1
|
Liu S, Xu H, Wang G, Jin B, Cao F, Wang L. Tree Longevity: Multifaceted Genetic Strategies and Beyond. PLANT, CELL & ENVIRONMENT 2025; 48:244-259. [PMID: 39254418 DOI: 10.1111/pce.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Old trees are remarkable for their ability to endure for centuries or even millennia, acting as recordkeepers of historical climate and custodians of genetic diversity. The secret to their longevity has long been a subject of fascination. Despite the challenges associated with studying old trees, such as massive size, slow growth rate, long lifespan and often remote habitat, accumulating studies have investigated the mechanisms underlying tree aging and longevity over the past decade. The recent publication of high-quality genomes of long-lived tree species, coupled with research on stem cell function and secondary metabolites in longevity, has brought us closer to unlocking the secrets of arboreal longevity. This review provides an overview of the global distribution of old trees and examines the environmental and anthropogenic factors that shape their presence. We summarize the contributions of physiological characteristics, stem cell activity, and immune system responses to their extraordinary longevity. We also explore the genetic and epigenetic 'longevity code', which consists of resistance and defense genes, DNA repair genes and patterns of DNA methylation modification. Further, we highlight key areas for future research that could enhance our understanding of the mechanisms underlying tree longevity.
Collapse
Affiliation(s)
- Sian Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang RG, Liu H, Shang HY, Shu H, Liu DT, Yang H, Jia KH, Wang XQ, Sun WB, Zhao W, Ma Y. Convergent Patterns of Karyotype Evolution Underlying Karyotype Uniformity in Conifers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411098. [PMID: 39721021 DOI: 10.1002/advs.202411098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Karyotype diversity plays an important role in speciation and diversification. However, gymnosperms, particularly conifers, exhibit remarkable karyotype uniformity. To explore the evolutionary processes shaping karyotypes in gymnosperms, the karyotype evolutionary history is reconstructed through comparative genomic analyses. Synteny analysis confirms the absence of ancient polyploidy in conifers and its rarity across the gymnosperms as a whole. Further analysis reveals convergent patterns of reciprocal translocations between nonhomologous chromosomes in conifer genomes. Centromeric-centromeric reciprocal translocations (CRTs) have been identified as the primary mechanism of karyotype evolution in conifers, while telomeric-centromeric reciprocal translocations (TRTs) significantly contributed to descending dysploidy within Cupressales. A graph-based method is utilized to infer the detailed evolutionary pathways from the proto-gymnosperm karyotype (n = 12) to modern conifer karyotypes (n = 11-12). In conclusion, the scarcity of both polyploidy and dysploidy contributes to the karyotype uniformity of gymnosperms and potentially also to their lower species richness compared to angiosperms. However, the pervasive CRTs and occasional TRTs underlie this "apparent uniformity", supporting the "karyotype orthoselection" hypothesis. This study provides new insights into the mechanisms maintaining karyotype uniformity in conifers and the role of karyotype evolution in their diversification.
Collapse
Affiliation(s)
- Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Liu
- Department of Ecology and Environmental Science, Umeå Plant Science Cente, Umeå University, Umeå, SE-901 87, Sweden
| | - Hong-Yun Shang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Heng Shu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - De-Tuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hao Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai-Hua Jia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei-Bang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Cente, Umeå University, Umeå, SE-901 87, Sweden
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
3
|
Chen BZ, Yang ZJ, Yang L, Zhu YF, Li XZ, Wang L, Zhou YP, Zhang GH, Li DW, Dong Y, Duan SC. Chromosome-scale genome assembly of Codonopsis pilosula and comparative genomic analyses shed light on its genome evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1469375. [PMID: 39559763 PMCID: PMC11570261 DOI: 10.3389/fpls.2024.1469375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Introduction Codonopsis pilosula is a significant plant in traditional Chinese medicine, valued for its edible and medicinal properties. However, the lack of available genomic resources has hindered further research. Methods This study presents the first chromosome-scale genome assembly of C. pilosula using PacBio CLR reads and Hi-C scaffolding technology. Additionally, Ks analysis and syntenic depth analysis were performed to elucidate its evolutionary history. Results The final assembly yielded a high-quality genome of 679.20 Mb, which was anchored to 8 pseudo-chromosomes with an anchoring rate of 96.5% and a scaffold N50 of 80.50 Mb. The genome assembly showed a high completeness of 97.6% based on Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis. Repetitive elements constituted approximately 76.8% of the genome, with long terminal repeat retrotransposons (LTRs) accounting for about 39.17%. Ks and syntenic depth analyses revealed that the polyploidization history of three platycodonoid clade species involved only the γ-WGT event. Karyotype evolutionary analysis identified an ancestral karyotype with 9 protochromosomes for the three platycodonoid clade species. Moreover, non-WGD genes, particularly those arising from tandem duplications, were found to contribute significantly to gene family expansion. Discussion These findings provide essential insights into the genetic diversity and evolutionary biology of C. pilosula, aiding its conservation and sustainable use.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zi-Jiang Yang
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ling Yang
- Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Yi-Fan Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Zhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ye-Peng Zhou
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guang-Hui Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Wei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sheng-Chang Duan
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
Kitony JK, Colt K, Abramson BW, Hartwick NT, Petrus S, Konozy EHE, Karimi N, Yant L, Michael TP. Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation. Nat Commun 2024; 15:8833. [PMID: 39396056 PMCID: PMC11470940 DOI: 10.1038/s41467-024-53157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Baobab (Adansonia digitata) is a long-lived tree endemic to Africa with economic, ecological, and cultural importance, yet its genomic features are underexplored. Here, we report a chromosome-level reference genome anchored to 42 chromosomes for A. digitata, alongside draft assemblies for a sibling tree, two trees from distinct locations in Africa, and A. za from Madagascar. The baobab genome is uniquely rich in DNA transposons, which make up 33%, while LTR retrotransposons account for 10%. A. digitata experienced whole genome multiplication (WGM) around 30 million years ago (MYA), followed by a second WGM event 3-11 MYA, likely linked to autotetraploidy. Resequencing of 25 trees identify three subpopulations, with gene flow across West Africa distinct from East Africa. Gene enrichment and fixation index (Fst) analyses show baobab retained multiple circadian, flowering, and light-responsive genes, which likely support longevity through the UV RESISTANCE LOCUS 8 (UVR8) pathway. In sum, we provide genomic resources and insights for baobab breeding and conservation.
