1
|
Koepfli SM, Baumann M, Gadola R, Nashashibi S, Koyaz Y, Rieben D, Güngör AC, Doderer M, Keller K, Fedoryshyn Y, Leuthold J. Controlling photothermoelectric directional photocurrents in graphene with over 400 GHz bandwidth. Nat Commun 2024; 15:7351. [PMID: 39187480 PMCID: PMC11347599 DOI: 10.1038/s41467-024-51599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Photodetection in the near- and mid-infrared spectrum requires a suitable absorbing material able to meet the respective targets while ideally being cost-effective. Graphene, with its extraordinary optoelectronic properties, could provide a material basis simultaneously serving both regimes. The zero-band gap offers almost wavelength independent absorption which lead to photodetectors operating in the infrared spectrum. However, to keep noise low, a detection mechanism with fast and zero bias operation would be needed. Here, we show a self-powered graphene photodetector with a > 400 GHz frequency response. The device combines a metamaterial perfect absorber architecture with graphene, where asymmetric resonators induce photothermoelectric directional photocurrents within the graphene channel. A quasi-instantaneous response linked to the photothermoelectric effect is found. Typical drift/diffusion times optimization are not needed for a high-speed response. Our results demonstrate that these photothermoelectric directional photocurrents have the potential to outperform the bandwidth of many other graphene photodetectors and most conventional technologies.
Collapse
Affiliation(s)
- Stefan M Koepfli
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland.
| | - Michael Baumann
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Robin Gadola
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Shadi Nashashibi
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Yesim Koyaz
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
- EPFL, Photonic Systems Laboratory (PHOSL), Lausanne, Switzerland
| | - Daniel Rieben
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Arif Can Güngör
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Michael Doderer
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Killian Keller
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Yuriy Fedoryshyn
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Juerg Leuthold
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland.
| |
Collapse
|
2
|
Wu Q, Qian J, Wang Y, Xing L, Wei Z, Gao X, Li Y, Liu Z, Liu H, Shu H, Yin J, Wang X, Peng H. Waveguide-integrated twisted bilayer graphene photodetectors. Nat Commun 2024; 15:3688. [PMID: 38693107 PMCID: PMC11063206 DOI: 10.1038/s41467-024-47925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Graphene photodetectors have exhibited high bandwidth and capability of being integrated with silicon photonics (SiPh), holding promise for future optical communication devices. However, they usually suffer from a low photoresponsivity due to weak optical absorption. In this work, we have implemented SiPh-integrated twisted bilayer graphene (tBLG) detectors and reported a responsivity of 0.65 A W-1 for telecom wavelength 1,550 nm. The high responsivity enables a 3-dB bandwidth of >65 GHz and a high data stream rate of 50 Gbit s-1. Such high responsivity is attributed to the enhanced optical absorption, which is facilitated by van Hove singularities in the band structure of high-mobility tBLG with 4.1o twist angle. The uniform performance of the fabricated photodetector arrays demonstrates a fascinating prospect of large-area tBLG as a material candidate for heterogeneous integration with SiPh.
Collapse
Affiliation(s)
- Qinci Wu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Jun Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Yuechen Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Luwen Xing
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, P. R. China
- School of Engineering, Peking University, 100871, Beijing, P. R. China
| | - Ziyi Wei
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, P. R. China
| | - Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Yurui Li
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Hongtao Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
| | - Haowen Shu
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, P. R. China
| | - Jianbo Yin
- Beijing Graphene Institute, 100095, Beijing, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China.
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, P. R. China.
| | - Xingjun Wang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, P. R. China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China.
