1
|
Jiang C, Hou M, Sun S, Chen G, Bai F, Wang S. Targeting Lcn2 to Inhibit Myocardial Cell Ferroptosis is a Potential Therapy for Alleviating Septic Cardiomyopathy. Inflammation 2025:10.1007/s10753-025-02250-3. [PMID: 39899131 DOI: 10.1007/s10753-025-02250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Septic cardiomyopathy (SCM) represents a key feature of sepsis-associated cardiovascular failure, and ferroptosis is one of the essential causes of septic cardiac dysfunction. In this study, combined with omics analysis and in vivo experiments, we verified the damage of ferroptosis on cardiac tissue in septic mice and mined the target genes that can inhibit ferroptosis in cardiomyocytes. Lipocalin-2 (Lcn2) was identified to be associated with SCM progression via integrated transcriptomic and proteomic analyses. Sepsis was induced by cecal ligation and perforation (CLP) in mice. Ferroptosis and cardiac dysfunction were detected by pathological tissue staining and ELISA. However, after the knockout of Lcn2, cardiomyocyte ferroptosis was significantly suppressed, inflammatory infiltrates were reduced, reactive oxygen species (ROS) levels were lowered, mitochondrial damage was alleviated, and cardiac function was restored in CLP mice. In summary, this study found that Lcn2 can be a potential target for inhibiting ferroptosis in SCM. Targeting Lcn2 can effectively inhibit inflammation, improve mitochondrial dysfunction, inhibit cardiomyocyte ferroptosis, and alleviate SCM.
Collapse
Affiliation(s)
- Cheng Jiang
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - MingTong Hou
- The Second Hospital &Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shougang Sun
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - Gang Chen
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - Feng Bai
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - Shengbao Wang
- Emergency Department of Lanzhou, University Second Hospital, Lanzhou, China.
- The Second Hospital of Lanzhou University, No.82, Zuiyingmen, Chengguan District, Lanzhou City, Gansu Province, China.
| |
Collapse
|
2
|
Ye Q, Zou T, Chen B, Xu L, Yuwen Z, Liu H, Zhang K. Engineering of a low intrinsic fluorescence and chemical-stable fluorescent probe enables highly sensitive detection of biothiols and high-fidelity imaging of dihydroartemisinin-induced ferroptosis. SENSORS AND ACTUATORS B: CHEMICAL 2025; 424:136913. [DOI: 10.1016/j.snb.2024.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Yi J, Zhang W, Li Y, Ren H, Xiang Y, Qiao C. Recent advances in crosstalk between immune cells and cancer cells with ferroptosis. Life Sci 2025; 360:123279. [PMID: 39608446 DOI: 10.1016/j.lfs.2024.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis and necrosis. Key hallmarks include iron-dependent lipid peroxidation, glutathione depletion, and intracellular iron accumulation, all of which are counteracted by specific cellular defenses. However, the immunosuppressive effects of ferroptosis induction in cancer immunotherapy remain unresolved. This review summarizes the recent advancements in ferroptosis research, focusing on its defensive mechanisms. It analyzes how ferroptosis affects both cancer and immune cells, highlighting its potential inhibitory effects on anti-tumor immunity and possible promotion of pro-tumor immune responses. Finally, this review briefly introduces case studies that combined ferroptosis induction with immunotherapy, offering novel perspectives for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Yi
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wanting Zhang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - He Ren
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Yuhang Xiang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Yang H, Li G, Zhang J, Zhao J, Zhao Y, Wu Y, Sun Z, Song S, Zou Y, Zou Z, Han X, Deng B, Wang L, Rao H, Xu G, Wang S, Guo S, Ding H, Shi Y, Wu Y, Chen J. A novel hollow iron nanoparticle system loading PEG-Fe 3O 4 with C5a receptor antagonist for breast cancer treatment. Front Immunol 2024; 15:1466180. [PMID: 39483473 PMCID: PMC11524822 DOI: 10.3389/fimmu.2024.1466180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Breast cancer is the most diagnosed malignancy and major cause of cancer death among women population in the worldwide. Ferroptosis is a recently discovered iron-dependent regulated cell death involved in tumor progression and therapeutic response. Moreover, increasing studies have implied that ferroptosis is a promising approach to eliminating cancer cells like developing iron nanoparticles as a therapeutic agent. However, resistance to ferroptosis is a vital distinctive hallmark of cancer. Therefore, further investigation of the mechanism of ferroptosis resistance to enhance its tumor sensitivity is essential for ferroptosis-target breast cancer therapy. Our results revealed that the activation of C5a/C5aR pathway can drive resistance to ferroptosis and reshaping breast cancer immune microenvironment. Accordingly, loading PEG-Fe3O4 with C5aRA significantly improved the anti-tumor effect of PEG- Fe3O4 by inhibiting ferroptosis resistance and increasing macrophage polarization toward M1 phenotype. Our findings presented a novel cancer therapy strategy that combined cancer cell metal metabolism regulation and immunotherapy. The study also provided support for further evaluation of PEG- Fe3O4@C5aRA as a novel therapeutic strategy for breast cancer in clinical trials.
