1
|
Georgaki G, Mpakali A, Trakada M, Papakyriakou A, Stratikos E. Polymorphic positions 349 and 725 of the autoimmunity-protective allotype 10 of ER aminopeptidase 1 are key in determining its unique enzymatic properties. Front Immunol 2024; 15:1415964. [PMID: 39493758 PMCID: PMC11527673 DOI: 10.3389/fimmu.2024.1415964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction ER aminopeptidase 1 (ERAP1) is a polymorphic intracellular aminopeptidase with key roles in antigen presentation and adaptive immune responses. ERAP1 allotype 10 is highly protective toward developing some forms of autoimmunity and displays unusual functional properties, including very low activity versus some substrates. Methods To understand the molecular mechanisms that underlie the biology of allotype 10, we studied its enzymatic and biophysical properties focusing on its unique polymorphisms V349M and Q725R. Results Compared to ancestral allotype 1, allotype 10 is much less effective in trimming small substrates but presents allosteric kinetics that ameliorate activity differences at high substrate concentrations. Furthermore, it is inhibited by a transition-state analogue via a non-competitive mechanism and is much less responsive to an allosteric small-molecule modulator. It also presents opposite enthalpy, entropy, and heat capacity of activation compared to allotype 1, and its catalytic rate is highly dependent on viscosity. Polymorphisms V349M and Q725R significantly contribute to the lower enzymatic activity of allotype 10 for small substrates, especially at high substrate concentrations, influence the cooperation between the regulatory and active sites, and regulate viscosity dependence, likely by limiting product release. Conclusions Overall, our results suggest that allotype 10 is not just an inactive variant of ERAP1 but rather carries distinct enzymatic properties that largely stem from changes at positions 349 and 725. These changes affect kinetic and thermodynamic parameters that likely control rate-limiting steps in the catalytic cycle, resulting in an enzyme optimized for sparing small substrates and contributing to the homeostasis of antigenic epitopes in the ER.
Collapse
Affiliation(s)
- Galateia Georgaki
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Myrto Trakada
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| |
Collapse
|
2
|
Mpakali A, Georgaki G, Buson A, Findlay AD, Foot JS, Mauvais F, van Endert P, Giastas P, Hamprecht DW, Stratikos E. Stabilization of the open conformation οf insulin-regulated aminopeptidase by a novel substrate-selective small-molecule inhibitor. Protein Sci 2024; 33:e5151. [PMID: 39167040 PMCID: PMC11337929 DOI: 10.1002/pro.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Insulin-regulated aminopeptidase (IRAP) is an enzyme with important biological functions and the target of drug-discovery efforts. We combined in silico screening with a medicinal chemistry optimization campaign to discover a nanomolar inhibitor of IRAP based on a pyrazolylpyrimidine scaffold. This compound displays an excellent selectivity profile versus homologous aminopeptidases, and kinetic analysis suggests it utilizes an uncompetitive mechanism of action when inhibiting the cleavage of a typical dipeptidic substrate. Surprisingly, the compound is a poor inhibitor of the processing of the physiological cyclic peptide substrate oxytocin and a 10mer antigenic epitope precursor but displays a biphasic inhibition profile for the trimming of a 9mer antigenic peptide. While the compound reduces IRAP-dependent cross-presentation of an 8mer epitope in a cellular assay, it fails to block in vitro trimming of select epitope precursors. To gain insight into the mechanism and basis of this unusual selectivity for this inhibitor, we solved the crystal structure of its complex with IRAP. The structure indicated direct zinc(II) engagement by the pyrazolylpyrimidine scaffold and revealed that the compound binds to an open conformation of the enzyme in a pose that should block the conformational transition to the enzymatically active closed conformation previously observed for other low-molecular-weight inhibitors. This compound constitutes the first IRAP inhibitor targeting the active site that utilizes a conformation-specific mechanism of action, provides insight into the intricacies of the IRAP catalytic cycle, and highlights a novel approach to regulating IRAP activity by blocking its conformational rearrangements.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| | - Galateia Georgaki
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| | | | | | | | | | - Peter van Endert
- INSERM, CNRS, Institut Necker Enfants MaladesUniversité Paris CitéParisFrance
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & BiotechnologyAgricultural University of AthensAthensGreece
| | | | - Efstratios Stratikos
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
3
|
