1
|
Lambert S, Vercauteren M, Catarino AI, Li Y, Van Landuyt J, Boon N, Everaert G, De Rijcke M, Janssen CR, Asselman J. Aerosolization of micro- and nanoplastics via sea spray: Investigating the role of polymer type, size, and concentration, and potential implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124105. [PMID: 38710359 DOI: 10.1016/j.envpol.2024.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Micro- and nanoplastics (MNPs) can enter the atmosphere via sea spray aerosols (SSAs), but the effects of plastic characteristics on the aerosolization process are unclear. Furthermore, the importance of the transport of MNPs via these SSAs as a possible new exposure route for human health remains unknown. The aim of this study was two-fold: (1) to examine if a selection of factors affects aerosolization processes of MNPs, and (2) to estimate human exposure to MNPs via aerosols inhalation. A laboratory-based bubble bursting mechanism, simulating the aerosolization process at sea, was used to investigate the influence of MNP as well as seawater characteristics. To determine the potential human exposure to microplastics via inhalation of SSAs, the results of the laboratory experiments were extrapolated to the field based on sea surface microplastic concentrations and the volume of inhaled aerosols. Enrichment seemed to be influenced by MNP size, concentration and polymer type. With higher enrichment for smaller particles and denser polymers. Experiments with different concentrations showed a larger range of variability but nonetheless lower concentrations seemed to result in higher enrichment, presumably due to lower aggregation. In addition to the MNP characteristics, the type of seawater used seemed to influence the aerosolization process. Our human exposure estimate to microplastic via inhalation of sea spray aerosols shows that in comparison with reported inhaled concentrations in urban and indoor environments, this exposure route seems negligible for microplastics. Following the business-as-usual scenario on plastic production, the daily plastic inhalation in coastal areas in 2100 is estimated to increase but remain far below 1 particle per day. This study shows that aerosolization of MNPs is a new plastic transport pathway to be considered, but in terms of human exposure it seems negligible compared to other more important sources of MNPs, based on current reported environmental concentrations.
Collapse
Affiliation(s)
- Silke Lambert
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Ana Isabel Catarino
- Flanders Marine Institute (VLIZ), Research Department Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium.
| | - Yunmeng Li
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Oostende, Belgium; Flanders Marine Institute (VLIZ), Research Department Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium.
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Gert Everaert
- Flanders Marine Institute (VLIZ), Research Department Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium.
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), Research Department Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium.
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Oostende, Belgium; Ghent University Environmental Toxicology Lab (Ghentoxlab), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Oostende, Belgium.
| |
Collapse
|
2
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
3
|
Lang-Yona N, Flores JM, Nir-Zadock TS, Nussbaum I, Koren I, Vardi A. Impact of airborne algicidal bacteria on marine phytoplankton blooms. THE ISME JOURNAL 2024; 18:wrae016. [PMID: 38442732 PMCID: PMC10944695 DOI: 10.1093/ismejo/wrae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Ocean microbes are involved in global processes such as nutrient and carbon cycling. Recent studies indicated diverse modes of algal-bacterial interactions, including mutualism and pathogenicity, which have a substantial impact on ecology and oceanic carbon sequestration, and hence, on climate. However, the airborne dispersal and pathogenicity of bacteria in the marine ecosystem remained elusive. Here, we isolated an airborne algicidal bacterium, Roseovarius nubinhibens, emitted to the atmosphere as primary marine aerosol (referred also as sea spray aerosols) and collected above a coccolithophore bloom in the North Atlantic Ocean. The aerosolized bacteria retained infective properties and induced lysis of Gephyrocapsa huxleyi cultures.This suggests that the transport of marine bacteria through the atmosphere can effectively spread infection agents over vast oceanic regions, highlighting its significance in regulating the cell fate in algal blooms.
Collapse
Affiliation(s)
- Naama Lang-Yona
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Technion - Israel Institute of Technology, Environmental, Water and Agricultural Engineering, Haifa 3200003, Israel
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Sharon Nir-Zadock
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Nussbaum
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilan Koren
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Zhang R, Wang S, Zhang S, Xue R, Zhu J, Zhou B. MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass. J Environ Sci (China) 2022; 120:63-73. [PMID: 35623773 DOI: 10.1016/j.jes.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 06/15/2023]
Abstract
As a passive remote sensing technique, MAX-DOAS method was widely used to investigate the vertical profiles of aerosol and trace gases in the lower troposphere. However, the measurements for midlatitude marine boundary layer are rarely reported, especially during the storm weather system. In this study, the MAX-DOAS was used to retrieve the aerosol, HCHO and NO2 vertical distribution at Huaniao Island of East China Sea in summer 2018, during which a strong tropical cyclone developed and passed through the measurement site. The observed aerosol optical depth (AOD), HCHO- and NO2-VCDs (Vertical Column Density) were in the range of 0.19-0.97, (2.57-12.27) × 1015 molec/cm2, (1.24-4.71) × 1015 molec/cm2, which is much higher than remote ocean area due to the short distance to continent. The vertically resolved aerosol extinction coefficient (AEC), HCHO and NO2 presented the decline trend with the increase of height. After the typhoon passing through, the distribution of high levels of aerosol and HCHO stretched to about 1 km and the abundances of the bottom layer were found as double higher than before, reaching 0.51 km-1 and 2.44 ppbv, while NO2 was still constrained within about 300 m with 2.59 ppbv in the bottom layer. The impacts of typhoon process forced air mass were also observed at the suburban site in Shanghai in view of both the aerosol extinction and chemical components. The different changes on air quality associated with typhoon and its mechanism in two different environments: coastal island and coastal city are worthy of further investigation as it frequent occurred in East Asia during summer and fall.
Collapse
Affiliation(s)
- Ruifeng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), No. 20 Cuiniao Road, Shanghai 202162, China.
| | - Sanbao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ruibin Xue
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jian Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), No. 20 Cuiniao Road, Shanghai 202162, China; Zhuhai Fudan Innovation Institute, Zhuhai 519000, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|