Collapse
Affiliation(s)
- Justine K Kitony
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bradley W Abramson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Noblis, Inc., Washington, DC, USA
| | - Nolan T Hartwick
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Semar Petrus
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Cepheid, Sunnyvale, CA, USA
| | - Emadeldin H E Konozy
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Nisa Karimi
- Missouri Botanical Garden, Science and Conservation Division, St. Louis, MO, USA
- Department of Botany, University of Wisconsin - Madison, Madison, WI, USA
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
6
|
Naeem S, Wang Y, Han S, Haider MZ, Sami A, Shafiq M, Ali Q, Bhatti MHT, Ahmad A, Sabir IA, Dong J, Alam P, Manzoor MA. Genome-wide analysis and identification of Carotenoid Cleavage Oxygenase (CCO) gene family in coffee (coffee arabica) under abiotic stress. BMC Genom Data 2024; 25:71. [PMID: 39030545 PMCID: PMC11264761 DOI: 10.1186/s12863-024-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.
Collapse
Affiliation(s)
- Shajiha Naeem
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Adnan Sami
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Muhammad Hamza Tariq Bhatti
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Arsalan Ahmad
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jihong Dong
- School of Environment and Surveying, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Wang D, Jin Y, Guan C, Yang Q, He G, Xu N, Han X. Evolutionary divergence of CXE gene family in green plants unveils that PtoCXEs overexpression reduces fungal colonization in transgenic Populus. TREE PHYSIOLOGY 2024; 44:tpae071. [PMID: 38905297 DOI: 10.1093/treephys/tpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| | - Yuting Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Chaonan Guan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, No. 666 Wusu street, Lin'an district, Hangzhou 311300, China
| | - Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, No. 2025 Chengluo Avenue, Longquanyi District, Chengdu 610106, China
| | - Nan Xu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Xuemin Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| |
Collapse
|
8
|
Song B, Yu J, Li X, Li J, Fan J, Liu H, Wei W, Zhang L, Gu K, Liu D, Zhao K, Wu J. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biol 2024; 25:87. [PMID: 38581061 PMCID: PMC10996114 DOI: 10.1186/s13059-024-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.
Collapse
Affiliation(s)
- Bobo Song
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jinshan Yu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jing Fan
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Hainan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weilin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Lingchao Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Dongliang Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kejiao Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
9
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
10
|
Long J, He WC, Peng HW, Erst AS, Wang W, Xiang KL. Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments. BMC PLANT BIOLOGY 2024; 24:202. [PMID: 38509479 PMCID: PMC10953084 DOI: 10.1186/s12870-024-04891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Collapse
Affiliation(s)
- Jing Long
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya Str. 101, Novosibirsk, 630090, Russia
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
11
|
Moriyama Y, Koga H, Tsukaya H. Decoding the leaf apical meristem of Guarea glabra Vahl (Meliaceae): insight into the evolution of indeterminate pinnate leaves. Sci Rep 2024; 14:5166. [PMID: 38431750 PMCID: PMC10908829 DOI: 10.1038/s41598-024-55882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
In seed plants, growth of shoots and roots is indeterminate, while leaves are typically determinate organs that cease to grow after a certain developmental stage. This is due to the characteristics of the leaf meristem, where cell proliferation activity is retained only for a limited period. However, several plants exhibit indeterminacy in their leaves, exemplified by the pinnate compound leaves of Guarea and Chisocheton genera in the Meliaceae family. In these plants, the leaf meristem at the tip of the leaf retains meristematic activity and produces leaflets over years, resulting in a single leaf that resembles a twig. The molecular mechanism underlying the indeterminate leaf meristem of these plants has not been examined. In this research, we used Guarea glabra as a model to investigate the development of indeterminate pinnate leaves. Transcriptome analyses revealed that the gene expression profile in leaf apex tissue differed from that in the shoot apex. However, a class 1 KNOTTED-LIKE HOMEOBOX (KNOX1) gene which is lost in Brassicaceae was highly expressed in both tissues. We established an in situ hybridisation system for this species using Technovit 9100 to analyse the spatial expression patterns of genes. We revealed that the leaf meristematic region of G. glabra expresses KNOX1, LEAFY and ANGUSTIFORIA3 simultaneously, suggesting the involvement of these genes in the indeterminacy of the leaf meristem.
Collapse
Affiliation(s)
- Yasutake Moriyama
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
12
|
Feng YY, Du H, Huang KY, Ran JH, Wang XQ. Reciprocal expression of MADS-box genes and DNA methylation reconfiguration initiate bisexual cones in spruce. Commun Biol 2024; 7:114. [PMID: 38242964 PMCID: PMC10799047 DOI: 10.1038/s42003-024-05786-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model. GGM7 could be essential for initiating bisexual cones. DNA methylation reconfiguration in bisexual cones affects the expression of key genes in cone development, including PcDAL12, PcDAL10, PcNEEDLY, and PcHDG5. Auxin likely plays an important role in the development of female structures of bisexual cones. This study unveils the potential mechanisms responsible for bisexual cone formation in conifers and may shed light on the evolution of bisexuality.