Fougiaxis V, He B, Khan T, Vatinel R, Koutroumpa NM, Afantitis A, Lesire L, Sierocki P, Deprez B, Deprez-Poulain R. ERAP Inhibitors in Autoimmunity and Immuno-Oncology: Medicinal Chemistry Insights. J Med Chem 2024; 67:11597-11621. [PMID: 39011823 DOI: 10.1021/acs.jmedchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ben He
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Tuhina Khan
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rodolphe Vatinel
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | | | | | - Laetitia Lesire
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Pierre Sierocki
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Benoit Deprez
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Mpakali A, Barla I, Lu L, Ramesh KM, Thomaidis N, Stern LJ, Giastas P, Stratikos E. Mechanisms of Allosteric Inhibition of Insulin-Regulated Aminopeptidase. J Mol Biol 2024; 436:168449. [PMID: 38244767 DOI: 10.1016/j.jmb.2024.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Inhibition of Insulin-Regulated Aminopeptidase is being actively explored for the treatment of several human diseases and several classes of inhibitors have been developed although no clinical applications have been reported yet. Here, we combine enzymological analysis with x-ray crystallography to investigate the mechanism employed by two of the most studied inhibitors of IRAP, an aryl sulfonamide and a 2-amino-4H-benzopyran named HFI-419. Although both compounds have been hypothesized to target the enzyme's active site by competitive mechanisms, we discovered that they instead target previously unidentified proximal allosteric sites and utilize non-competitive inhibition mechanisms. X-ray crystallographic analysis demonstrated that the aryl sulfonamide stabilizes the closed, more active, conformation of the enzyme whereas HFI-419 locks the enzyme in a semi-open, and likely less active, conformation. HFI-419 potency is substrate-dependent and fails to effectively block the degradation of the physiological substrate cyclic peptide oxytocin. Our findings demonstrate alternative mechanisms for inhibiting IRAP through allosteric sites and conformational restricting and suggest that the pharmacology of HFI-419 may be more complicated than initially considered. Such conformation-specific interactions between IRAP and small molecules can be exploited for the design of more effective second-generation allosteric inhibitors.
Collapse
Affiliation(s)
- Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece
| | - Ioanna Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Karthik M Ramesh
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece.
| |
Collapse
|
5
|
Anderluzzi G, Ghitti M, Gasparri AM, Taiè G, Sacchi A, Gori A, Andolfo A, Pozzi F, Musco G, Curnis F, Corti A. A novel aminopeptidase N/CD13 inhibitor selectively targets an endothelial form of CD13 after coupling to proteins. Cell Mol Life Sci 2024; 81:68. [PMID: 38289472 PMCID: PMC10827914 DOI: 10.1007/s00018-023-05102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region. Fusing the peptide C-terminus to tumor necrosis factor-alpha (TNF) or coupling it to a biotin/avidin complex causes loss of binding and inhibitory activity against different forms of CD13, including natural or recombinant ectoenzyme and a membrane form expressed by HL60 promyelocytic leukemia cells (likely due to steric hindrance), but not binding to a membrane form of CD13 expressed by endothelial cells (ECs). Furthermore, G4-TNF systemically administered to tumor-bearing mice exerted anticancer effects through a CD13-targeting mechanism, indicating the presence of a CD13 form in tumor vessels with an accessible binding site. Biochemical studies showed that most CD13 molecules expressed on the surface of ECs are catalytically inactive. Other functional assays showed that these molecules can promote endothelial cell adhesion to plates coated with G4-avidin complexes, suggesting that the endothelial form of CD13 can exert catalytically independent biological functions. In conclusion, ECs express a catalytically inactive form of CD13 characterized by an accessible conformation that can be selectively targeted by G4-protein conjugates. This form of CD13 may represent a specific target receptor for ligand-directed targeted delivery of therapeutics to tumors.
Collapse
Affiliation(s)
- Giulia Anderluzzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Michela Ghitti
- Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giulia Taiè
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, C.N.R., Milan, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pozzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
6
|
Pande S, Guo HC. Structure-guided discovery of aminopeptidase ERAP1 variants capable of processing antigens with novel PC anchor specificities. Immunology 2024; 171:131-145. [PMID: 37858978 PMCID: PMC10841542 DOI: 10.1111/imm.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.