- Beijing Graphene Institute, 100095, Beijing, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China.
| |
Collapse
|
3
|
Zhu Y, Shi Z, Zhao Y, Bu S, Hu Z, Liao J, Lu Q, Zhou C, Guo B, Shang M, Li F, Xu Z, Zhang J, Xie Q, Li C, Sun P, Mao B, Zhang X, Liu Z, Lin L. Recent trends in the transfer of graphene films. NANOSCALE 2024; 16:7862-7873. [PMID: 38568087 DOI: 10.1039/d3nr05626k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent years have witnessed advances in chemical vapor deposition growth of graphene films on metal foils with fine scalability and thickness controllability. However, challenges for obtaining wrinkle-free, defect-free and large-area uniformity remain to be tackled. In addition, the real commercial applications of graphene films still require industrially compatible transfer techniques with reliable performance of transferred graphene, excellent production capacity, and suitable cost. Transferred graphene films, particularly with a large area, still suffer from the presence of transfer-related cracks, wrinkles and contaminants, which would strongly deteriorate the quality and uniformity of transferred graphene films. Potential applications of graphene films include moisture barrier films, transparent conductive films, electromagnetic shielding films, and optical communications; such applications call different requirements for the performance of transferred graphene, which, in turn, determine the suitable transfer techniques. Besides the reliable transfer process, automatic machines should be well developed for the future batch transfer of graphene films, ensuring the repeatability and scalability. This mini-review provides a summary of recent advances in the transfer of graphene films and offers a perspective for future directions of transfer techniques that are compatible for industrial batch transfer.
Collapse
Affiliation(s)
- Yaqi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Zhuofeng Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Yixuan Zhao
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Saiyu Bu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| | - Zhaoning Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Junhao Liao
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Lu
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Chaofan Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Bingbing Guo
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Mingpeng Shang
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Fangfang Li
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Zhiying Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Jialin Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Qin Xie
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Chunhu Li
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials, Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, U.K
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
| | - Zhongfan Liu
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Pérez-López D, Gutierrez A, Sánchez D, López-Hernández A, Gutierrez M, Sánchez-Gomáriz E, Fernández J, Cruz A, Quirós A, Xie Z, Benitez J, Bekesi N, Santomé A, Pérez-Galacho D, DasMahapatra P, Macho A, Capmany J. General-purpose programmable photonic processor for advanced radiofrequency applications. Nat Commun 2024; 15:1563. [PMID: 38378716 PMCID: PMC10879507 DOI: 10.1038/s41467-024-45888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
A general-purpose photonic processor can be built integrating a silicon photonic programmable core in a technology stack comprising an electronic monitoring and controlling layer and a software layer for resource control and programming. This processor can leverage the unique properties of photonics in terms of ultra-high bandwidth, high-speed operation, and low power consumption while operating in a complementary and synergistic way with electronic processors. These features are key in applications such as next-generation 5/6 G wireless systems where reconfigurable filtering, frequency conversion, arbitrary waveform generation, and beamforming are currently provided by microwave photonic subsystems that cannot be scaled down. Here we report the first general-purpose programmable processor with the remarkable capability to implement all the required basic functionalities of a microwave photonic system by suitable programming of its resources. The processor is fabricated in silicon photonics and incorporates the full photonic/electronic and software stack.
Collapse
Affiliation(s)
- Daniel Pérez-López
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain.
- iPronics, Programmable Photonics, Valencia, Spain.
| | - Ana Gutierrez
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain
- iPronics, Programmable Photonics, Valencia, Spain
| | | | - Aitor López-Hernández
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain
| | | | - Erica Sánchez-Gomáriz
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain
- iPronics, Programmable Photonics, Valencia, Spain
| | | | | | | | - Zhenyun Xie
- iPronics, Programmable Photonics, Valencia, Spain
| | | | | | | | - Diego Pérez-Galacho
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain
| | - Prometheus DasMahapatra
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain
| | - Andrés Macho
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain
| | - José Capmany
- Photonics Research Labs, iTEAM Research Institute, Universitat Politècnica de València, Valencia, Spain.
