1
|
Chrzanowski S, Batra R. CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatr Neurol 2024; 153:166-174. [PMID: 38394831 DOI: 10.1016/j.pediatrneurol.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.
Collapse
Affiliation(s)
- Stephen Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
| | | |
Collapse
|
2
|
Tourdot S, Baltrunkonis D, Denies S, Devanarayan V, Grudzinska-Goebel J, Kromminga A, Lotz GP, Malherbe L, Michaut L, Weldingh KN, Pedras-Vasconcelos JA, Salazar-Fontana LI, Spindeldreher S, Sauna Z, Snoeck V, Verthelyi D, Kramer D. Proceedings of the 14th European immunogenicity platform open symposium on immunogenicity of biopharmaceuticals. MAbs 2024; 16:2324801. [PMID: 38441119 PMCID: PMC10936655 DOI: 10.1080/19420862.2024.2324801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Biologics have revolutionized disease management in many therapeutic areas by addressing unmet medical needs and overcoming resistance to standard-of-care treatment in numerous patients. However, the development of unwanted immune responses directed against these drugs, humoral and/or cellular, can hinder their efficacy and have safety consequences with various degrees of severity. Health authorities ask that a thorough immunogenicity risk assessment be conducted during drug development to incorporate an appropriate monitoring and mitigation plan in clinical studies. With the rapid diversification and complexification of biologics, which today include modalities such as multi-domain antibodies, cell-based products, AAV delivery vectors, and nucleic acids, developers are faced with the challenge of establishing a risk assessment strategy sometimes in the absence of specific regulatory guidelines. The European Immunogenicity Platform (EIP) Open Symposium on Immunogenicity of Biopharmaceuticals and its one-day training course gives experts and newcomers across academia, industry, and regulatory agencies an opportunity to share experience and knowledge to overcome these challenges. Here, we report the discussions that took place at the EIP's 14th Symposium, held in April 2023. The topics covered included immunogenicity monitoring and clinical relevance, non-clinical immunogenicity risk assessment, regulatory aspects of immunogenicity assessment and reporting, and the challenges associated with new modalities, which were discussed in a dedicated session.
Collapse
Affiliation(s)
- Sophie Tourdot
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Andover, MA, USA
| | - Daniel Baltrunkonis
- Research and Development, Clinical Pharmacology and Bioanalytics, Clinical Bioanalytics, Groton, CT, USA
| | | | | | | | | | - Gregor P. Lotz
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Laurent Malherbe
- Lilly Research Laboratories, a Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Lydia Michaut
- Novartis Biomedical research, PK Sciences, Basel, Switzerland
| | - Karin N. Weldingh
- Department of Clinical Immunogenicity Analysis, Novo Nordisk A/S, Maaloev, Denmark
| | - Joao A. Pedras-Vasconcelos
- Division of Biotech Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Zuben Sauna
- Division of hemostasis, Office of Plasma Protein Therapeutics; Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Veerle Snoeck
- Translational Biomarkers and Bioanalysis, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Daniela Verthelyi
- Division of Biologics Research and Review III; Ofrfice of Biotechnology Products; Center for Drug Evaluation and Research; Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, MD, USA
| | - Daniel Kramer
- Global Scientific Advisor Immunogenicity, Translational Medicine & Early Development, Sanofi Aventis Deutschland GmbH, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Nguyen NH, Jarvi NL, Balu-Iyer SV. Immunogenicity of Therapeutic Biological Modalities - Lessons from Hemophilia A Therapies. J Pharm Sci 2023; 112:2347-2370. [PMID: 37220828 DOI: 10.1016/j.xphs.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The introduction and development of biologics such as therapeutic proteins, gene-, and cell-based therapy have revolutionized the scope of treatment for many diseases. However, a significant portion of the patients develop unwanted immune reactions against these novel biological modalities, referred to as immunogenicity, and no longer benefit from the treatments. In the current review, using Hemophilia A (HA) therapy as an example, we will discuss the immunogenicity issue of multiple biological modalities. Currently, the number of therapeutic modalities that are approved or recently explored to treat HA, a hereditary bleeding disorder, is increasing rapidly. These include, but are not limited to, recombinant factor VIII proteins, PEGylated FVIII, FVIII Fc fusion protein, bispecific monoclonal antibodies, gene replacement therapy, gene editing therapy, and cell-based therapy. They offer the patients a broader range of more advanced and effective treatment options, yet immunogenicity remains the most critical complication in the management of this disorder. Recent advances in strategies to manage and mitigate immunogenicity will also be reviewed.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA; Currently at Truvai Biosciences, Buffalo, NY, USA