Collapse
Affiliation(s)
- Hong Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guiqing Li
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji Zhang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Zhao
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunpei Zhao
- Department of Cardio-renal, Chinese People’s Liberation Army 74th Group Military Hospital, Guangzhou, China
| | - Yufei Wu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zihan Sun
- Breast Disease Center, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangshuang Song
- The First Affiliated Hospital of Army Military Medical University, Department of General Practice, Chongqing, China
| | - Ying Zou
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhihao Zou
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Han
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boshao Deng
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lulu Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang Rao
- Department of General Surgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guilian Xu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shufeng Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng Guo
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huanyu Ding
- Institute of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Shi
- Department of General Surgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuzhang Wu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
6
|
Ding D, Shang W, Shi K, Ying J, Wang L, Chen Z, Zhang C. FTO/m6A mediates miR-138-5p maturation and regulates gefitinib resistance of lung adenocarcinoma cells by miR-138-5p/LCN2 axis. BMC Cancer 2024; 24:1270. [PMID: 39394098 PMCID: PMC11470737 DOI: 10.1186/s12885-024-13036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Lung cancer (LC) occupies an important position in the lethality of cancer patients. Acquired resistance to gefitinib in lung adenocarcinoma (LUAD) seriously affects the therapeutic efficacy of LC. Thus, it is of major scientific and clinical significance to probe the mechanism of gefitinib resistance in LUAD for ameliorating the prognosis of patients. METHODS The expression of miRNAs in gefitinib-resistant LUAD cells was validated using qRT-PCR. Cell viability was assessed through CCK-8, whereas cell death was examined through PI staining. Changes in the ferroptosis process were evaluated by detecting the intracellular Glutathione (GSH), Malondialdehyde (MDA), and Reactive Oxygen Species (ROS) levels. Downstream targets of miR-138-5p were verified via luciferase reporter and RNA pull-down assays. RIP and qRT-PCR were employed to evaluate pri-miR-138-5p binding to DiGeorge critical region 8 (DGCR8) and the pri-miR-138-5p m6A modification level. Additionally, the impact of fat mass and obesity-associated protein (FTO) on LUAD gefitinib sensitivity was assessed in vivo by constructing a xenograft model. RESULTS We observed that miR-138-5p was notably diminished in gefitinib-resistant cells. Overexpression of miR-138-5p suppressed viability while facilitated cell death and intracellular ferroptosis in gefitinib-resistant cells. Moreover, lipocalin 2 (LCN2) was the downstream target of miR-138-5p. The biological functions of miR-138-5p on gefitinib-resistant cells was reversed by introduction of LCN2. FTO suppressed the binding of DGCR8 to pri-miR-138-5p through m6A modification, thereby restraining the processing of miR-138-5p. Meanwhile, silencing of FTO enhanced the sensitivity of LUAD to gefitinib treatment. CONCLUSION FTO suppressed the processing of miR-138-5p and then modulated the proliferation, death, and ferroptosis of gefitinib-resistant cells through the miR-138-5p/LCN2 pathway, which may put forward novel insights for clinically ameliorating the therapeutic effect of gefitinib in LUAD.