- iPronics, Programmable Photonics, Valencia, Spain.
| |
Collapse
|
5
|
Zhong C, Liao K, Dai T, Wei M, Ma H, Wu J, Zhang Z, Ye Y, Luo Y, Chen Z, Jian J, Sun C, Tang B, Zhang P, Liu R, Li J, Yang J, Li L, Liu K, Hu X, Lin H. Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks. Nat Commun 2023; 14:6939. [PMID: 37907477 PMCID: PMC10618201 DOI: 10.1038/s41467-023-42116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Optical neural networks (ONNs) herald a new era in information and communication technologies and have implemented various intelligent applications. In an ONN, the activation function (AF) is a crucial component determining the network performances and on-chip AF devices are still in development. Here, we first demonstrate on-chip reconfigurable AF devices with phase activation fulfilled by dual-functional graphene/silicon (Gra/Si) heterojunctions. With optical modulation and detection in one device, time delays are shorter, energy consumption is lower, reconfigurability is higher and the device footprint is smaller than other on-chip AF strategies. The experimental modulation voltage (power) of our Gra/Si heterojunction achieves as low as 1 V (0.5 mW), superior to many pure silicon counterparts. In the photodetection aspect, a high responsivity of over 200 mA/W is realized. Special nonlinear functions generated are fed into a complex-valued ONN to challenge handwritten letters and image recognition tasks, showing improved accuracy and potential of high-efficient, all-component-integration on-chip ONN. Our results offer new insights for on-chip ONN devices and pave the way to high-performance integrated optoelectronic computing circuits.
Collapse
Affiliation(s)
- Chuyu Zhong
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kun Liao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Tianxiang Dai
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianghong Wu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ye Luo
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zequn Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Jialing Jian
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Chunlei Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Bo Tang
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029, Beijing, China
| | - Peng Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029, Beijing, China
| | - Ruonan Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029, Beijing, China
| | - Junying Li
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianyi Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Wu W, Ma H, Cai X, Han B, Li Y, Xu K, Lin H, Zhang F, Chen Z, Zhang Z, Peng LM, Wang S. High-Speed Carbon Nanotube Photodetectors for 2 μm Communications. ACS NANO 2023. [PMID: 37470321 DOI: 10.1021/acsnano.3c04619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In the era of big data, the growing demand for data transmission capacity requires the communication band to expand from the traditional optical communication windows (∼1.3-1.6 μm) to the 2 μm band (1.8-2.1 μm). However, the largest bandwidth (∼30 GHz) of the current high-speed photodetectors for the 2 μm window is considerably less than the developed 1.55 μm band photodetectors based on III-V materials or germanium (>100 GHz). Here, we demonstrate a high-performance carbon nanotube (CNT) photodetector that can operate in both the 2 and 1.55 μm wavelength bands based on high-density CNT arrays on a quartz substrate. The CNT photodetector exhibits a high responsivity of 0.62 A/W and a large 3 dB bandwidth of 40 GHz (setup-limited) at 2 μm. The bandwidth is larger than that of existing photodetectors working in this wavelength range. Moreover, the CNT photodetector operating at 1.55 μm exhibits a setup-limited 3 dB bandwidth over 67 GHz at zero bias. Our work indicates that CNT photodetectors with high performance and low cost have great potential for future high-speed optical communication at both the 2 and 1.55 μm bands.
Collapse
Affiliation(s)
- Weifeng Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310007, China
| | - Xiang Cai
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Bing Han
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Yan Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Ke Xu
- Department of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310007, China
| | - Fan Zhang
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Zhangyuan Chen
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Sheng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Koepfli SM, Baumann M, Koyaz Y, Gadola R, Güngör A, Keller K, Horst Y, Nashashibi S, Schwanninger R, Doderer M, Passerini E, Fedoryshyn Y, Leuthold J. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 2023; 380:1169-1174. [PMID: 37319195 DOI: 10.1126/science.adg8017] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Although graphene has met many of its initially predicted optoelectronic, thermal, and mechanical properties, photodetectors with large spectral bandwidths and extremely high frequency responses remain outstanding. In this work, we demonstrate a >500 gigahertz, flat-frequency response, graphene-based photodetector that operates under ambient conditions across a 200-nanometer-wide spectral band with center wavelengths adaptable from <1400 to >4200 nanometers. Our detector combines graphene with metamaterial perfect absorbers with direct illumination from a single-mode fiber, which breaks with the conventional miniaturization of photodetectors on an integrated photonic platform. This design allows for much higher optical powers while still allowing record-high bandwidths and data rates. Our results demonstrate that graphene photodetectors can outperform conventional technologies in terms of speed, bandwidth, and operation across a large spectral range.
