosslinks, crosslink degradability, and the proteolytic activity of cells. When matrix resistance is high, cells switch from a collective to an actomyosin contractility-dependent single cellular migration mode. This switch in collectivity is accompanied by a major reorganization of the actin cytoskeleton, where stress fibers are no longer visible, and F-actin aggregates in large punctate clusters. Matrix resistance is identified as a previously unknown regulator of angiogenic sprouting and, thus, provides a mechanism by which the physical properties of the matrix impact cell migration modes through cytoskeletal remodeling.
Collapse
Affiliation(s)
- Martin S. Weiß
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Giuseppe Trapani
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Hongyan Long
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Britta Trappmann
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto‐Hahn‐Straße 644227DortmundGermany
| |
Collapse
|
9
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
10
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Kang TY, Bocci F, Nie Q, Onuchic JN, Levchenko A. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. eLife 2024; 12:RP89262. [PMID: 38376371 PMCID: PMC10942579 DOI: 10.7554/elife.89262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| |
Collapse
|
12
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
Affiliation(s)
- Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
13
|
Liu Y, Liu X, Zhang Y, Cao Y, Luo B, Wang Z, Pei R. Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization. Biomacromolecules 2023; 24:5977-5988. [PMID: 37939799 DOI: 10.1021/acs.biomac.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Two-dimensional (2D) cell culture methods dominate the current research. However, the inherent responsiveness of cells to their native three-dimensional (3D) microenvironment necessitates a paradigm shift toward the development of advanced hydrogels that faithfully mimic the intricacies of the extracellular matrix (ECM) and enable continuous cell-ECM interactions. To address the constraints of traditional static hydrogel networks that impede effective cell-matrix and cell-cell interactions, and to tackle the inherent stability issues associated with dynamically cross-linked hydrogels, which have become a pressing concern. Herein, we present an interpenetrating polymer network (IPN) hydrogel (HA/Alg-RGD hydrogel) that combines a physically cross-linked network between alginate and calcium ions (Alg-Ca2+) for the enhanced cell growth adaptability with a chemically cross-linked hyaluronic acid (HA) network to ensure macroscopic stability during cell culture. The incorporation of arginine-glycine-aspartic peptide modified alginate (Alg-RGD) further facilitates cell adhesion and improves the cell-hydrogel interaction. Notably, this IPN hydrogel demonstrates mechanical stability and enables cell spreading and growth within its structural framework. Leveraging the reversible characteristics of the ionically cross-linked Alg-Ca2+ network within IPN hydrogels, we demonstrate the feasibility of the gelatin sacrificial solution for 3D printing purposes within the hydrogel matrix. Subsequent UV-induced covalent cross-linking enables the fabrication of vascularized microfluidic channels within the resulting construct. Our results demonstrate endothelial cell spreading and spontaneous cell sprouting within the hydrogel matrix, thus highlighting the efficacy of this IPN hydrogel system in facilitating 3D cell growth. Additionally, our study emphasizes the potential of 3D printed constructs as a promising approach for vascularization in tissue engineering. The importance of RGD peptides in promoting favorable cell-hydrogel scaffold interactions is also highlighted, emphasizing their critical role in optimizing biomaterial-cell interfaces.