Collapse
Affiliation(s)
- Suchita Pande
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Present Address: Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
7
|
Jiao F, Bao Y, Li M, Zhang Y, Zhang F, Wang P, Tao J, Tong HHY, Guo J. Unraveling the mechanism of ceftaroline-induced allosteric regulation in penicillin-binding protein 2a: insights for novel antibiotic development against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2023; 67:e0089523. [PMID: 37971241 PMCID: PMC10720500 DOI: 10.1128/aac.00895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) acquires high-level resistance against β-lactam antibiotics by expressing penicillin-binding protein 2a (PBP2a). PBP2a is a cell wall-synthesizing protein whose closed active site exhibits a reduced binding affinity toward β-lactam antibiotics. Ceftaroline (CFT), a fifth-generation cephalosporin, can effectively inhibit the PBP2a activity by binding to an allosteric site to trigger the active site opening, allowing a second CFT to access the active site. However, the essential mechanism behind the allosteric behavior of PBP2a remains unclear. Herein, computational simulations are employed to elucidate how CFT allosterically regulates the conformation and dynamics of the active site of PBP2a. While CFT stabilizes the allosteric domain surrounding it, it simultaneously enhances the dynamics of the catalytic domain. Specifically, the study successfully captured the opening process of the active pocket in the allosteric CFT-bound systems and discovered that CFT alters the potential signal-propagating pathways from the allosteric site to the active site. These findings reveal the implied mechanism of the CFT-mediated allostery in PBP2a and provide new insights into dual-site drug design or combination therapy against MRSA targeting PBP2a.
Collapse
Affiliation(s)
- Fangfang Jiao
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pinkai Wang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Tao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Henry H. Y. Tong
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| |
Collapse
|
8
|
Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Shedding Light on the Role of ERAP1 in Axial Spondyloarthritis. Cureus 2023; 15:e48806. [PMID: 38024089 PMCID: PMC10645460 DOI: 10.7759/cureus.48806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Spondyloarthritis (SpA) is a multifactorial chronic inflammatory disease affecting the axial skeleton (axSpA) and/or peripheral joints (p-SpA) and entheses. The disease's pathogenesis depends on genetic, immunological, mechanical, and environmental factors. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex (MHC) class I molecules. Genome-wide association studies (GWAS) have identified different single nucleotide polymorphisms (SNPs) in ERAP1 that are associated with several autoimmune diseases, including axSpA. Therefore, a deeper understanding of the ERAP1 role in axSpA could make it a potential therapeutic target for this disease and offer greater insight into its impact on the immune system. Here, we review the biological functions and structure of ERAP1, discuss ERAP1 polymorphisms and their association with axSpA, highlight the interaction between ERAP1 and human leukocyte antigen (HLA)-B27, and review the association between ERAP1 SNPs and axSpA clinical parameters.
Collapse
Affiliation(s)
- Mohamed A Saad
- Rheumatology and Rehabilitation, Physical Medicine and Rehabilitation (PMR) Hospital, Kuwait, KWT
| | - Amal B Abdul-Sattar
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ibrahim T Abdelal
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ahmed Baraka
- Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, EGY
| |
Collapse
|
9
|
Temponeras I, Samiotaki M, Koumantou D, Nikopaschou M, Kuiper JJW, Panayotou G, Stratikos E. Distinct modulation of cellular immunopeptidome by the allosteric regulatory site of ER aminopeptidase 1. Eur J Immunol 2023; 53:e2350449. [PMID: 37134263 DOI: 10.1002/eji.202350449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses. ERAP1 contains an allosteric regulatory site that accommodates the C-terminus of at least some peptide substrates, raising questions about its exact influence on antigen presentation and the potential of allosteric inhibition for cancer immunotherapy. We used an inhibitor that targets this regulatory site to study its effect on the immunopeptidome of a human cancer cell line. The immunopeptidomes of allosterically inhibited and ERAP1 KO cells contain high-affinity peptides with sequence motifs consistent with the cellular HLA class I haplotypes but are strikingly different in peptide composition. Compared to KO cells, allosteric inhibition did not affect the length distribution of peptides and skewed the peptide repertoire both in terms of sequence motifs and HLA allele utilization, indicating significant mechanistic differences between the two ways of disrupting ERAP1 function. These findings suggest that the regulatory site of ERAP1 plays distinct roles in antigenic peptide selection, which should be taken into consideration when designing therapeutic interventions targeting the cancer immunopeptidome.