Collapse
Affiliation(s)
- Stefan M Koepfli
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Michael Baumann
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Yesim Koyaz
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Robin Gadola
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Arif Güngör
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Killian Keller
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Yannik Horst
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Shadi Nashashibi
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | | | - Michael Doderer
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Elias Passerini
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Yuriy Fedoryshyn
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Juerg Leuthold
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Sorianello V, Montanaro A, Giambra MA, Ligato N, Templ W, Galli P, Romagnoli M. Graphene Photonics I/Q Modulator for Advanced Modulation Formats. ACS PHOTONICS 2023; 10:1446-1453. [PMID: 37215326 PMCID: PMC10197173 DOI: 10.1021/acsphotonics.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 05/24/2023]
Abstract
Starting from its classical domain of long distance links, optical communication is conquering new application areas down to chip-to-chip interconnections in response to the ever-increasing demand for higher bandwidth. The use of coherent modulation formats, typically employed in long-haul systems, is now debated to be extended to short links to increase the bandwidth density. Next-generation transceivers are targeting high bandwidth, high energy efficiency, compact footprint, and low cost. Integrated photonics is the only technology to reach this goal, and silicon photonics is expected to play the leading actor. However, silicon modulators have some limits, in terms of bandwidth and footprint. Graphene is an ideal material to be integrated with silicon photonics to meet the requirements of next generation transceivers. This material provides optimal properties: high mobility, fast carrier dynamics and ultrabroadband optical properties. Graphene photonics for direct detection systems based on binary modulation formats have been demonstrated so far, including electro-absorption modulators, phase modulators, and photodetectors. However, coherent modulation for increased data-rates has not yet been reported for graphene photonics yet. In this work, we present the first graphene photonics I/Q modulator based on four graphene on silicon electro-absorption modulators for advanced modulation formats and demonstrate quadrature phase shift keying (QPSK) modulation up to 40 Gb/s.
Collapse
Affiliation(s)
- Vito Sorianello
- Photonic
Networks and Technologies Lab − CNIT, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Alberto Montanaro
- Photonic
Networks and Technologies Lab − CNIT, Via G. Moruzzi 1, 56124 Pisa, Italy
- Tecip
Institute − Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy
| | | | - Nadia Ligato
- INPHOTEC,
CamGraPhIC srl, Via G.
Moruzzi 1, 56124 Pisa, Italy
| | - Wolfgang Templ
- Nokia
Bell Laboratories, Magirusstr. 10, 70469 Stuttgart, Germany
| | - Paola Galli
- Nokia
Solutions and Networks Italia, via Energy Park 14, 20871 Vimercate, Italy
| | - Marco Romagnoli
- Photonic
Networks and Technologies Lab − CNIT, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
9
|
Ilyakov I, Ponomaryov A, Reig DS, Murphy C, Mehew JD, de Oliveira TVAG, Prajapati GL, Arshad A, Deinert JC, Craciun MF, Russo S, Kovalev S, Tielrooij KJ. Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials. NANO LETTERS 2023; 23:3872-3878. [PMID: 37116109 PMCID: PMC10176577 DOI: 10.1021/acs.nanolett.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.