Collapse
Affiliation(s)
- Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Castel B, El Mahboubi K, Jacquet C, Delaux PM. Immunobiodiversity: Conserved and specific immunity across land plants and beyond. MOLECULAR PLANT 2024; 17:92-111. [PMID: 38102829 DOI: 10.1016/j.molp.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Angiosperms represent most plants that humans cultivate, grow, and eat. However, angiosperms are only one of five major land plant lineages. As a whole lineage, plants also include algal groups. All these clades represent a tremendous genetic diversity that can be investigated to reveal the evolutionary history of any given mechanism. In this review, we describe the current model of the plant immune system, discuss its evolution based on the recent literature, and propose future directions for the field. In angiosperms, plant-microbe interactions have been intensively studied, revealing essential cell surface and intracellular immune receptors, as well as metabolic and hormonal defense pathways. Exploring diversity at the genomic and functional levels demonstrates the conservation of these pathways across land plants, some of which are beyond plants. On basis of the conserved mechanisms, lineage-specific variations have occurred, leading to diversified reservoirs of immune mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to other species by integration of wild immune receptors or engineering of novel forms of receptors for improved resistance to pathogens. We propose that exploring further the diversity of immune mechanisms in the whole plant lineage will reveal completely novel sources of resistance to be deployed in crops.
Collapse
Affiliation(s)
- Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
14
|
Zhu P, He T, Zheng Y, Chen L. The need for masked genomes in gymnosperms. FRONTIERS IN PLANT SCIENCE 2023; 14:1309744. [PMID: 38146270 PMCID: PMC10749308 DOI: 10.3389/fpls.2023.1309744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Affiliation(s)
| | | | | | - Lingyan Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Otto M, Wiehe T. The structured coalescent in the context of gene copy number variation. Theor Popul Biol 2023; 154:67-78. [PMID: 37657649 DOI: 10.1016/j.tpb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
The Structured Coalescent was introduced to describe the coalescent process in spatially subdivided populations with migration. Here, we re-interpret migration routes of individuals in the original model as "migration routes" of single genes in tandemly arranged gene arrays. A gene copy may change its position within the array via unequal recombination. Hence, in a coalescent framework, two copies sampled from two chromosomes may coalesce only if they are at exactly homologous positions. Otherwise, one or multiple recombination events have to occur before they can coalesce, thereby increasing mean coalescence time and expected genetic diversity among the copies in a gene array. We explicitly calculate the transition probabilities on these routes backward in time. We simulate the structured coalescent with migration and coalescence rates informed by the unequal recombination process of gene copies. With this novel interpretation of population structure models we determine coalescence times and expected genetic diversity in samples of orthologous and paralogous copies from a gene family. As a case study, we discuss the site frequency spectrum of a small gene family in the two scenarios of high and of no gene copy number variation among individuals. These examples underline the significance of our model, since standard test-statistics may lead to misinterpretations when analyzing sequence data of multi-copy genes due to their different expected genetic diversity.
Collapse
Affiliation(s)
- Moritz Otto
- University of Cologne, Institute for Genetics, Zuelpicher Str. 47a, Cologne, 50674, Germany
| | - Thomas Wiehe
- University of Cologne, Institute for Genetics, Zuelpicher Str. 47a, Cologne, 50674, Germany.
| |
Collapse
|
16
|
Xiao PX, Li Y, Lu J, Zuo H, Pingcuo G, Ying H, Zhao F, Xu Q, Zeng X, Jiao WB. High-quality assembly and methylome of a Tibetan wild tree peony genome ( Paeonia ludlowii) reveal the evolution of giant genome architecture. HORTICULTURE RESEARCH 2023; 10:uhad241. [PMID: 38156287 PMCID: PMC10753165 DOI: 10.1093/hr/uhad241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Tree peony belongs to one of the Saxifragales families, Paeoniaceae. It is one of the most famous ornamental plants, and is also a promising woody oil plant. Although two Paeoniaceae genomes have been released, their assembly qualities are still to be improved. Additionally, more genomes from wild peonies are needed to accelerate genomic-assisted breeding. Here we assemble a high-quality and chromosome-scale 10.3-Gb genome of a wild Tibetan tree peony, Paeonia ludlowii, which features substantial sequence divergence, including around 75% specific sequences and gene-level differentials compared with other peony genomes. Our phylogenetic analyses suggest that Saxifragales and Vitales are sister taxa and, together with rosids, they are the sister taxon to asterids. The P. ludlowii genome is characterized by frequent chromosome reductions, centromere rearrangements, broadly distributed heterochromatin, and recent continuous bursts of transposable element (TE) movement in peony, although it lacks recent whole-genome duplication. These recent TE bursts appeared during the uplift and glacial period of the Qinghai-Tibet Plateau, perhaps contributing to adaptation to rapid climate changes. Further integrated analyses with methylome data revealed that genome expansion in peony might be dynamically affected by complex interactions among TE proliferation, TE removal, and DNA methylation silencing. Such interactions also impact numerous recently duplicated genes, particularly those related to oil biosynthesis and flower traits. This genome resource will not only provide the genomic basis for tree peony breeding but also shed light on the study of the evolution of huge genome structures as well as their protein-coding genes.
Collapse
Affiliation(s)
- Pei-Xuan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanrong Li
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Jin Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hao Zuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
| | - Gesang Pingcuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Hong Ying
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Fan Zhao
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
17
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
18
|
Haider MZ, Sami A, Shafiq M, Anwar W, Ali S, Ali Q, Muhammad S, Manzoor I, Shahid MA, Ali D, Alarifi S. Genome-wide identification and in-silico expression analysis of carotenoid cleavage oxygenases gene family in Oryza sativa (rice) in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1269995. [PMID: 37954992 PMCID: PMC10634354 DOI: 10.3389/fpls.2023.1269995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Rice constitutes a foundational cereal and plays a vital role in the culinary sector. However, the detriments of abiotic stress on rice quality and productivity are noteworthy. Carotenoid cleavage oxygenases (CCO) hold vital importance as they enable the particular breakdown of carotenoids and significantly contribute towards the growth and response to abiotic stress in rice. Due to the insufficient information regarding rice CCOs and their potential role in abiotic stress, their utilization in stress-resistant genetic breeding remains limited. The current research identified 16 CCO genes within the Oryza sativa japonica group. These OsCCO genes can be bifurcated into three categories based on their conserved sequences: NCEDs (9-Cis-epoxycarotenoid dioxygenases), CCDs (Carotenoid cleavage dioxygenases) and CCD-like (Carotenoid cleavage dioxygenases-like). Conserved motifs were found in the OsCCO gene sequence via MEME analysis and multiple sequence alignment. Stress-related cis-elements were detected in the promoter regions of OsCCOs genes, indicating their involvement in stress response. Additionally, the promoters of these genes had various components related to plant light, development, and hormone responsiveness, suggesting they may be responsive to plant hormones and involved in developmental processes. MicroRNAs play a pivotal role in the regulation of these 16 genes, underscoring their significance in rice gene regulation. Transcriptome data analysis suggests a tissue-specific expression pattern for rice CCOs. Only OsNCED6 and OsNCED10 significantly up-regulated during salt stress, as per RNA seq analyses. CCD7 and CCD8 levels were also higher in the CCD group during the inflorescence growth stage. This provides insight into the function of rice CCOs in abiotic stress response and identifies possible genes that could be beneficial for stress-resistant breeding.