Collapse
Affiliation(s)
- Dongxiao Ding
- Department of Thoracic Surgery, People's Hospital of Beilun District, No.1288 Lushan East Road, Beilun District, Ningbo, Zhejiang, 3158000, China.
| | - Wenjun Shang
- Department of Thoracic Surgery, People's Hospital of Beilun District, No.1288 Lushan East Road, Beilun District, Ningbo, Zhejiang, 3158000, China
| | - Ke Shi
- Department of Thoracic Surgery, People's Hospital of Beilun District, No.1288 Lushan East Road, Beilun District, Ningbo, Zhejiang, 3158000, China
| | - Junjie Ying
- Department of Thoracic Surgery, People's Hospital of Beilun District, No.1288 Lushan East Road, Beilun District, Ningbo, Zhejiang, 3158000, China
| | - Li Wang
- Department of Thoracic Surgery, People's Hospital of Beilun District, No.1288 Lushan East Road, Beilun District, Ningbo, Zhejiang, 3158000, China
| | - Zhongjie Chen
- Department of Thoracic Surgery, People's Hospital of Beilun District, No.1288 Lushan East Road, Beilun District, Ningbo, Zhejiang, 3158000, China
| | - Chong Zhang
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
7
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Mansuer M, Zhou L, Wang C, Gao L, Jiang Y. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance. Cell Death Dis 2024; 15:522. [PMID: 39039049 PMCID: PMC11263394 DOI: 10.1038/s41419-024-06902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
In recent studies, erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has exhibited notable anticancer properties. Ferroptosis, a novel form of programmed cell death, holds potential as a strategy to overcome Temozolomide (TMZ) resistance in glioma by inducing ferroptosis in TMZ-resistant glioma cells. Here, utilizing various phenotyping experiments, including cell counting kit-8 (CCK-8) assays, EdU assays, transwell assays, neurosphere formation assays and extreme limiting dilution (ELDA) assays, we demonstrated that erianin exerts its anticancer activity on both TMZ sensitive and TMZ-resistant glioma stem cells (GSCs). Furthermore, we made an exciting discovery that erianin enhances TMZ sensitivity in TMZ-resistant GSCs. Subsequently, we demonstrated that erianin induced ferroptosis in TMZ-resistant GSCs and enhances TMZ sensitivity through inducing ferroptosis, which was confirmed by intracellular measurements of ROS, GSH, and MDA, as well as through the use of BODIPY (581/591) C11 and transmission electron microscopy. Conversely, the ferroptosis inhibitor ferrostatin-1 (Fer-1) blocked the effects of erianin. The underlying mechanism of ferroptosis induced by erianin was further explored through co-immunoprecipitation (Co-IP) assays, ubiquitination assays, protein stability assessments, chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. We found that erianin specifically targets REST, inhibiting its transcriptional repression function without altering its expression levels. Consequently, this suppression of REST's role leads to an upregulation of LRSAM1 expression. In turn, LRSAM1 ubiquitinates and degrades SLC40A1, a protein that inhibits ferroptosis by exporting ferrous ions. By downregulating SLC40A1, erianin ultimately induces ferroptosis in TMZ-resistant GSCs. Taken together, our research demonstrates that the natural product erianin inhibits the malignant phenotype of GSCs and increases the sensitivity of TMZ in TMZ-resistant GSCs by inducing ferroptosis. These findings suggest erianin as a prospective compound for the treatment of TMZ-resistant glioma.
Collapse
Affiliation(s)
- Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
9
|
Liu G, Lv J, Wang Y, Sun K, Gao H, Li Y, Yao Q, Ma L, Kochshugulova G, Jiang Z. ZnO NPs induce miR-342-5p mediated ferroptosis of spermatocytes through the NF-κB pathway in mice. J Nanobiotechnology 2024; 22:390. [PMID: 38961442 PMCID: PMC11223436 DOI: 10.1186/s12951-024-02672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.