Collapse
Affiliation(s)
- Igor Ilyakov
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Alexey Ponomaryov
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - David Saleta Reig
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Conor Murphy
- Centre for Graphene Science, University of Exeter, Exeter, EX4 4QF, U.K
| | - Jake Dudley Mehew
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Thales V A G de Oliveira
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Gulloo Lal Prajapati
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Atiqa Arshad
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Jan-Christoph Deinert
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | | | - Saverio Russo
- Centre for Graphene Science, University of Exeter, Exeter, EX4 4QF, U.K
| | - Sergey Kovalev
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Klaas-Jan Tielrooij
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Department of Applied Physics, TU Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Li L, Zhang C, Cai Y, Zhang H, Li Y, Li X, Xiao X, Wong KKY, Zhang X. Real-time Fourier-domain optical vector oscilloscope. SCIENCE ADVANCES 2023; 9:eadg2538. [PMID: 37146145 PMCID: PMC10162662 DOI: 10.1126/sciadv.adg2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To meet the constant demands of high-capacity telecommunications infrastructure, data rates beyond 1 terabit per second per wavelength channel and optical multiplexing are widely applied. However, these features pose challenges for existing data acquisition and optical performance monitoring techniques because of bandwidth limitation and signal synchronization. We designed an approach that would address these limitations by optically converting the frequency limit to an unlimited time axis and combining this with a chirped coherent detection to innovatively obtain the full-field spectrum. With this approach, we demonstrated a real-time Fourier-domain optical vector oscilloscope, with a 3.4-terahertz bandwidth and a 280-femtosecond temporal resolution over a 520-picosecond record length. In addition to on-off keying and binary phase-shift keying signals (128 gigabits per second), quadrature phase-shift keying wavelength division-multiplexed signals (4 × 160 gigabits per second) are simultaneously observed. Moreover, we successfully demonstrate some high-precision measurements, which indicate them as a promising scientific and industrial tool in high-speed optical communication and ultrafast optical measurement.
Collapse
Affiliation(s)
- Lun Li
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Chi Zhang
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Yuchong Cai
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Hongguang Zhang
- National Information Optoelectronics Innovation Center, Wuhan 430074, China
| | - Yaoshuai Li
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xiang Li
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Xi Xiao
- National Information Optoelectronics Innovation Center, Wuhan 430074, China
- State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Kenneth Kin-Yip Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
11
|
Tan H, Wang J, Ke W, Zhang X, Zhao Z, Lin Z, Cai X. C-Band optical 90-degree hybrid using thin film lithium niobate. OPTICS LETTERS 2023; 48:1946-1949. [PMID: 37221806 DOI: 10.1364/ol.480380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 05/25/2023]
Abstract
The integrated optical 90-degree hybrid is a crucial component for coherent receivers. Here, we simulate and fabricate a 4 × 4 multimode interference coupler as a 90-degree hybrid using thin film lithium niobate (TFLN). The device features low loss (0.37 dB), high common mode rejection ratio (over 22 dB), compact footprint, and small phase error (below 2°) within the whole C-band experimentally, which is promising for integration with coherent modulators and photodetectors for TFLN-based high-bandwidth optical coherent transceivers.
Collapse
|
12
|
Grillo A, Peng Z, Pelella A, Di Bartolomeo A, Casiraghi C. Etch and Print: Graphene-Based Diodes for Silicon Technology. ACS NANO 2022; 17:1533-1540. [PMID: 36475589 PMCID: PMC9878974 DOI: 10.1021/acsnano.2c10684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The graphene-silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene's integration is currently expensive and time-consuming and shows several challenges in terms of large-scale device fabrication, effectively preventing the possibility of implementing this technology into industrial processes. Here, we show a simple and cost-effective fabrication technique, based on inkjet printing, for the realization of printed graphene-silicon rectifying devices. The printed graphene-silicon diodes show an ON/OFF ratio higher than 3 orders of magnitude and a significant photovoltaic effect, resulting in a fill factor of ∼40% and a photocurrent efficiency of ∼2%, making the devices suitable for both electronic and optoelectronic applications. Finally, we demonstrate large-area pixeled photodetectors and compatibility with back-end-of-line fabrication processes.
