1
|
Wang ZG, Hu Y, Liu HY, Wen HY, Qi BP, Liu SL. Electrochemiluminescence-Based Single-Particle Tracking of the Biomolecules Moving along Intercellular Membrane Nanotubes between Live Cells. Anal Chem 2024; 96:7231-7239. [PMID: 38656982 DOI: 10.1021/acs.analchem.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells. This nanoprobe has excellent signal-to-noise ratio imaging capabilities for the single-particle tracking (SPT) of biomolecules. Our finding elucidated the enhanced ECL mechanism of CDs-QDs in the presence of reactive oxygen species through photoluminescence, electrochemistry, and ECL techniques. We further tracked the movement of single particles on membrane nanotubes between live cells and confirmed that the ECL-based SPT technique using CD-QD nanoparticles is an effective approach for monitoring the transport behaviors of biomolecules on membrane nanotubes between live cells. This opens a promising avenue for the advancement of ECL-based single-particle detection and the dynamic quantitative imaging of biomolecules.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Bao-Ping Qi
- Institute of selenium science and industry, Hubei Minzu University, Enshi 445000, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, PR China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
2
|
Zalejski J, Sun J, Sharma A. Unravelling the Mystery inside Cells by Using Single-Molecule Fluorescence Imaging. J Imaging 2023; 9:192. [PMID: 37754956 PMCID: PMC10532472 DOI: 10.3390/jimaging9090192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Live-cell imaging is a powerful technique to study the dynamics and mechanics of various biological molecules like proteins, organelles, DNA, and RNA. With the rapid evolution of optical microscopy, our understanding of how these molecules are implicated in the cells' most critical physiological roles deepens. In this review, we focus on how spatiotemporal nanoscale live-cell imaging at the single molecule level allows for profound contributions towards new discoveries in life science. This review will start by summarizing how single-molecule tracking has been used to analyze membrane dynamics, receptor-ligand interactions, protein-protein interactions, inner- and extra-cellular transport, gene expression/transcription, and whole organelle tracking. We then move on to how current authors are trying to improve single-molecule tracking and overcome current limitations by offering new ways of labeling proteins of interest, multi-channel/color detection, improvements in time-lapse imaging, and new methods and programs to analyze the colocalization and movement of targets. We later discuss how single-molecule tracking can be a beneficial tool used for medical diagnosis. Finally, we wrap up with the limitations and future perspectives of single-molecule tracking and total internal reflection microscopy.
Collapse
Affiliation(s)
| | | | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; (J.Z.); (J.S.)
| |
Collapse
|
3
|
Albertazzi L, Heilemann M. When Weak Is Strong: A Plea for Low-Affinity Binders for Optical Microscopy. Angew Chem Int Ed Engl 2023; 62:e202303390. [PMID: 37158582 DOI: 10.1002/anie.202303390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/10/2023]
Abstract
The exploitation of low-affinity molecular interactions in protein labeling is an emerging topic in optical microscopy. Such non-covalent and low-affinity interactions can be realized with various concepts from chemistry and for different molecule classes, and lead to a constant renewal of fluorescence signals at target sites. Further benefits are a versatile use across microscopy methods, in 3D, live and many-target applications. In recent years, several classes of low-affinity labels were developed and a variety of powerful applications demonstrated. Still, this research field is underdeveloped, while the potential is huge.
Collapse
|
4
|
Niederauer C, Nguyen C, Wang-Henderson M, Stein J, Strauss S, Cumberworth A, Stehr F, Jungmann R, Schwille P, Ganzinger KA. Dual-color DNA-PAINT single-particle tracking enables extended studies of membrane protein interactions. Nat Commun 2023; 14:4345. [PMID: 37468504 DOI: 10.1038/s41467-023-40065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
DNA-PAINT based single-particle tracking (DNA-PAINT-SPT) has recently significantly enhanced observation times in in vitro SPT experiments by overcoming the constraints of fluorophore photobleaching. However, with the reported implementation, only a single target can be imaged and the technique cannot be applied straight to live cell imaging. Here we report on leveraging this technique from a proof-of-principle implementation to a useful tool for the SPT community by introducing simultaneous live cell dual-color DNA-PAINT-SPT for quantifying protein dimerization and tracking proteins in living cell membranes, demonstrating its improved performance over single-dye SPT.
Collapse
Affiliation(s)
| | - Chikim Nguyen
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands
| | | | - Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
5
|
Kümmerlin M, Mazumder A, Kapanidis AN. Bleaching-resistant, Near-continuous Single-molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding. Chemphyschem 2023; 24:e202300175. [PMID: 37043705 PMCID: PMC10946581 DOI: 10.1002/cphc.202300175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.
Collapse
Affiliation(s)
- Mirjam Kümmerlin
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| | - Abhishek Mazumder
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
- Structural Biology and Bioinformatics DivisionCSIR-Indian Institute of Chemical Biology4, Raja S. C. Mullick RoadKolkata700 032India
| | - Achillefs N. Kapanidis
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| |
Collapse
|
6
|
Zähringer J, Cole F, Bohlen J, Steiner F, Kamińska I, Tinnefeld P. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:70. [PMID: 36898993 PMCID: PMC10006205 DOI: 10.1038/s41377-023-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
3D super-resolution microscopy with nanometric resolution is a key to fully complement ultrastructural techniques with fluorescence imaging. Here, we achieve 3D super-resolution by combining the 2D localization of pMINFLUX with the axial information of graphene energy transfer (GET) and the single-molecule switching by DNA-PAINT. We demonstrate <2 nm localization precision in all 3 dimension with axial precision reaching below 0.3 nm. In 3D DNA-PAINT measurements, structural features, i.e., individual docking strands at distances of 3 nm, are directly resolved on DNA origami structures. pMINFLUX and GET represent a particular synergetic combination for super-resolution imaging near the surface such as for cell adhesion and membrane complexes as the information of each photon is used for both 2D and axial localization information. Furthermore, we introduce local PAINT (L-PAINT), in which DNA-PAINT imager strands are equipped with an additional binding sequence for local upconcentration improving signal-to-background ratio and imaging speed of local clusters. L-PAINT is demonstrated by imaging a triangular structure with 6 nm side lengths within seconds.
