1
|
Irving M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol 2025; 22:9-19. [PMID: 39030271 DOI: 10.1038/s41569-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart - this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.
Collapse
Affiliation(s)
- Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and BHF Centre for Research Excellence, King's College London, London, UK.
| |
Collapse
|
2
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Parijat P, Attili S, Hoare Z, Shattock M, Kenyon V, Kampourakis T. Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening. Nat Commun 2023; 14:7692. [PMID: 38001148 PMCID: PMC10673995 DOI: 10.1038/s41467-023-43538-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Direct modulation of cardiac myosin function has emerged as a therapeutic target for both heart disease and heart failure. However, the development of myosin-based therapeutics has been hampered by the lack of targeted in vitro screening assays. In this study we use Artificial Intelligence-based virtual high throughput screening (vHTS) to identify novel small molecule effectors of human β-cardiac myosin. We test the top scoring compounds from vHTS in biochemical counter-screens and identify a novel chemical scaffold called 'F10' as a cardiac-specific low-micromolar myosin inhibitor. Biochemical and biophysical characterization in both isolated proteins and muscle fibers show that F10 stabilizes both the biochemical (i.e. super-relaxed state) and structural (i.e. interacting heads motif) OFF state of cardiac myosin, and reduces force and left ventricular pressure development in isolated myofilaments and Langendorff-perfused hearts, respectively. F10 is a tunable scaffold for the further development of a novel class of myosin modulators.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Zoe Hoare
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Michael Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | | | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
4
|
Nag S, Gollapudi SK, Del Rio CL, Spudich JA, McDowell R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: From a motor protein to patients. SCIENCE ADVANCES 2023; 9:eabo7622. [PMID: 37506209 DOI: 10.1126/sciadv.abo7622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder characterized by left ventricular hypertrophy, hyperdynamic contraction, and impaired relaxation of the heart. These functional derangements arise directly from altered sarcomeric function due to either mutations in genes encoding sarcomere proteins, or other defects such as abnormal energetics. Current treatment options do not directly address this causal biology but focus on surgical and extra-sarcomeric (sarcolemmal) pharmacological symptomatic relief. Mavacamten (formerly known as MYK-461), is a small molecule designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin, the fundamental motor of the sarcomere. This review summarizes the mechanism and translational progress of mavacamten from proteins to patients, describing how the mechanism of action and pharmacological characteristics, involving both systolic and diastolic effects, can directly target pathophysiological derangements within the cardiac sarcomere to improve cardiac structure and function in HCM. Mavacamten was approved by the Food and Drug Administration in April 2022 for the treatment of obstructive HCM and now goes by the commercial name of Camzyos. Full information about the risks, limitations, and side effects can be found at www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf.
Collapse
Affiliation(s)
- Suman Nag
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Sampath K Gollapudi
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Carlos L Del Rio
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
- Cardiac Consulting, 1630 S Delaware St. #56426, San Mateo, CA 94403, USA
| | | | - Robert McDowell
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| |
Collapse
|
5
|
Marcucci L. Muscle Mechanics and Thick Filament Activation: An Emerging Two-Way Interaction for the Vertebrate Striated Muscle Fine Regulation. Int J Mol Sci 2023; 24:ijms24076265. [PMID: 37047237 PMCID: PMC10094676 DOI: 10.3390/ijms24076265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new “dual-filament” activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Center for Biosystems Dynamics Research, RIKEN, Suita 565-0874, Japan
| |
Collapse
|
6
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Rasicci DV, Tiwari P, Bodt SML, Desetty R, Sadler FR, Sivaramakrishnan S, Craig R, Yengo CM. Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting-heads motif and super-relaxed state of myosin. eLife 2022; 11:e77415. [PMID: 36422472 PMCID: PMC9691020 DOI: 10.7554/elife.77415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The auto-inhibited, super-relaxed (SRX) state of cardiac myosin is thought to be crucial for regulating contraction, relaxation, and energy conservation in the heart. We used single ATP turnover experiments to demonstrate that a dilated cardiomyopathy (DCM) mutation (E525K) in human beta-cardiac myosin increases the fraction of myosin heads in the SRX state (with slow ATP turnover), especially in physiological ionic strength conditions. We also utilized FRET between a C-terminal GFP tag on the myosin tail and Cy3ATP bound to the active site of the motor domain to estimate the fraction of heads in the closed, interacting-heads motif (IHM); we found a strong correlation between the IHM and SRX state. Negative stain electron microscopy and 2D class averaging of the construct demonstrated that the E525K mutation increased the fraction of molecules adopting the IHM. Overall, our results demonstrate that the E525K DCM mutation may reduce muscle force and power by stabilizing the auto-inhibited SRX state. Our studies also provide direct evidence for a correlation between the SRX biochemical state and the IHM structural state in cardiac muscle myosin. Furthermore, the E525 residue may be implicated in crucial electrostatic interactions that modulate this conserved, auto-inhibited conformation of myosin.