Collapse
Affiliation(s)
- Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Waheed Anwar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sajid Ali
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), North Florida Research and Education Center, Quincy, FL, United States
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T, Tanifuji G, Kamikawa R, Nakamura Y. A practical assembly guideline for genomes with various levels of heterozygosity. Brief Bioinform 2023; 24:bbad337. [PMID: 37798248 PMCID: PMC10555665 DOI: 10.1093/bib/bbad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 10/07/2023] Open
Abstract
Although current long-read sequencing technologies have a long-read length that facilitates assembly for genome reconstruction, they have high sequence errors. While various assemblers with different perspectives have been developed, no systematic evaluation of assemblers with long reads for diploid genomes with varying heterozygosity has been performed. Here, we evaluated a series of processes, including the estimation of genome characteristics such as genome size and heterozygosity, de novo assembly, polishing, and removal of allelic contigs, using six genomes with various heterozygosity levels. We evaluated five long-read-only assemblers (Canu, Flye, miniasm, NextDenovo and Redbean) and five hybrid assemblers that combine short and long reads (HASLR, MaSuRCA, Platanus-allee, SPAdes and WENGAN) and proposed a concrete guideline for the construction of haplotype representation according to the degree of heterozygosity, followed by polishing and purging haplotigs, using stable and high-performance assemblers: Redbean, Flye and MaSuRCA.
Collapse
Affiliation(s)
| | - Mika Sakamoto
- Genome Informatics Laboratory, National Institute of Genetics
| | | | - Takuro Nakayama
- Division of Life Sciences Center for Computational Sciences, University of Tsukuba, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science
| | | | | |
Collapse
|
20
|
Stevenson DW, Ramakrishnan S, de Santis Alves C, Coelho LA, Kramer M, Goodwin S, Ramos OM, Eshel G, Sondervan VM, Frangos S, Zumajo-Cardona C, Jenike K, Ou S, Wang X, Lee YP, Loke S, Rossetto M, McPherson H, Nigris S, Moschin S, Little DP, Katari MS, Varala K, Kolokotronis SO, Ambrose B, Croft LJ, Coruzzi GM, Schatz M, McCombie WR, Martienssen RA. The genome of the Wollemi pine, a critically endangered "living fossil" unchanged since the Cretaceous, reveals extensive ancient transposon activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554647. [PMID: 37662366 PMCID: PMC10473749 DOI: 10.1101/2023.08.24.554647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.
Collapse
Affiliation(s)
| | | | - Cristiane de Santis Alves
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Laís Araujo Coelho
- Department of Epidemiology and Biostatistics, School of Public Health; Institute for Genomics in Health; Division of Infectious Diseases, Department of Medicine, and Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203-2098, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Gil Eshel
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | | | - Samantha Frangos
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | | | - Katherine Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaojin Wang
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yin Peng Lee
- Charles River Laboratories Australia, 17-19 Hi-Tech Ct, Kilsyth VIC 3137, Australia
| | - Stella Loke
- Charles River Laboratories Australia, 17-19 Hi-Tech Ct, Kilsyth VIC 3137, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - Hannah McPherson
- National Herbarium of New South Wales, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Sebastiano Nigris
- Dipartimento di Biologia, Università degli studi di Padova, via U. Bassi 58/B, 35131 Padova, Italy; and Botanical Garden, Università degli studi di Padova, via Orto Botanico 15, 35123 Padova, Italy
| | - Silvia Moschin
- Dipartimento di Biologia, Università degli studi di Padova, via U. Bassi 58/B, 35131 Padova, Italy; and Botanical Garden, Università degli studi di Padova, via Orto Botanico 15, 35123 Padova, Italy
| | - Damon P. Little
- The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Manpreet S. Katari
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | - Kranthi Varala
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health; Institute for Genomics in Health; Division of Infectious Diseases, Department of Medicine, and Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203-2098, USA
| | - Barbara Ambrose
- The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Larry J. Croft
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Gloria M. Coruzzi
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | - Michael Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
21
|
Li Y, Wang Z, Zhu M, Niu Z, Li M, Zheng Z, Hu H, Lu Z, Zhang J, Wan D, Chen Q, Yang Y. A chromosome-scale Rhubarb (Rheum tanguticum) genome assembly provides insights into the evolution of anthraquinone biosynthesis. Commun Biol 2023; 6:867. [PMID: 37612424 PMCID: PMC10447539 DOI: 10.1038/s42003-023-05248-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Rhubarb is the collective name for various perennial plants from the genus Rheum L. and the Polygonaceae family. They are one of the most ancient, commonly used, and important herbs in traditional Chinese medicine. Rhubarb is a major source of anthraquinones, but how they are synthesized remains largely unknown. Here, we generate a genome sequence assembly of one important medicinal rhubarb R. tanguticum at the chromosome level, with 2.76 Gb assembled into 11 chromosomes. The genome is shaped by two recent whole-genome duplication events and recent bursts of retrotransposons. Metabolic analyses show that the major anthraquinones are mainly synthesized in its roots. Transcriptomic analysis reveals a co-expression module with a high correlation to anthraquinone biosynthesis that includes key chalcone synthase genes. One CHS, four CYP450 and two BGL genes involved in secondary metabolism show significantly upregulated expression levels in roots compared with other tissues and clustered in the co-expression module, which implies that they may also act as candidate genes for anthraquinone biosynthesis. This study provides valuable insights into the genetic bases of anthraquinone biosynthesis that will facilitate improved breeding practices and agronomic properties for rhubarb in the future.