| | - Nicole L Jarvi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Szapacs M, Jian W, Spellman D, Cunliffe J, Verburg E, Kaur S, Kellie J, Li W, Mehl J, Qian M, Qiu X, Sirtori FR, Rosenbaum AI, Sikorski T, Surapaneni S, Wang J, Wilson A, Zhang J, Xue Y, Post N, Huang Y, Goykhman D, Yuan L, Fang K, Casavant E, Chen L, Fu Y, Huang M, Ji A, Johnson J, Lassman M, Li J, Saad O, Sarvaiya H, Tao L, Wang Y, Zheng N, Dasgupta A, Abhari MR, Ishii-Watabe A, Saito Y, Mendes Fernandes DN, Bower J, Burns C, Carleton K, Cho SJ, Du X, Fjording M, Garofolo F, Kar S, Kavetska O, Kossary E, Lu Y, Mayer A, Palackal N, Salha D, Thomas E, Verhaeghe T, Vinter S, Wan K, Wang YM, Williams K, Woolf E, Yang L, Yang E, Bandukwala A, Hopper S, Maher K, Xu J, Brodsky E, Cludts I, Irwin C, Joseph J, Kirshner S, Manangeeswaran M, Maxfield K, Pedras-Vasconcelos J, Solstad T, Thacker S, Tounekti O, Verthelyi D, Wadhwa M, Wagner L, Yamamoto T, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: ICH M10 BMV Guideline & Global Harmonization; Hybrid Assays; Oligonucleotides & ADC; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Mass Spectrometry, Chromatography and Sample Preparation, Novel Technologies, Novel Modalities, and Novel Challenges, ICH M10 BMV Guideline & Global Harmonization Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2023; 15:955-1016. [PMID: 37650500 DOI: 10.4155/bio-2023-0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | - Yongjun Xue
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ola Saad
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Essawi K, Hakami W, Naeem Khan MB, Martin R, Zeng J, Chu R, Uchida N, Bonifacino AC, Krouse AE, Linde NS, Donahue RE, Blobel GA, Gerdemann U, Kean LS, Maitland SA, Wolfe SA, Metais JY, Gottschalk S, Bauer DE, Tisdale JF, Demirci S. Pre-existing immunity does not impair the engraftment of CRISPR-Cas9-edited cells in rhesus macaques conditioned with busulfan or radiation. Mol Ther Methods Clin Dev 2023; 29:483-493. [PMID: 37273902 PMCID: PMC10236215 DOI: 10.1016/j.omtm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.
Collapse
Affiliation(s)
- Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Waleed Hakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Muhammad Behroz Naeem Khan
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reid Martin
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ulrike Gerdemann
- Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Leslie S. Kean
- Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Stacy A. Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Yves Metais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
6
|
Li Y, Li X, Zhang L, Luan X, Jiang J, Zhang L, Li M, Wang J, Duan J, Zhao H, Zhao Y, Huang C. From the teapot effect to tap-triggered self-wetting: a 3D self-driving sieve for whole blood filtration. MICROSYSTEMS & NANOENGINEERING 2023; 9:30. [PMID: 36960347 PMCID: PMC10027851 DOI: 10.1038/s41378-023-00490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Achieving passive microparticle filtration with micropore membranes is challenging due to the capillary pinning effect of the membranes. Inspired by the teapot effect that occurs when liquid (tea) is poured from a teapot spout, we proposed a tap-triggered self-wetting strategy and utilized the method with a 3D sieve to filter rare cells. First, a 3D-printed polymer tap-trigger microstructure was implemented. As a result, the 3 µm micropore membrane gating threshold (the pressure needed to open the micropores) was lowered from above 3000 to 80 Pa by the tap-trigger microstructure that facilated the liquid leakage and spreading to self-wet more membrane area in a positive feedback loop. Then, we implemented a 3D cone-shaped cell sieve with tap-trigger microstructures. Driven by gravity, the sieve performed at a high throughput above 20 mL/min (DPBS), while the micropore size and porosity were 3 µm and 14.1%, respectively. We further filtered leukocytes from whole blood samples with the proposed new 3D sieve, and the method was compared with the traditional method of leukocyte isolation by chemically removing red blood cells. The device exhibited comparable leukocyte purity but a higher platelet removal rate and lower leukocyte simulation level, facilitating downstream single-cell analysis. The key results indicated that the tap-triggered self-wetting strategy could significantly improve the performance of passive microparticle filtration.
Collapse
Affiliation(s)
- Yuang Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University / Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149 China
| | - Xiaofeng Luan
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiahong Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Jinghui Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University / Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149 China
| | - Jiangang Duan
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
7
|
Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol 2023; 11:1138596. [PMID: 36873375 PMCID: PMC9978118 DOI: 10.3389/fbioe.2023.1138596] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
CRISPR offers new hope for many patients and promises to transform the way we think of future therapies. Ensuring safety of CRISPR therapeutics is a top priority for clinical translation and specific recommendations have been recently released by the FDA. Rapid progress in the preclinical and clinical development of CRISPR therapeutics leverages years of experience with gene therapy successes and failures. Adverse events due to immunogenicity have been a major setback that has impacted the field of gene therapy. As several in vivo CRISPR clinical trials make progress, the challenge of immunogenicity remains a significant roadblock to the clinical availability and utility of CRISPR therapeutics. In this review, we examine what is currently known about the immunogenicity of CRISPR therapeutics and discuss several considerations to mitigate immunogenicity for the design of safe and clinically translatable CRISPR therapeutics.