Collapse
Affiliation(s)
- Alessandro Grillo
- Department
of Chemistry, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Zixing Peng
- Department
of Chemistry, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Aniello Pelella
- Physics
Department “E. R. Caianiello”, University of Salerno, via Giovanni Paolo II n. 132, Fisciano84084, Salerno, Italy
| | - Antonio Di Bartolomeo
- Physics
Department “E. R. Caianiello”, University of Salerno, via Giovanni Paolo II n. 132, Fisciano84084, Salerno, Italy
| | - Cinzia Casiraghi
- Department
of Chemistry, University of Manchester, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
13
|
Xiang J, Tao Z, Li X, Zhao Y, He Y, Guo X, Su Y. Metamaterial-enabled arbitrary on-chip spatial mode manipulation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:168. [PMID: 35650178 PMCID: PMC9160251 DOI: 10.1038/s41377-022-00859-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 05/25/2023]
Abstract
On-chip spatial mode operation, represented as mode-division multiplexing (MDM), can support high-capacity data communications and promise superior performance in various systems and numerous applications from optical sensing to nonlinear and quantum optics. However, the scalability of state-of-the-art mode manipulation techniques is significantly hindered not only by the particular mode-order-oriented design strategy but also by the inherent limitations of possibly achievable mode orders. Recently, metamaterials capable of providing subwavelength-scale control of optical wavefronts have emerged as an attractive alternative to manipulate guided modes with compact footprints and broadband functionalities. Herein, we propose a universal yet efficient design framework based on the topological metamaterial building block (BB), enabling the excitation of arbitrary high-order spatial modes in silicon waveguides. By simply programming the layout of multiple fully etched dielectric metamaterial perturbations with predefined mathematical formulas, arbitrary high-order mode conversion and mode exchange can be simultaneously realized with uniform and competitive performance. The extraordinary scalability of the metamaterial BB frame is experimentally benchmarked by a record high-order mode operator up to the twentieth. As a proof of conceptual application, an 8-mode MDM data transmission of 28-GBaud 16-QAM optical signals is also verified with an aggregate data rate of 813 Gb/s (7% FEC). This user-friendly metamaterial BB concept marks a quintessential breakthrough for comprehensive manipulation of spatial light on-chip by breaking the long-standing shackles on the scalability, which may open up fascinating opportunities for complex photonic functionalities previously inaccessible.
Collapse
Affiliation(s)
- Jinlong Xiang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyuan Tao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingfeng Li
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaotian Zhao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu He
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuhan Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yikai Su
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Wang Z, Zhu J, Zheng P, Shen H, Gao B, Ge J, Xu Y, Yan X, Zhan R, Yang Y, Jiang Y, Wu T. Near Room-Temperature Synthesis of Vertical Graphene Nanowalls on Dielectrics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21348-21355. [PMID: 35482578 DOI: 10.1021/acsami.2c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vertical graphene nanowalls (VGNs) with excellent heat-transfer properties are promising to be applied in the thermal management of electronic devices. However, high growth temperature makes VGNs unable to be directly prepared on semiconductors and polymers, which limits the practical application of VGNs. In this work, the near room-temperature growth of VGNs was realized by utilizing the hot filament chemical vapor deposition method. Catalytic tantalum (Ta) filaments promote the decomposition of acetylene at ∼1600 °C. Density functional theory calculations proved that C2H* was the main active carbon cluster during VGN growth. The restricted diffusion of C2H* clusters induced the vertical growth of graphene nanoflakes on various substrates below 150 °C. The direct growth of VGNs successfully realized the excellent interfacial contact, and the thermal contact resistance could reach 3.39 × 10-9 m2·K·W-1. The temperature of electronic chips had a 6.7 °C reduction by utilizing directly prepared VGNs instead of thermal conductive tape as thermal-interface materials, indicating the great potential of VGNs to be directly prepared on electronic devices for thermal management.
Collapse
Affiliation(s)
- Zehui Wang
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Junkui Zhu
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Peiru Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Honglie Shen
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Boxiang Gao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiawei Ge
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Yajun Xu
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Xuejun Yan
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Ruonan Zhan
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Yang
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Tianru Wu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
15
|
Xu M, Cai X. Advances in integrated ultra-wideband electro-optic modulators [Invited]. OPTICS EXPRESS 2022; 30:7253-7274. [PMID: 35299491 DOI: 10.1364/oe.449022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Increasing data traffic and bandwidth-hungry applications require electro-optic modulators with ultra-wide modulation bandwidth for cost-efficient optical networks. Thus far, integrated solutions have emerged to provide high bandwidth and low energy consumption in compact sizes. Here, we review the design guidelines and delicate structures for higher bandwidth, applying them to lumped-element and traveling-wave electrodes. Additionally, we focus on candidate material platforms with the potential for ultra-wideband optical systems. By comparing the superiority and mechanism limitations of different integrated modulators, we design a future roadmap based on the recent advances.