Collapse
Affiliation(s)
- Ioannis Temponeras
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Pharmacy, University of Patras, Patra, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming,", Institute for Bioinnovation, Vari, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
| | - Martha Nikopaschou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming,", Institute for Bioinnovation, Vari, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
10
|
Madabushi S, Chow KM, Song ES, Goswami A, Hersh LB, Rodgers DW. Structure of puromycin-sensitive aminopeptidase and polyglutamine binding. PLoS One 2023; 18:e0287086. [PMID: 37440518 PMCID: PMC10343166 DOI: 10.1371/journal.pone.0287086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Puromycin-sensitive aminopeptidase (E.C. 3.4.11.14, UniProt P55786), a zinc metallopeptidase belonging to the M1 family, degrades a number of bioactive peptides as well as peptides released from the proteasome, including polyglutamine. We report the crystal structure of PSA at 2.3 Ǻ. Overall, the enzyme adopts a V-shaped architecture with four domains characteristic of the M1 family aminopeptidases, but it is in a less compact conformation compared to most M1 enzymes of known structure. A microtubule binding sequence is present in a C-terminal HEAT repeat domain of the enzyme in a position where it might serve to mediate interaction with tubulin. In the catalytic metallopeptidase domain, an elongated active site groove lined with aromatic and hydrophobic residues and a large S1 subsite may play a role in broad substrate recognition. The structure with bound polyglutamine shows a possible interacting mode of this peptide, which is supported by mutation.
Collapse
Affiliation(s)
- Sowmya Madabushi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Suk Song
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anwesha Goswami
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - David W. Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
11
|
Paldino G, Fierabracci A. Shedding new light on the role of ERAP1 in Type 1 diabetes: A perspective on disease management. Autoimmun Rev 2023; 22:103291. [PMID: 36740089 DOI: 10.1016/j.autrev.2023.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes mellitus (T1D) is a multifactorial organ specific autoimmune disease which originates from the destruction of insulin-producing beta cells within the pancreatic islets by autoreactive CD8+ T lymphocytes. The autoimmune responses are raised against autoantigenic peptides presented in the context of the Major Histocompatibility Complex (MHC) class I molecules. Peptides are generated in the cytoplasm of the beta cell by degradation through the proteasome activity and other proteases. Proteolytic intermediate protein fragments are then vehicled into the endoplasmic reticulum (ER) by transporters associated with antigen processing TAP1 and TAP2. In the ER, Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the intermediate proteins to produce the optimal peptide size for loading into the MHC class I molecules. Subsequently complexes are shuttled to the cell surface for antigen presentation. Genome Wide Association Studies (GWAS) have identified different SNPs of ERAP1 associated to several autoimmune diseases and in particular the T1D-related ERAP1 SNP rs30187 encoding for K528R ERAP1. An association between the ER stress and the increased exposure of beta cells to the immune system has been hypothesized to further contribute to the etiopathogenesis. In particular in a recent study by Thomaidou et al. 2020 (doi: https://doi.org/10.2337/db19-0984) the posttranscriptional regulation of ERAP1 is shown to shaping the recognition of the preproinsulin (PPI) signal peptide by cytotoxic T lymphocytes. In the light of foregoing ERAP1 inhibitors could potentially prevent the activation of epitope-specific autoimmune-promoting T cells and their cytokine production; further regulating ERAP1 expression at posttranscriptional level under stress conditions of the beta cells could help to reverse autoimmune process through limiting epitope-presentation to autoreactive T cells. In this article we provide a perspective on the role of ERAP1 as implicated in the pathogenesis of insulin-dependent diabetes mellitus by reviewing studies reported in literature and discussing our own experimental evidence.
Collapse
|
12
|
Advancing our knowledge of antigen processing with computational modelling, structural biology, and immunology. Biochem Soc Trans 2023; 51:275-285. [PMID: 36645000 DOI: 10.1042/bst20220782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Antigen processing is an immunological mechanism by which intracellular peptides are transported to the cell surface while bound to Major Histocompatibility Complex molecules, where they can be surveyed by circulating CD8+ or CD4+ T-cells, potentially triggering an immunological response. The antigen processing pathway is a complex multistage filter that refines a huge pool of potential peptide ligands derived from protein degradation into a smaller ensemble for surface presentation. Each stage presents unique challenges due to the number of ligands, the polymorphic nature of MHC and other protein constituents of the pathway and the nature of the interactions between them. Predicting the ensemble of displayed peptide antigens, as well as their immunogenicity, is critical for improving T cell vaccines against pathogens and cancer. Our predictive abilities have always been hindered by an incomplete empirical understanding of the antigen processing pathway. In this review, we highlight the role of computational and structural approaches in improving our understanding of antigen processing, including structural biology, computer simulation, and machine learning techniques, with a particular focus on the MHC-I pathway.