Collapse
Affiliation(s)
- Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bingqing Luo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
14
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
16
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Jiang Y, Guo Y, Wang H, Wang X, Li Q. Hydrogel coating based on dopamine-modified hyaluronic acid and gelatin with spatiotemporal drug release capacity for quick endothelialization and long-term anticoagulation. Int J Biol Macromol 2023; 230:123113. [PMID: 36599384 DOI: 10.1016/j.ijbiomac.2022.123113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Due to the vital roles of vascular intima in preventing thrombus generation and maintaining vascular patency, methods to promote quick endothelialization on vascular grafts have drawn much attention. In this study, we novelly applied a double-layered hydrogel coating with spatiotemporal drug release capacity on a polycaprolactone (PCL) fibrous scaffold. The composite coating consisted of an inner dopamine-modified hyaluronic acid (HA) hydrogel and an outer gelatin hydrogel, which were generated via different crosslinking methods. Especially, heparin and chondroitin sulfate were introduced to the HA and gelatin hydrogels during the processing, thus endowing the vascular scaffold spatiotemporal drug release behavior. The composite coating developed surface hydrophilicity and mechanical properties of the PCL scaffold meanwhile stimulating the proliferation and angiogenesis behaviors of endothelial cells. Long-term anticoagulation property of the modified scaffold was also demonstrated in vitro. This investigation provides a universal strategy for quick endothelialization and long-term anticoagulation promotion of vascular grafts, which may be potentially used in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yingying Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haonan Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Li C, Zhang S, Yao Y, Wang Y, Xiao C, Yang B, Huang J, Li W, Ning C, Zhai J, Yu P, Wang Y. Piezoelectric Bioactive Glasses Composite Promotes Angiogenesis by the Synergistic Effect of Wireless Electrical Stimulation and Active Ions. Adv Healthc Mater 2023:e2300064. [PMID: 36854114 DOI: 10.1002/adhm.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Insufficient angiogenesis frequently occurs after the implantation of orthopedic materials, which greatly increases the risk of bone defect reconstruction failure. Therefore, the development of bone implant with improved angiogenic properties is of great importance. Mimicking the extracellular matrix clues provides a more direct and effective strategy to modulate angiogenesis. Herein, inspired by the bioelectrical characteristics of the bone microenvironment, a piezoelectric bioactive glasses composite (P-KNN/BG) based on the incorporation of polarized potassium sodium niobate is constructed, which could effectively promote angiogenesis. It is found that P-KNN/BG has exceptional wireless electrical stimulation performance and sustained active ions release. In vitro cell experiments reveal that P-KNN/BG enhances endothelial cell adhesion, migration, and differentiation via activating the eNOS/NO signaling pathway, which might be contributed to cell membrane hyperpolarization induced by wireless electrical stimulation increase the influx of active ions into the cells. In vivo chick chorioallantoic membrane experiment demonstrates that P-KNN/BG shows excellent pro-angiogenic capacity and biocompatibility. This work broadens the current understanding of bioactive materials with bionic electrical properties, which brings new insights into the clinical treatment of bone defect repair.
Collapse
Affiliation(s)
- Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.,School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yichen Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Cairong Xiao
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jingyan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
19
|
Li W, Zhou P, Yan B, Qi M, Chen Y, Shang L, Guan J, Zhang L, Mao Y. Disc regeneration by injectable fucoidan-methacrylated dextran hydrogels through mechanical transduction and macrophage immunomodulation. J Tissue Eng 2023; 14:20417314231180050. [PMID: 37427012 PMCID: PMC10328174 DOI: 10.1177/20417314231180050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Modulating a favorable inflammatory microenvironment that facilitates the recovery of degenerated discs is a key strategy in the treatment of intervertebral disc (IVD) degeneration (IDD). More interestingly, well-mechanized tissue-engineered scaffolds have been proven in recent years to be capable of sensing mechanical transduction to enhance the proliferation and activation of nucleus pulposus cells (NPC) and have demonstrated an increased potential in the treatment and recovery of degenerative discs. Additionally, existing surgical procedures may not be suitable for IDD treatment, warranting the requirement of new regenerative therapies for the restoration of disc structure and function. In this study, a light-sensitive injectable polysaccharide composite hydrogel with excellent mechanical properties was prepared using dextrose methacrylate (DexMA) and fucoidan with inflammation-modulating properties. Through numerous in vivo experiments, it was shown that the co-culture of this composite hydrogel with interleukin-1β-stimulated NPCs was able to promote cell proliferation whilst preventing inflammation. Additionally, activation of the caveolin1-yes-associated protein (CAV1-YAP) mechanotransduction axis promoted extracellular matrix (ECM) metabolism and thus jointly promoted IVD regeneration. After injection into an IDD rat model, the composite hydrogel inhibited the local inflammatory response by inducing macrophage M2 polarization and gradually reducing the ECM degradation. In this study, we propose a fucoidan-DexMA composite hydrogel, which provides an attractive approach for IVD regeneration.