Collapse
|
16
|
Zhou H, Dong J, Cheng J, Dong W, Huang C, Shen Y, Zhang Q, Gu M, Qian C, Chen H, Ruan Z, Zhang X. Photonic matrix multiplication lights up photonic accelerator and beyond. LIGHT, SCIENCE & APPLICATIONS 2022; 11:30. [PMID: 35115497 PMCID: PMC8814250 DOI: 10.1038/s41377-022-00717-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Matrix computation, as a fundamental building block of information processing in science and technology, contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms. Photonic accelerators are designed to accelerate specific categories of computing in the optical domain, especially matrix multiplication, to address the growing demand for computing resources and capacity. Photonic matrix multiplication has much potential to expand the domain of telecommunication, and artificial intelligence benefiting from its superior performance. Recent research in photonic matrix multiplication has flourished and may provide opportunities to develop applications that are unachievable at present by conventional electronic processors. In this review, we first introduce the methods of photonic matrix multiplication, mainly including the plane light conversion method, Mach-Zehnder interferometer method and wavelength division multiplexing method. We also summarize the developmental milestones of photonic matrix multiplication and the related applications. Then, we review their detailed advances in applications to optical signal processing and artificial neural networks in recent years. Finally, we comment on the challenges and perspectives of photonic matrix multiplication and photonic acceleration.
Collapse
Affiliation(s)
- Hailong Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianji Dong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Junwei Cheng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenchan Dong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoran Huang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Qiming Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, ZJU-UIUC Institute, Zhejiang University, Hangzhou, 310027, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, ZJU-UIUC Institute, Zhejiang University, Hangzhou, 310027, China
| | - Zhichao Ruan
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
17
|
Abstract
With the increasing demand for capacity in communications networks, the use of integrated photonics to transmit, process and manipulate digital and analog signals has been extensively explored. Silicon photonics, exploiting the complementary-metal-oxide-semiconductor (CMOS)-compatible fabrication technology to realize low-cost, robust, compact, and power-efficient integrated photonic circuits, is regarded as one of the most promising candidates for next-generation chip-scale information and communication technology (ICT). However, the electro-optic modulators, a key component of Silicon photonics, face challenges in addressing the complex requirements and limitations of various applications under state-of-the-art technologies. In recent years, the graphene EO modulators, promising small footprints, high temperature stability, cost-effective, scalable integration and a high speed, have attracted enormous interest regarding their hybrid integration with SiPh on silicon-on-insulator (SOI) chips. In this paper, we summarize the developments in the study of silicon-based graphene EO modulators, which covers the basic principle of a graphene EO modulator, the performance of graphene electro-absorption (EA) and electro-refractive (ER) modulators, as well as the recent advances in optical communications and microwave photonics (MWP). Finally, we discuss the emerging challenges and potential applications for the future practical use of silicon-based graphene EO modulators.
Collapse
|
18
|
Graphene on Silicon Photonics: Light Modulation and Detection for Cutting-Edge Communication Technologies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Graphene—a two-dimensional allotrope of carbon in a single-layer honeycomb lattice nanostructure—has several distinctive optoelectronic properties that are highly desirable in advanced optical communication systems. Meanwhile, silicon photonics is a promising solution for the next-generation integrated photonics, owing to its low cost, low propagation loss and compatibility with CMOS fabrication processes. Unfortunately, silicon’s photodetection responsivity and operation bandwidth are intrinsically limited by its material characteristics. Graphene, with its extraordinary optoelectronic properties has been widely applied in silicon photonics to break this performance bottleneck, with significant progress reported. In this review, we focus on the application of graphene in high-performance silicon photonic devices, including modulators and photodetectors. Moreover, we explore the trend of development and discuss the future challenges of silicon-graphene hybrid photonic devices.
Collapse
|
19
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|