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Batalova AY, Krutovsky KV. Genetic and Epigenetic Mechanisms of Longevity in Forest Trees. Int J Mol Sci 2023; 24:10403. [PMID: 37373550 DOI: 10.3390/ijms241210403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Trees are unique in terms of development, sustainability and longevity. Some species have a record lifespan in the living world, reaching several millennia. The aim of this review is to summarize the available data on the genetic and epigenetic mechanisms of longevity in forest trees. In this review, we have focused on the genetic aspects of longevity of a few well-studied forest tree species, such as Quercus robur, Ginkgo biloba, Ficus benghalensis and F. religiosa, Populus, Welwitschia and Dracaena, as well as on interspecific genetic traits associated with plant longevity. A key trait associated with plant longevity is the enhanced immune defense, with the increase in gene families such as RLK, RLP and NLR in Quercus robur, the expansion of the CC-NBS-LRR disease resistance families in Ficus species and the steady expression of R-genes in Ginkgo biloba. A high copy number ratio of the PARP1 family genes involved in DNA repair and defense response was found in Pseudotsuga menziesii, Pinus sylvestris and Malus domestica. An increase in the number of copies of the epigenetic regulators BRU1/TSK/MGO3 (maintenance of meristems and genome integrity) and SDE3 (antiviral protection) was also found in long-lived trees. CHG methylation gradually declines in the DAL 1 gene in Pinus tabuliformis, a conservative age biomarker in conifers, as the age increases. It was shown in Larix kaempferi that grafting, cutting and pruning change the expression of age-related genes and rejuvenate plants. Thus, the main genetic and epigenetic mechanisms of longevity in forest trees were considered, among which there are both general and individual processes.
Collapse
Affiliation(s)
- Anastasia Y Batalova
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| | - Konstantin V Krutovsky
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technologies, Timiryazeva Str. 8, 394036 Voronezh, Russia
| |
Collapse
|
23
|
Lou H, Song L, Li X, Zi H, Chen W, Gao Y, Zheng S, Fei Z, Sun X, Wu J. The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis. Nat Commun 2023; 14:1315. [PMID: 36898990 PMCID: PMC10006428 DOI: 10.1038/s41467-023-37038-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Torreya plants produce dry fruits with assorted functions. Here, we report the 19-Gb chromosome-level genome assembly of T. grandis. The genome is shaped by ancient whole-genome duplications and recurrent LTR retrotransposon bursts. Comparative genomic analyses reveal key genes involved in reproductive organ development, cell wall biosynthesis and seed storage. Two genes encoding a C18 Δ9-elongase and a C20 Δ5-desaturase are identified to be responsible for sciadonic acid biosynthesis and both are present in diverse plant lineages except angiosperms. We demonstrate that the histidine-rich boxes of the Δ5-desaturase are crucial for its catalytic activity. Methylome analysis reveals that methylation valleys of the T. grandis seed genome harbor genes associated with important seed activities, including cell wall and lipid biosynthesis. Moreover, seed development is accompanied by DNA methylation changes that possibly fuel energy production. This study provides important genomic resources and elucidates the evolutionary mechanism of sciadonic acid biosynthesis in land plants.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.,Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA. .,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China. .,Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
24
|
Abstract
Polyploidizations, or whole-genome duplications (WGDs), in plants have increased biological complexity, facilitated evolutionary innovation, and likely enabled adaptation under harsh conditions. Besides genomic data, transcriptome data have been widely employed to detect WGDs, due to their efficient accessibility to the gene space of a species. Age distributions based on synonymous substitutions (so-called KS age distributions) for paralogs assembled from transcriptome data have identified numerous WGDs in plants, paving the way for further studies on the importance of WGDs for the evolution of seed and flowering plants. However, it is still unclear how transcriptome-based age distributions compare to those based on genomic data. In this chapter, we implemented three different de novo transcriptome assembly pipelines with two popular assemblers, i.e., Trinity and SOAPdenovo-Trans. We selected six plant species with published genomes and transcriptomes to evaluate how assembled transcripts from different pipelines perform when using KS distributions to detect previously documented WGDs in the six species. Further, using genes predicted in each genome as references, we evaluated the effects of missing genes, gene family clustering, and de novo assembled transcripts on the transcriptome-based KS distributions. Our results show that, although the transcriptome-based KS distributions differ from the genome-based ones with respect to their shapes and scales, they are still reasonably reliable for unveiling WGDs, except in species where most duplicates originated from a recent WGD. We also discuss how to overcome some possible pitfalls when using transcriptome data to identify WGDs.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
25
|
Cui J, Zhu Y, Du H, Liu Z, Shen S, Wang T, Cui W, Zhang R, Jiang S, Wu Y, Gu X, Yu H, Liang Z. Chromosome-level reference genome of tetraploid Isoetes sinensis provides insights into evolution and adaption of lycophytes. Gigascience 2022; 12:giad079. [PMID: 37776367 PMCID: PMC10541799 DOI: 10.1093/gigascience/giad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The Lycophyta species are the extant taxa most similar to early vascular plants that were once abundant on Earth. However, their distribution has greatly diminished. So far, the absence of chromosome-level assembled lycophyte genomes has hindered our understanding of evolution and environmental adaption of lycophytes. FINDINGS We present the reference genome of the tetraploid aquatic quillwort, Isoetes sinensis, a lycophyte. This genome represents the first chromosome-level assembled genome of a tetraploid seed-free plant. Comparison of genomes between I. sinensis and Isoetestaiwanensis revealed conserved and different genomic features between diploid and polyploid lycophytes. Comparison of the I. sinensis genome with those of other species representing the evolutionary lineages of green plants revealed the inherited genetic tools for transcriptional regulation and most phytohormones in I. sinensis. The presence and absence of key genes related to development and stress responses provide insights into environmental adaption of lycophytes. CONCLUSIONS The high-quality reference genome and genomic analysis presented in this study are crucial for future genetic and environmental studies of not only I. sinensis but also other lycophytes.