Collapse
Affiliation(s)
- David V Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| | - Prince Tiwari
- Department of Radiology, Division of Cell Biology and Imaging, UMass Chan Medical SchoolWorcesterUnited States
| | - Skylar ML Bodt
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| | - Fredrik R Sadler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin CitiesMinneapolisUnited States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin CitiesMinneapolisUnited States
| | - Roger Craig
- Department of Radiology, Division of Cell Biology and Imaging, UMass Chan Medical SchoolWorcesterUnited States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
8
|
Alim CC, Ko CY, Mira Hernandez J, Shen EY, Baidar S, Chen‐Izu Y, Bers DM, Bossuyt J. Nitrosylation of cardiac CaMKII at Cys290 mediates mechanical afterload-induced increases in Ca 2+ transient and Ca 2+ sparks. J Physiol 2022; 600:4865-4879. [PMID: 36227145 PMCID: PMC9827875 DOI: 10.1113/jp283427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiac mechanical afterload induces an intrinsic autoregulatory increase in myocyte Ca2+ dynamics and contractility to enhance contraction (known as the Anrep effect or slow force response). Our prior work has implicated both nitric oxide (NO) produced by NO synthase 1 (NOS1) and calcium/calmodulin-dependent protein kinase II (CaMKII) activity as required mediators of this form of mechano-chemo-transduction. To test whether a single S-nitrosylation site on CaMKIIδ (Cys290) mediates enhanced sarcoplasmic reticulum Ca2+ leak and afterload-induced increases in sarcoplasmic reticulum (SR) Ca2+ uptake and release, we created a novel CRISPR-based CaMKIIδ knock-in (KI) mouse with a Cys to Ala mutation at C290. These CaMKIIδ-C290A-KI mice exhibited normal cardiac morphometry and function, as well as basal myocyte Ca2+ transients (CaTs) and β-adrenergic responses. However, the NO donor S-nitrosoglutathione caused an acute increased Ca2+ spark frequency in wild-type (WT) myocytes that was absent in the CaMKIIδ-C290A-KI myocytes. Using our cell-in-gel system to exert multiaxial three-dimensional mechanical afterload on myocytes during contraction, we found that WT myocytes exhibited an afterload-induced increase in Ca2+ sparks and Ca2+ transient amplitude and rate of decline. These afterload-induced effects were prevented in both cardiac-specific CaMKIIδ knockout and point mutant CaMKIIδ-C290A-KI myocytes. We conclude that CaMKIIδ activation by S-nitrosylation at the C290 site is essential in mediating the intrinsic afterload-induced enhancement of myocyte SR Ca2+ uptake, release and Ca2+ transient amplitude (the Anrep effect). The data also indicate that NOS1 activation is upstream of S-nitrosylation at C290 of CaMKII, and that this molecular mechano-chemo-transduction pathway is beneficial in allowing the heart to increase contractility to limit the reduction in stroke volume when aortic pressure (afterload) is elevated. KEY POINTS: A novel CRISPR-based CaMKIIδ knock-in mouse was created in which kinase activation by S-nitrosylation at Cys290 (C290A) is prevented. How afterload affects Ca2+ signalling was measured in cardiac myocytes that were embedded in a hydrogel that imposes a three-dimensional afterload. This mechanical afterload induced an increase in Ca2+ transient amplitude and decay in wild-type myocytes, but not in cardiac-specific CaMKIIδ knockout or C290A knock-in myocytes. The CaMKIIδ-C290 S-nitrosylation site is essential for the afterload-induced enhancement of Ca2+ transient amplitude and Ca2+ sparks.
Collapse
Affiliation(s)
- Chidera C. Alim
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | | | - Juliana Mira Hernandez
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA,Research Group in Veterinary MedicineSchool of Veterinary MedicineUniversity Corporation LasallistaCaldasAntioquiaColombia
| | - Erin Y. Shen
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Sonya Baidar
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Ye Chen‐Izu
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA,Department of Biomedical EngineeringUniversity of CaliforniaDavisCAUSA,Department of Internal Medicine/CardiologyUniversity of CaliforniaDavisCAUSA
| | - Donald M. Bers
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Julie Bossuyt
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
9
|
Solaro RJ. Widely cited publications of Michael Bárány in 1964 and 1967 as tipping points in understanding myosin molecular motors. Arch Biochem Biophys 2022; 727:109319. [PMID: 35709967 DOI: 10.1016/j.abb.2022.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
In 1964 Michael Bárány and colleagues published a paper ((M. Bárány, E. Gaetjens, K. Bárány, Karp E. Arch Biochem Biophys 106(1964)280-93. http://10.1016/0003-9861(64)90,189-4)) that has been one of the most cited papers in Archives of Biochemistry and Biophysics. This was followed in 1967 by another most cited paper (M. Bárány. J Gen Physiol 50(1967)197-218. https://doi.org/10.1085/jgp.50.6.197). I have commemorated these achievements as tipping points in the understanding of myosin motors in muscle function. Tipping points are generally defined as a temporal point in which a series of progressive advances (in this case the understanding of the relations between myosin ATP hydrolysis and muscle function) inspire more expansive, wide-ranging, significant changes. I first concisely summarize the background against which the papers came to publication as well as the unimaginable personal challenges faced by Michael and Kate Bárány. A final section summarizes the impact of these publications as key steps in the progression of contemporary understanding of diverse control of myosin ATPase activity with focus on the thick filaments in cardiac homeostasis, disorders, and as targets for therapeutic applications in translational investigations.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL, USA.
| |
Collapse
|