Collapse
|
13
|
Georgiadis D, Skoulikas N, Papakyriakou A, Stratikos E. Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacol Transl Sci 2022; 5:1228-1253. [PMID: 36524013 PMCID: PMC9745897 DOI: 10.1021/acsptsci.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Nikolaos Skoulikas
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| | - Efstratios Stratikos
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| |
Collapse
|
14
|
Huang M, Xu H. Genetic susceptibility to autoimmunity-Current status and challenges. Adv Immunol 2022; 156:25-54. [PMID: 36410874 DOI: 10.1016/bs.ai.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoimmune diseases (ADs) often arise from a combination of genetic and environmental triggers that disrupt the immune system's capability to properly tolerate body self-antigens. Familial studies provided the earliest insights into the risk loci of such diseases, while genome-wide association studies (GWAS) significantly broadened the horizons. A drug targeting a prominent pathological pathway can be applied to multiple indications sharing overlapping mechanisms. Advances in genomic technologies used in genetic studies provide critical insights into future research on gene-environment interactions in autoimmunity. This Review summarizes the history and recent advances in the understanding of genetic susceptibility to ADs and related immune disorders, including coronavirus disease 2019 (COVID-19), and their indications for the development of diagnostic or prognostic markers for translational applications.
Collapse
Affiliation(s)
| | - Huji Xu
- School of Medicine, Tsinghua University, Beijing, China; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Navel Medical University, Shanghai, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Vourloumis D, Mavridis I, Athanasoulis A, Temponeras I, Koumantou D, Giastas P, Mpakali A, Magrioti V, Leib J, van Endert P, Stratikos E, Papakyriakou A. Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin. J Med Chem 2022; 65:10098-10117. [PMID: 35833347 DOI: 10.1021/acs.jmedchem.2c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-β-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-β-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.
Collapse
Affiliation(s)
- Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Alexandros Athanasoulis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Petros Giastas
- Department of Biotechnology, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Jacqueline Leib
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.,Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| |
Collapse
|
16
|
Arya R, Maben Z, Rane D, Ali A, Stern LJ. Phenylsulfamoyl Benzoic Acid Inhibitor of ERAP2 with a Novel Mode of Inhibition. ACS Chem Biol 2022; 17:1756-1768. [PMID: 35767698 DOI: 10.1021/acschembio.2c00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ERAP1 and ERAP2 are endoplasmic reticulum zinc-binding aminopeptidases that play crucial roles in processing peptides for loading onto class I major histocompatibility complex proteins. These enzymes are therapeutic targets in cancer and autoimmune disorders. The discovery of inhibitors specific to ERAP1 or ERAP2 has been challenging due to the similarity in their active site residues and domain architectures. Here, we identify 4-methoxy-3-{[2-piperidin-1-yl-4-(trifluoromethyl) phenyl] sulfamoyl} benzoic acid (compound 61) as a novel inhibitor of ERAP2 and determine the crystal structure of ERAP2 bound to compound 61. Compound 61 binds near the catalytic center of ERAP2, at a distinct site from previously known peptidomimetic inhibitors, and inhibits by an uncompetitive mechanism. Surprisingly, for ERAP1, compound 61 was found to activate model substrate hydrolysis, similarly to the previously characterized 5-trifluoromethyl regioisomer of compound 61, known as compound 3. We characterized the specificity determinants of ERAP1 and ERAP2 that control the binding of compounds 3 and 61. At the active site of ERAP1, Lys380 in the S1' pocket is a key determinant for the binding of both compounds 3 and 61. At the allosteric site, ERAP1 binds either compound, leading to the activation of model substrate hydrolysis. Although ERAP2 substrate hydrolysis is not activated by either compound, the mutation of His904 to alanine reveals a cryptic allosteric site that allows for the activation by compound 3. Thus, we have identified selectivity determinants in the active and allosteric sites of ERAP2 that govern the binding of two similar compounds, which potentially could be exploited to develop more potent and specific inhibitors.