Collapse
Affiliation(s)
- Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunke Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Glbizzia Biosciences, Beijing 102699, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | | | - Siqian Shen
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Tongxin Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Wenwen Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Rong Zhang
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China
| | | | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Almeida-Silva F, Zhao T, Ullrich KK, Schranz ME, Van de Peer Y. syntenet: an R/Bioconductor package for the inference and analysis of synteny networks. Bioinformatics 2022; 39:6947985. [PMID: 36539202 PMCID: PMC9825758 DOI: 10.1093/bioinformatics/btac806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
SUMMARY Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate. AVAILABILITY AND IMPLEMENTATION syntenet is available on Bioconductor (https://bioconductor.org/packages/syntenet), and the source code is available on a GitHub repository (https://github.com/almeidasilvaf/syntenet). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium,VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen 24306, Germany
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen 6708, The Netherlands
| | | |
Collapse
|
27
|
Coiro M, Roberts EA, Hofmann CC, Seyfullah LJ. Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1082639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gnetales are one of the most fascinating groups within seed plants. Although the advent of molecular phylogenetics has generated some confidence in their phylogenetic placement of Gnetales within seed plants, their macroevolutionary history still presents many unknowns. Here, we review the reasons for such unknowns, and we focus the discussion on the presence of “long branches” both in their molecular and morphological history. The increased rate of molecular evolution and genome instability as well as the numerous unique traits (both reproductive and vegetative) in the Gnetales have been obstacles to a better understanding of their evolution. Moreover, the fossil record of the Gnetales, though relatively rich, has not yet been properly reviewed and investigated using a phylogenetic framework. Despite these apparent blocks to progress we identify new avenues to enable us to move forward. We suggest that a consilience approach, involving different disciplines such as developmental genetics, paleobotany, molecular phylogenetics, and traditional anatomy and morphology might help to “break” these long branches, leading to a deeper understanding of this mysterious group of plants.
Collapse
|
28
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
29
|
Xin H, Wang Y, Li Q, Wan T, Hou Y, Liu Y, Gichuki DK, Zhou H, Zhu Z, Xu C, Zhou Y, Liu Z, Li R, Liu B, Lu L, Jiang H, Zhang J, Wan J, Aryal R, Hu G, Chen Z, Gituru RW, Liang Z, Wen J, Wang Q. A genome for Cissus illustrates features underlying its evolutionary success in dry savannas. HORTICULTURE RESEARCH 2022; 9:uhac208. [PMID: 36467268 PMCID: PMC9715578 DOI: 10.1093/hr/uhac208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Cissus is the largest genus in Vitaceae and is mainly distributed in the tropics and subtropics. Crassulacean acid metabolism (CAM), a photosynthetic adaptation to the occurrence of succulent leaves or stems, indicates that convergent evolution occurred in response to drought stress during species radiation. Here we provide the chromosomal level assembly of Cissus rotundifolia (an endemic species in Eastern Africa) and a genome-wide comparison with grape to understand genome divergence within an ancient eudicot family. Extensive transcriptome data were produced to illustrate the genetics underpinning C. rotundifolia's ecological adaption to seasonal aridity. The modern karyotype and smaller genome of C. rotundifolia (n = 12, 350.69 Mb/1C), which lack further whole-genome duplication, were mainly derived from gross chromosomal rearrangements such as fusions and segmental duplications, and were sculpted by a very recent burst of retrotransposon activity. Bias in local gene amplification contributed to its remarkable functional divergence from grape, and the specific proliferated genes associated with abiotic and biotic responses (e.g. HSP-20, NBS-LRR) enabled C. rotundifolia to survive in a hostile environment. Reorganization of existing enzymes of CAM characterized as diurnal expression patterns of relevant genes further confer the ability to thrive in dry savannas.
Collapse
Affiliation(s)
| | | | | | | | - Yujun Hou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuang Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duncan Kiragu Gichuki
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Zhou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Zhu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Xu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yadong Zhou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Rongjun Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bing Liu
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Limin Lu
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Hongsheng Jiang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junnan Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Guangwan Hu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhiduan Chen
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Robert Wahiti Gituru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, 62000-00200, Nairobi, Kenya
| | | | - Jun Wen
- Corresponding authors. E-mail: ; ;
| | | |
Collapse
|
30
|
Debat H, Bejerman N. A glimpse into the DNA virome of the unique "living fossil" Welwitschia mirabilis. Gene X 2022; 843:146806. [PMID: 35963497 DOI: 10.1016/j.gene.2022.146806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022] Open
Abstract
Here, we report the identification and characterization of four novel DNA viruses from Welwitschia mirabilis transcriptomic and genomic datasets. Complete circular virus-like sequences with affinity to members of the Caulimoviridae and Geminiviridae families were detected and characterized from Welwitschia mirabilis genomic data. The two newly members of the Caulimoviridae family have been tentatively named as Welwitschia mirabilis virus 1 and 2 (WMV1-WMV2); whereas the two identified geminiviruses were named as Welwitschia mirabilis associated geminivirus A and B (WMaGVA-WMaGVB). Phylogenetic analysis suggests that WMV1-2 belong to a proposed genus of Caulimoviridae-infecting gymnosperms. WMaGVA-B are phylogenetically related with both mastreviruses and capulaviruses and likely represent a distinct evolutionary lineage within geminiviruses. Additionally, we detected several endogenous virus-like elements (EVE) linked to the discovered viruses in the recently reported W. mirabilis genome, suggesting a shared ancient evolutionary history of these viruses and the Welwithschia.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina.