Collapse
Affiliation(s)
- Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University, Newgiza, Egypt
| | - Karen S. Anderson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
8
|
Montesinos-Rongen M, Sanchez-Ruiz M, Siebert S, Winter C, Siebert R, Brunn A, Deckert M. Expression of Cas9 in a Syngeneic Model of Primary Central Nervous System Lymphoma Induces Intracerebral NK and CD8 T Cell-Mediated Lymphoma Cell Lysis Via Perforin. CRISPR J 2022; 5:726-739. [PMID: 36260299 DOI: 10.1089/crispr.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of clustered regulatory interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene modification has opened an exciting avenue of targeting genes to study the pathogenesis of diseases and to develop novel therapeutic concepts. However, as the effector protein Cas9 is of bacterial origin, unwanted side effects due to a host immune response against Cas9 need to be considered. Here, we used the syngeneic model of BAL17CNS-induced primary lymphoma of the central nervous system (PCNSL, CNS) in BALB/c mice to address this issue. Surprisingly, stable expression of Cas9 in BAL17CNS (BAL17CNS/Cas9) cells rendered them unable to establish PCNSL on intracerebral transplantation. Instead, they induced a prominent intracerebral immune response mediated by CD8 T cells, which lysed BAL17CNS/Cas9 cells via perforin. In addition, B cells contributed to the immune response as evidenced by serum anti-Cas9 antibodies in BALB/c mice as early as day 8 after transplantation of BAL17CNS/Cas9 cells. In athymic BALB/cnu/nu mice, NK cells mounted a vigorous intracerebral immune response with perforin-mediated destruction of BAL17CNS/Cas9 cells. Thus, in the CNS, perforin produced by NK and CD8 T cells was identified as a mediator of cytotoxicity against BAL17CNS/Cas9 cells. These observations should be taken into account when considering therapeutic CRISPR-Cas9-mediated tumor cell manipulation for PCNSL.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Monica Sanchez-Ruiz
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Susann Siebert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Claudia Winter
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Shen X, Lin Q, Liang Z, Wang J, Yang X, Liang Y, Liang H, Pan H, Yang J, Zhu Y, Li M, Xiang W, Zhu H. Reduction of Pre-Existing Adaptive Immune Responses Against SaCas9 in Humans Using Epitope Mapping and Identification. CRISPR J 2022; 5:445-456. [PMID: 35686980 DOI: 10.1089/crispr.2021.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CRISPR-Cas9 system is increasingly being used as a gene editing therapeutic technique in complex diseases but concerns remain regarding the clinical risks of Cas9 immunogenicity. In this study, we detected antibodies against Staphylococcus aureus Cas9 (SaCas9) and anti-SaCas9 T cells in 4.8% and 70% of Chinese donors, respectively. We predicted 135 SaCas9-derived B cell epitopes and 50 SaCas9-derived CD8+ T cell epitopes for HLA-A*24:02, HLA-A*11:01, and HLA-A*02:01. We identified R338 as an immunodominant SaCas9 B cell epitope and SaCas9_200-208 as an immunodominant CD8+ T cell epitope for the three human leukocyte antigen allotypes through immunological assays using sera positive for SaCas9-specific antibodies and peripheral blood mononuclear cells positive for SaCas9-reactive T cells, respectively. We also demonstrated that an SaCas9 variant bearing an R338G substitution reduces B cell immunogenicity and retains its gene-editing function. Our study highlights the immunological risks of the CRISPR-Cas9 system and provides a solution to mitigate pre-existing adaptive immune responses against Cas9 in humans.
Collapse
Affiliation(s)
- Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Weirong Xiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
2021 White Paper on Recent Issues in Bioanalysis: TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness ( Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccine Assays; Immunogenicity of Biotherapeutics and Novel Modalities; Integrated Summary of Immunogenicity Harmonization). Bioanalysis 2022; 14:737-793. [PMID: 35578991 DOI: 10.4155/bio-2022-0081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) are published in volume 14 of Bioanalysis, issues 9 and 10 (2022), respectively.
Collapse
|
11
|
2021 White Paper on Recent Issues in Bioanalysis: Mass Spec of Proteins, Extracellular Vesicles, CRISPR, Chiral Assays, Oligos; Nanomedicines Bioanalysis; ICH M10 Section 7.1; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC & Part 1B - Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2022; 14:505-580. [PMID: 35578993 DOI: 10.4155/bio-2022-0078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.
Collapse
|