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- Department of Orthopedics, Lixin County
People’s Hospital, Bozhou, China
| | - Pinghui Zhou
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Bomin Yan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Meiyao Qi
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yedan Chen
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| |
Collapse
|
20
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
21
|
Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022; 13:981161. [PMID: 36060683 PMCID: PMC9428454 DOI: 10.3389/fphys.2022.981161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis, the development of new blood vessels from pre-existing ones, is an essential process determining numerous physiological and pathological conditions. Accordingly, there is a high demand for research approaches allowing the investigation of angiogenic mechanisms and the assessment of pro- and anti-angiogenic therapeutics. The present review provides a selective overview and critical discussion of such approaches, which, in line with the 3R principle, all share the common feature that they are not based on animal experiments. They include in vitro assays to study the viability, proliferation, migration, tube formation and sprouting activity of endothelial cells in two- and three-dimensional environments, the degradation of extracellular matrix compounds as well as the impact of hemodynamic forces on blood vessel formation. These assays can be complemented by in vivo analyses of microvascular network formation in the chorioallantoic membrane assay and early stages of zebrafish larvae. In addition, the combination of experimental data and physical laws enables the mathematical modeling of tissue-specific vascularization, blood flow patterns, interstitial fluid flow as well as oxygen, nutrient and drug distribution. All these animal-free approaches markedly contribute to an improved understanding of fundamental biological mechanisms underlying angiogenesis. Hence, they do not only represent essential tools in basic science but also in early stages of drug development. Moreover, their advancement bears the great potential to analyze angiogenesis in all its complexity and, thus, to make animal experiments superfluous in the future.
Collapse
|
22
|
Jones CFE, Di Cio S, Connelly JT, Gautrot JE. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Front Bioeng Biotechnol 2022; 10:915702. [PMID: 35928950 PMCID: PMC9343775 DOI: 10.3389/fbioe.2022.915702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineered skin constructs have been under development since the 1980s as a replacement for human skin tissues and animal models for therapeutics and cosmetic testing. These have evolved from simple single-cell assays to increasingly complex models with integrated dermal equivalents and multiple cell types including a dermis, epidermis, and vasculature. The development of micro-engineered platforms and biomaterials has enabled scientists to better recreate and capture the tissue microenvironment in vitro, including the vascularization of tissue models and their integration into microfluidic chips. However, to date, microvascularized human skin equivalents in a microfluidic context have not been reported. Here, we present the design of a novel skin-on-a-chip model integrating human-derived primary and immortalized cells in a full-thickness skin equivalent. The model is housed in a microfluidic device, in which a microvasculature was previously established. We characterize the impact of our chip design on the quality of the microvascular networks formed and evidence that this enables the formation of more homogenous networks. We developed a methodology to harvest tissues from embedded chips, after 14 days of culture, and characterize the impact of culture conditions and vascularization (including with pericyte co-cultures) on the stratification of the epidermis in the resulting skin equivalents. Our results indicate that vascularization enhances stratification and differentiation (thickness, architecture, and expression of terminal differentiation markers such as involucrin and transglutaminase 1), allowing the formation of more mature skin equivalents in microfluidic chips. The skin-on-a-chip tissue equivalents developed, because of their realistic microvasculature, may find applications for testing efficacy and safety of therapeutics delivered systemically, in a human context.