Collapse
Affiliation(s)
- Jonas Zähringer
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Fiona Cole
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Florian Steiner
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
- Department of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, München, Germany
| | - Izabela Kamińska
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany.
| |
Collapse
|
7
|
Youn Y, Lau GW, Lee Y, Maity BK, Gouaux E, Chung HJ, Selvin PR. Quantitative DNA-PAINT imaging of AMPA receptors in live neurons. CELL REPORTS METHODS 2023; 3:100408. [PMID: 36936077 PMCID: PMC10014303 DOI: 10.1016/j.crmeth.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/25/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
DNA-point accumulation for imaging at nanoscale topography (DNA-PAINT) can image fixed biological specimens with nanometer resolution and absolute stoichiometry. In living systems, however, the usage of DNA-PAINT has been limited due to high salt concentration in the buffer required for specific binding of the imager to the docker attached to the target. Here, we used multiple binding motifs of the docker, from 2 to 16, to accelerate the binding speed of the imager under physiological buffer conditions without compromising spatial resolution and maintaining the basal level homeostasis during the measurement. We imaged endogenous α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in cultured neurons-critical proteins involved in nerve communication-by DNA-PAINT in 3-dimensions using a monovalent single-chain variable fragment (scFv) to the GluA1 subunit of AMPAR. We found a heterogeneous distribution of synaptic AMPARs: ≈60% are immobile, primarily in nanodomains, defined as AMPARs that are within 0.3 μm of the Homer1 protein in the postsynaptic density; the other ∼40% of AMPARs have restricted mobility and trajectory.
Collapse
Affiliation(s)
- Yeoan Youn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gloria W. Lau
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yongjae Lee
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Barun Kumar Maity
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul R. Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Loose M, Auer A, Brognara G, Budiman HR, Kowalski L, Matijević I. In vitro
reconstitution of small
GTPase
regulation. FEBS Lett 2022; 597:762-777. [PMID: 36448231 DOI: 10.1002/1873-3468.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time.
Collapse
Affiliation(s)
- Martin Loose
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Albert Auer
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Gabriel Brognara
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | | | - Lukasz Kowalski
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Ivana Matijević
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| |
Collapse
|
9
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
10
|
Qutbuddin Y, Krohn JH, Brüggenthies GA, Stein J, Gavrilovic S, Stehr F, Schwille P. Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes. J Phys Chem B 2021; 125:13181-13191. [PMID: 34818013 PMCID: PMC8667037 DOI: 10.1021/acs.jpcb.1c07694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of-magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.
Collapse
Affiliation(s)
- Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jan-Hagen Krohn
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.,Exzellenzcluster ORIGINS, Boltzmannstrasse 2, D-85748 Garching, Germany
| | - Gereon A Brüggenthies
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Johannes Stein
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Svetozar Gavrilovic
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Florian Stehr
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
11
|
Stein J, Stehr F, Jungmann R, Schwille P. Calibration-free counting of low molecular copy numbers in single DNA-PAINT localization clusters. BIOPHYSICAL REPORTS 2021; 1:100032. [PMID: 36425461 PMCID: PMC9680712 DOI: 10.1016/j.bpr.2021.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized light microscopy by enabling optical resolution down to a few nanometer. Yet, localization precision commonly does not suffice to visually resolve single subunits in molecular assemblies or multimeric complexes. Because each targeted molecule contributes localizations during image acquisition, molecular counting approaches to reveal the target copy numbers within localization clusters have been persistently proposed since the early days of SMLM, most of which rely on preliminary knowledge of the dye photophysics or on a calibration to a reference. Previously, we developed localization-based fluorescence correlation spectroscopy (lbFCS) as an absolute ensemble counting approach for the SMLM-variant DNA-PAINT (points accumulation for imaging in nanoscale topography), for the first time, to our knowledge, circumventing the necessity for reference calibrations. Here, we present an extended concept termed lbFCS+, which allows absolute counting of copy numbers for individual localization clusters in a single DNA-PAINT image. In lbFCS+, absolute counting of fluorescent loci contained in individual nanoscopic volumes is achieved via precise measurement of the local hybridization rates of the fluorescently labeled oligonucleotides ("imagers") employed in DNA-PAINT imaging. In proof-of-principle experiments on DNA origami nanostructures, we demonstrate the ability of lbFCS+ to truthfully determine molecular copy numbers and imager association and dissociation rates in well-separated localization clusters containing up to 10 docking strands. For N ≤ 4 target molecules, lbFCS+ is even able to resolve integers, providing the potential to study the composition of up to tetrameric molecular complexes. Furthermore, we show that lbFCS+ allows resolving heterogeneous binding dynamics, enabling the distinction of stochastically generated and a priori indistinguishable DNA assemblies. Beyond advancing quantitative DNA-PAINT imaging, we believe that lbFCS+ could find promising applications ranging from biosensing to DNA computing.
Collapse
Affiliation(s)
- Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
12
|
Vala M, Piliarik M. Weighing single protein complexes on the go. Nat Methods 2021; 18:1159-1160. [PMID: 34608317 DOI: 10.1038/s41592-021-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Milan Vala
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Piliarik
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|