Collapse
Affiliation(s)
- Richa Arya
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Digamber Rane
- Kansas University Specialized Chemistry Center, Lawrence, Kansas 66047, United States
| | - Akbar Ali
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States.,Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
17
|
Conformational remodeling enhances activity of lanthipeptide zinc-metallopeptidases. Nat Chem Biol 2022; 18:724-732. [PMID: 35513512 DOI: 10.1038/s41589-022-01018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023]
Abstract
Lanthipeptides are an important group of natural products with diverse biological functions, and their biosynthesis requires the removal of N-terminal leader peptides (LPs) by designated proteases. LanPM1 enzymes, a subgroup of M1 zinc-metallopeptidases, have been recently identified as bifunctional proteases with both endo- and aminopeptidase activities to remove LPs of class III and class IV lanthipeptides. Herein, we report the biochemical and structural characterization of EryP as the LanPM1 enzyme from the biosynthesis of class III lanthipeptide erythreapeptin. We determined X-ray crystal structures of EryP in three conformational states, the open, intermediate and closed states, and identified a unique interdomain Ca2+ binding site as a regulatory element that modulates its domain dynamics and proteolytic activity. Inspired by this regulatory Ca2+ binding, we developed a strategy to engineer LanPM1 enzymes for enhanced catalytic activities by strengthening interdomain associations and driving the conformational equilibrium toward their closed forms.
Collapse
|
18
|
Papakyriakou A, Mpakali A, Stratikos E. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Front Immunol 2022; 13:863529. [PMID: 35514997 PMCID: PMC9065437 DOI: 10.3389/fimmu.2022.863529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) play important roles in the generation of antigenic peptides presented by Major Histocompatibility Class I (MHCI) molecules and indirectly regulate adaptive immune responses. Although the discrete function of these enzymes has been extensively characterized, recent reports have suggested that they can also form heterodimers with functional consequences. However, lack of structural characterization of a putative ERAP1/ERAP2 dimer has limited our understanding of its biological role and significance. To address this, we employed computational molecular dynamics calculations to explore the topology of interactions between these two, based on experimentally determined homo-dimerization interfaces observed in crystal structures of ERAP2 or homologous enzymes. Our analysis of 8 possible dimerization models, suggested that the most likely ERAP1/ERAP2 heterodimerization topology involves the exon 10 loop, a non-conserved loop previously implicated in interactions between ERAP1 and the disulfide-bond shuffling chaperone ERp44. This dimerization topology allows access to the active site of both enzymes and is consistent with a previously reported construct in which ERAP1 and ERAP2 were linked by Fos/Jun zipper tags. The proposed model constitutes a tentative structural template to help understand the physiological role and significance of ERAP1/ERAP2 molecular interactions.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anastasia Mpakali
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Efstratios Stratikos
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Kokkala P, Voreakos K, Lelis A, Patiniotis K, Skoulikas N, Devel L, Ziotopoulou A, Kaloumenou E, Georgiadis D. Practical Synthesis of Phosphinic Dipeptides by Tandem Esterification of Aminophosphinic and Acrylic Acids under Silylating Conditions. Molecules 2022; 27:molecules27041242. [PMID: 35209031 PMCID: PMC8876710 DOI: 10.3390/molecules27041242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is based on the tandem esterification of α-aminophosphinic and acrylic acids under silylating conditions in order to subsequently participate in a P-Michael reaction. The scope of the transformation was investigated by using a diverse set of readily available acrylic acids and (R)-α-aminophosphinic acids, and high yields were achieved in all cases. In most examples reported herein, the isolation of biologically relevant (R,S)-diastereoisomers became possible by simple crystallization from the crude products, thus enhancing the operational simplicity of the proposed method. Finally, functional groups corresponding to acidic or basic natural amino acids are also compatible with the reaction conditions. Based on the above, we expect that the practicality of the proposed protocol will facilitate the discovery of pharmacologically useful bioactive phosphinic peptides.
Collapse
Affiliation(s)
- Paraskevi Kokkala
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Kostas Voreakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Konstantinos Patiniotis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Nikolaos Skoulikas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Laurent Devel
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
- Correspondence: ; Tel.: +30-2107274903
| |
Collapse
|
20
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|