Collapse
Affiliation(s)
- Christian F. E. Jones
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stefania Di Cio
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - John T. Connelly
- The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Julien E. Gautrot
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Tissue Engineering Approaches to Uncover Therapeutic Targets for Endothelial Dysfunction in Pathological Microenvironments. Int J Mol Sci 2022; 23:ijms23137416. [PMID: 35806421 PMCID: PMC9266895 DOI: 10.3390/ijms23137416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial cell dysfunction plays a central role in many pathologies, rendering it crucial to understand the underlying mechanism for potential therapeutics. Tissue engineering offers opportunities for in vitro studies of endothelial dysfunction in pathological mimicry environments. Here, we begin by analyzing hydrogel biomaterials as a platform for understanding the roles of the extracellular matrix and hypoxia in vascular formation. We next examine how three-dimensional bioprinting has been applied to recapitulate healthy and diseased tissue constructs in a highly controllable and patient-specific manner. Similarly, studies have utilized organs-on-a-chip technology to understand endothelial dysfunction's contribution to pathologies in tissue-specific cellular components under well-controlled physicochemical cues. Finally, we consider studies using the in vitro construction of multicellular blood vessels, termed tissue-engineered blood vessels, and the spontaneous assembly of microvascular networks in organoids to delineate pathological endothelial dysfunction.
Collapse
|
24
|
Setiawati A, Jeong S, Brillian AI, Lee SH, Shim JG, Jung KH, Shin K. Fabrication of a Tailored, Hybrid Extracellular Matrix Composite. Macromol Biosci 2022; 22:e2200106. [PMID: 35765216 DOI: 10.1002/mabi.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The extracellular matrix (ECM) is a network of connective fibers that supports cells living in their surroundings. Native ECM, generated by the secretory products of each tissue's resident cells, has a unique architecture with different protein composition depending on the tissue. Therefore, it is very difficult to artificially design in vivo architecture in tissue engineering. In this study, we fabricated a hybrid ECM scaffold from the basic structure of fibroblast-derived cellular ECMs by adding major ECM components of fibronectin (FN) and collagen (COL I) externally. It was confirmed that while maintaining the basic structure of the native ECM, major protein components can be regulated. Then, decellularization was performed to prepare hybrid ECM scaffolds with various protein compositions and we demonstrated that a liver-mimicking fibronectin (FN)-rich hybrid ECM promoted successful settling of H4IIE rat hepatoma cells. We believe that our method holds promise for the fabrication of scaffolds that provide a tailored cellular microenvironment for specific organs and serve as novel pathways for the replacement or regeneration of specific organ tissues. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea.,Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea.,Faculty of Pharmacy, Paingan, Maguwoharjo, Depok, Sanata Dharma University, Sleman, Yogyakarta, 55284, Indonesia
| | - Sungwoo Jeong
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Albertus Ivan Brillian
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang Ho Lee
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jin-Gon Shim
- Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
25
|
Wang Y, Keshavarz M, Barhouse P, Smith Q. Strategies for Regenerative Vascular Tissue Engineering. Adv Biol (Weinh) 2022; 7:e2200050. [PMID: 35751461 DOI: 10.1002/adbi.202200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Vascularization remains one of the key challenges in creating functional tissue-engineered constructs for therapeutic applications. This review aims to provide a developmental lens on the necessity of blood vessels in defining tissue function while exploring stem cells as a suitable source for vascular tissue engineering applications. The intersections of stem cell biology, material science, and engineering are explored as potential solutions for directing vascular assembly.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Mozhgan Keshavarz
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Patrick Barhouse
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
26
|
Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022; 10:888492. [PMID: 35769106 PMCID: PMC9234334 DOI: 10.3389/fbioe.2022.888492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular-disrupting agents are an interesting class of anticancer compounds because of their combined mode of action in preventing new blood vessel formation and disruption of already existing vasculature in the immediate microenvironment of solid tumors. The validation of vascular disruption properties of these drugs in vitro is rarely addressed due to the lack of proper in vitro angiogenesis models comprising mature and long-lived vascular-like networks. We herein report an indirect coculture model of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) to form three-dimensional profuse vascular-like networks. HUVECs embedded and sandwiched in the collagen scaffold were cocultured with HDFs located outside the scaffold. The indirect coculture approach with the vascular endothelial growth factor (VEGF) producing HDFs triggered the formation of progressively maturing lumenized vascular-like networks of endothelial cells within less than 7 days, which have proven to be viably maintained in culture beyond day 21. Molecular weight-dependent Texas red-dextran permeability studies indicated high vascular barrier function of the generated networks. Their longevity allowed us to study the dose-dependent response upon treatment with the three known antiangiogenic and/or vascular disrupting agents brivanib, combretastatin A4 phosphate (CA4P), and 6´-sialylgalactose (SG) via semi-quantitative brightfield and qualitative confocal laser scanning microscopic (CLSM) image analysis. Compared to the reported data on in vivo efficacy of these drugs in terms of antiangiogenic and vascular disrupting effects, we observed similar trends with our 3D model, which are not reflected in conventional in vitro angiogenesis assays. High-vascular disruption under continuous treatment of the matured vascular-like network was observed at concentrations ≥3.5 ng·ml−1 for CA4P and ≥300 nM for brivanib. In contrast, SG failed to induce any significant vascular disruption in vitro. This advanced model of a 3D vascular-like network allows for testing single and combinational antiangiogenic and vascular disrupting effects with optimized dosing and may thus bridge the gap between the in vitro and in vivo experiments in validating hits from high-throughput screening. Moreover, the physiological 3D environment mimicking in vitro assay is not only highly relevant to in vivo studies linked to cancer but also to the field of tissue regeneration.
Collapse
Affiliation(s)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Inga Pacharzina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Anke Hoppensack
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Marie Weinhart, ,
| |
Collapse
|
27
|
Qazi TH, Blatchley MR, Davidson MD, Yavitt FM, Cooke ME, Anseth KS, Burdick JA. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell 2022; 29:678-691. [PMID: 35413278 PMCID: PMC9081204 DOI: 10.1016/j.stem.2022.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recapitulation of complex microenvironments that regulate cell behavior during development, disease, and wound healing is key to understanding fundamental biological processes. In vitro, multicellular morphogenesis, organoid maturation, and disease modeling have traditionally been studied using either non-physiological 2D substrates or 3D biological matrices, neither of which replicate the spatiotemporal biochemical and biophysical complexity of biology. Here, we provide a guided overview of the recent advances in the programming of synthetic hydrogels that offer precise control over the spatiotemporal properties within cellular microenvironments, such as advances in the control of cell-driven remodeling, bioprinting, or user-defined manipulation of properties (e.g., via light irradiation).
Collapse
Affiliation(s)
- Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Blatchley
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Matthew D Davidson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - F Max Yavitt
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Megan E Cooke
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kristi S Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
28
|
Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate-Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules 2022; 27:molecules27020337. [PMID: 35056652 PMCID: PMC8779268 DOI: 10.3390/molecules27020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, well-known oligomers containing ethyl methacrylate (EMA) and glycidyl methacrylate (GMA) components for the synthesis of the oligomeric network [P(EMA)-co-(GMA)] were used. In order to change the hydrophobic character of the [P(EMA)-co-(GMA)] to a more hydrophilic one, the oligomeric chain was functionalized with ethanolamine, xylitol (Xyl), and L-ornithine. The oligomeric materials were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy, scanning electron microscopy, and differential thermogravimetric analysis. In the final stage, thanks to the large amount of -OH groups, it was possible to obtain a three-dimensional hydrogel (HG) network. The HGs were used as a matrix for the immobilization of methylene blue, which was chosen as a model compound of active substances, the release of which from the matrix was examined using spectrophotometric detection. The cytotoxic test was performed using fluid extracts of the HGs and human skin fibroblasts. The cell culture experiment showed that only [P(EMA)-co-(GMA)] and [P(EMA)-co-(GMA)]-Xyl have the potential to be used in biomedical applications. The studies revealed that the obtained HGs were porous and non-cytotoxic, which gives them the opportunity to possess great potential for use as an oligomeric network for drug reservoirs in in vitro application.
Collapse
|
29
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
30
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|