| | - Nicolás Bejerman
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina.
| |
Collapse
|
31
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
32
|
Annotation of Siberian Larch (Larix sibirica Ledeb.) Nuclear Genome—One of the Most Cold-Resistant Tree Species in the Only Deciduous GENUS in Pinaceae. PLANTS 2022; 11:plants11152062. [PMID: 35956540 PMCID: PMC9370799 DOI: 10.3390/plants11152062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
The recent release of the nuclear, chloroplast and mitochondrial genome assemblies of Siberian larch (Larix sibirica Ledeb.), one of the most cold-resistant tree species in the only deciduous genus of Pinaceae, with seasonal senescence and a rot-resistant valuable timber widely used in construction, greatly contributed to the development of genomic resources for the larch genus. Here, we present an extensive repeatome analysis and the first annotation of the draft nuclear Siberian larch genome assembly. About 66% of the larch genome consists of highly repetitive elements (REs), with the likely wave of retrotransposons insertions into the larch genome estimated to occur 4–5 MYA. In total, 39,370 gene models were predicted, with 87% of them having homology to the Arabidopsis-annotated proteins and 78% having at least one GO term assignment. The current state of the genome annotations allows for the exploration of the gymnosperm and angiosperm species for relative gene abundance in different functional categories. Comparative analysis of functional gene categories across different angiosperm and gymnosperm species finds that the Siberian larch genome has an overabundance of genes associated with programmed cell death (PCD), autophagy, stress hormone biosynthesis and regulatory pathways; genes that may play important roles in seasonal senescence and stress response to extreme cold in larch. Despite being incomplete, the draft assemblies and annotations of the conifer genomes are at a point of development where they now represent a valuable source for further genomic, genetic and population studies.
Collapse
|
33
|
Yang Y, Ferguson DK, Liu B, Mao KS, Gao LM, Zhang SZ, Wan T, Rushforth K, Zhang ZX. Recent advances on phylogenomics of gymnosperms and a new classification. PLANT DIVERSITY 2022; 44:340-350. [PMID: 35967253 PMCID: PMC9363647 DOI: 10.1016/j.pld.2022.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/30/2023]
Abstract
Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina.
Collapse
Affiliation(s)
- Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, 159 Longpan Road, Nanjing Forestry University, Nanjing 210037, China
| | | | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kang-Shan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, China
| | - Shou-Zhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Zhi-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Qiao X, Zhang S, Paterson AH. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Comput Struct Biotechnol J 2022; 20:3248-3256. [PMID: 35782740 PMCID: PMC9237934 DOI: 10.1016/j.csbj.2022.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 01/09/2023] Open
Abstract
Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification, providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800 species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contributions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and global efforts may substantially recapitulate the plant tree of life based on broader sampling of phylogenetic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of WGDs in plant adaptation and radiation.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
35
|
Liu H, Zhao W, Zhang RG, Mao JF, Wang XR. Repetitive Elements, Sequence Turnover and Cyto-Nuclear Gene Transfer in Gymnosperm Mitogenomes. Front Genet 2022; 13:867736. [PMID: 35692831 PMCID: PMC9174605 DOI: 10.3389/fgene.2022.867736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Among the three genomes in plant cells, the mitochondrial genome (mitogenome) is the least studied due to complex recombination and intergenomic transfer. In gymnosperms only ∼20 mitogenomes have been released thus far, which hinders a systematic investigation into the tempo and mode of mitochondrial DNA evolution in seed plants. Here, we report the complete mitogenome sequence of Platycladus orientalis (Cupressaceae). This mitogenome is assembled as two circular-mapping chromosomes with a size of ∼2.6 Mb and which contains 32 protein-coding genes, three rRNA and seven tRNA genes, and 1,068 RNA editing sites. Repetitive sequences, including dispersed repeats, transposable elements (TEs), and tandem repeats, made up 23% of the genome. Comparative analyses with 17 other mitogenomes representing the five gymnosperm lineages revealed a 30-fold difference in genome size, 80-fold in repetitive content, and 230-fold in substitution rate. We found dispersed repeats are highly associated with mitogenome expansion (r = 0.99), and most of them were accumulated during recent duplication events. Syntenic blocks and shared sequences between mitogenomes decay rapidly with divergence time (r = 0.53), with the exceptions of Ginkgo and Cycads which retained conserved genome structure over long evolutionary time. Our phylogenetic analysis supports a sister group relationship of Cupressophytes and Gnetophytes; both groups are unique in that they lost 8–12 protein-coding genes, of which 4–7 intact genes are likely transferred to nucleus. These two clades also show accelerated and highly variable substitution rates relative to other gymnosperms. Our study highlights the dynamic and enigmatic evolution of gymnosperm mitogenomes.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- *Correspondence: Wei Zhao,
| | - Ren-Gang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, China
| | - Jian-Feng Mao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao-Ru Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
36
|
Gu X, Su Y, Wang T. 转座元件对植物基因组进化、表观遗传和适应性的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
38
|
Affiliation(s)
- James A R Clugston
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Mount Annan, NSW, Australia.
| | | |
Collapse
|
39
|
Wang M, Zhang L, Tong S, Jiang D, Fu Z. Chromosome-level genome assembly of a xerophytic plant, Haloxylon ammodendron. DNA Res 2022; 29:dsac006. [PMID: 35266513 PMCID: PMC8946665 DOI: 10.1093/dnares/dsac006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 01/30/2023] Open
Abstract
Haloxylon ammodendron is a xerophytic perennial shrub or small tree that has a high ecological value in anti-desertification due to its high tolerance to drought and salt stress. Here, we report a high-quality, chromosome-level genome assembly of H. ammodendron by integrating PacBio's high-fidelity sequencing and Hi-C technology. The assembled genome size was 685.4 Mb, of which 99.6% was assigned to nine pseudochromosomes with a contig N50 value of 23.6 Mb. Evolutionary analysis showed that both the recent substantial amplification of long terminal repeat retrotransposons and tandem gene duplication may have contributed to its genome size expansion and arid adaptation. An ample amount of low-GC genes was closely related to functions that may contribute to the desert adaptation of H. ammodendron. Gene family clustering together with gene expression analysis identified differentially expressed genes that may play important roles in the direct response of H. ammodendron to water-deficit stress. We also identified several genes possibly related to the degraded scaly leaves and well-developed root system of H. ammodendron. The reference-level genome assembly presented here will provide a valuable genomic resource for studying the genome evolution of xerophytic plants, as well as for further genetic breeding studies of H. ammodendron.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan 750001, China
| | - Shaofei Tong
- MOE Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu 610105, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhixi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
40
|
Xu L, Cao M, Wang Q, Xu J, Liu C, Ullah N, Li J, Hou Z, Liang Z, Zhou W, Liu A. Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. J Adv Res 2022; 42:221-235. [PMID: 36089521 PMCID: PMC9788944 DOI: 10.1016/j.jare.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Salvia castanea, a wild plant species is adapted to extreme Qinghai-Tibetan plateau (QTP) environments. It is also used for medicinal purposes due to high ingredient of tanshinone IIA (T-IIA). Despite its importance to Chinese medicinal industry, the mechanisms associated with secondary metabolites accumulation (i.e. T-IIA and rosmarinic acid (RA)) in this species have not been characterized. Also, the role of special underground tissues in QTP adaptation of S. castanea is still unknown. OBJECTIVES We explored the phenomenon of periderm-like structure in underground stem center of S. castanea with an aim to unravel the molecular evolutionary mechanisms of QTP adaptation in this species. METHODS Morphologic observation and full-length transcriptome of S. castanea plants were conducted. Comparative genomic analyses of S. castanea with other 14 representative species were used to reveal its phylogenetic position and molecular evolutionary mechanisms. RNA-seq and WGCNA analyses were applied to understand the mechanisms of high accumulations of T-IIA and RA in S. castanea tissues. RESULTS Based on anatomical observations, we proposed a "trunk-branches" developmental model to explain periderm-like structure in the center of underground stem of S. castanea. Our study suggested that S. castanea branched off from cultivated Danshen around 16 million years ago. During the evolutionary process, significantly expanded orthologous gene groups, 24 species-specific and 64 positively selected genes contributed to morphogenesis and QTP adaptation in S. castanea. RNA-seq and WGCNA analyses unraveled underlying mechanisms of high accumulations of T-IIA and RA in S. castanea and identified NAC29 and TGA22 as key transcription factors. CONCLUSION We proposed a "trunk-branches" developmental model for the underground stem in S. castanea. Adaptations to extreme QTP environment in S. castanea are associated with accumulations of high secondary metabolites in this species.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengting Cao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qichao Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiahao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenglin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Najeeb Ullah
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, the University of Queensland, Toowoomba, QLD 4350, Australia,Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link Gadong BE1410, Brunei Darussalam
| | - Juanjuan Li
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zhuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China,Corresponding authors.
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China,Corresponding authors.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China,Corresponding authors.
| |
Collapse
|
41
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
42
|
Gamboa-Tuz SD, Pereira-Santana A, Zhao T, Schranz ME. Applying Synteny Networks (SynNet) to Study Genomic Arrangements of Protein-Coding Genes in Plants. Methods Mol Biol 2022; 2512:199-215. [PMID: 35818007 DOI: 10.1007/978-1-0716-2429-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In comparative genomics, the study of synteny can be a powerful method for exploring genome rearrangements, inferring genomic ancestry, defining orthology relationships, determining gene and genome duplications, and inferring gene positional conservation patterns across taxa. In this chapter, we present a step-by-step protocol for microsynteny network (SynNet) analysis, as an alternative to traditional methods of synteny comparison, where nodes in the network represent protein-coding genes and edges represent the pairwise syntenic relationships. The SynNet pipeline consists of six main steps: (1) pairwise genome comparisons between all the genomes being analyzed, (2) detection of inter- and intrasynteny blocks, (3) generation of an entire synteny database (i.e., edgelist), (4) network clustering, (5) phylogenomic profiling of the gene family of interest, and (6) evolutionary inference. The SynNet approach facilitates the rapid analysis and visualization of synteny relationships (from specific genes, specific gene families up to all genes) across a large number of genomes.
Collapse
Affiliation(s)
- Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Alejandro Pereira-Santana
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Jalisco, Mexico
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
43
|
Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, Chen X, Han F, Yang J, Song Y, Nie Y, Zhou B, Wang P, Zuo Q, Zhang H, Ma J, Wang J, Wang L, Zhu Q, Zhao H, Liu Z, Zhang X, Liu T, Pei S, Li Z, Hu Y, Yang Y, Li W, Zan Y, Zhou L, Lin J, Yuan T, Li W, Li Y, Wei H, Wu HX. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2021; 185:204-217.e14. [PMID: 34965378 DOI: 10.1016/j.cell.2021.12.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.
Collapse
Affiliation(s)
- Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenhao Bo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefania Giacomello
- SciLife Lab, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Stockholm, Sweden
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Fangxu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Junhe Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yitong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yumeng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Biao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Peiyi Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Quan Zuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hui Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jingjing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Lvji Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qianya Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanhuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhanmin Liu
- Qigou State-owned Forest Farm, Pingquan, Hebei Province 067509, P. R. China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Yao Hu
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yehui Yang
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Wenzhao Li
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tongqi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; College of Material Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | - Harry X Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden; CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT 2601, Australia.
| |
Collapse
|
44
|
Groß M. 80 Millionen Jahre Überleben in der Wüste. CHEM UNSERER ZEIT 2021. [DOI: 10.1002/ciuz.202110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|