Collapse
Affiliation(s)
- Guangyu Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jing Lv
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Kaikai Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Huimin Gao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yuanyou Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong, 723600, Shaanxi, China
| | - Lizhu Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100080, China
| | - Gulzat Kochshugulova
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk, 150000, Kazakhstan
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Yu X, Wang S, Ji Z, Meng J, Mou Y, Wu X, Yang X, Xiong P, Li M, Guo Y. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 2024; 347:122650. [PMID: 38631669 DOI: 10.1016/j.lfs.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
AIMS As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Zhongjie Ji
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xinyi Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xu Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Panyang Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Mingxia Li
- Nursing School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
11
|
Gong Y, Hu X, Chen M, Wang J. Recent progress of iron-based nanomaterials in gene delivery and tumor gene therapy. J Nanobiotechnology 2024; 22:309. [PMID: 38825720 PMCID: PMC11145874 DOI: 10.1186/s12951-024-02550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Gene therapy aims to modify or manipulate gene expression and change the biological characteristics of living cells to achieve the purpose of treating diseases. The safe, efficient, and stable expression of exogenous genes in cells is crucial for the success of gene therapy, which is closely related to the vectors used in gene therapy. Currently, gene therapy vectors are mainly divided into two categories: viral vectors and non-viral vectors. Viral vectors are widely used due to the advantages of persistent and stable expression, high transfection efficiency, but they also have certain issues such as infectivity, high immunological rejection, randomness of insertion mutation, carcinogenicity, and limited vector capacity. Non-viral vectors have the advantages of non-infectivity, controllable chemical structure, and unlimited vector capacity, but the transfection efficiency is low. With the rapid development of nanotechnology, the unique physicochemical properties of nanomaterials have attracted increasing attention in the field of drug and gene delivery. Among many nanomaterials, iron-based nanomaterials have attracted much attention due to their superior physicochemical properties, such as Fenton reaction, magnetic resonance imaging, magnetothermal therapy, photothermal therapy, gene delivery, magnetically-assisted drug delivery, cell and tissue targeting, and so on. In this paper, the research progress of iron-based nanomaterials in gene delivery and tumor gene therapy is reviewed, and the future application direction of iron-based nanomaterials is further prospected.
Collapse
Affiliation(s)
- Ya Gong
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
Feng M, Wu X, Zhang J, Chen P, Qian S, Chang C. Loss of Lipocalin2 confers cisplatin vulnerability through modulating NF-ĸB mediated ferroptosis via ferroportin. Am J Cancer Res 2024; 14:2088-2102. [PMID: 38859845 PMCID: PMC11162677 DOI: 10.62347/meyw3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/21/2024] [Indexed: 06/12/2024] Open
Abstract
Cisplatin is a widely used anti-cancer drug. Unfortunately, many cancers often develop resistance, which contributes to tumor recurrence and poorly prognosis. Growing knowledge has suggested the therapeutic potential of ferroptosis in cancer. Lipocalin2 (LCN2) is demonstrated to be a critical iron metabolic factor and implies in ferroptosis. Here, we aim to explore its role in chemotherapy resistance. The influence of LCN2 on colorectal cancer (CRC) cell chemoresistance and ferroptosis were evaluated by in vitro and in vivo approaches. The interaction between LCN2, NF-ĸB and ferroportin (FPN) was assessed by western blots, immunohistochemistry and dual luciferase reporter assays. Results showed that LCN2 was highly expressed in tumor regression grade 1 (TRG1) cases than that in TRG3 specimens. Loss of LCN2 contributed to resistance to cisplatin-induced ferroptosis. Mechanistically, loss of LCN2 inhibited cisplatin sensitivity and cisplatin-induced ferroptosis through elevating FPN expression which was regulated by NF-ĸB, subsequently reducing Fe2+ mediated Fenton reaction. Furthermore, FPN expression rate was much lower in TRG1 cases, and negative correlation between LCN2 and FPN expression was observed in clinical specimens. Collectively, low LCN2 expression enhances insensitivity of cisplatin to CRC cells via Fenton reaction mediated ferroptosis. LCN2/NF-ĸB/FPN pathway might be potentially utilized for chemoresistance strategy. LCN2 and FPN expression might be a promising biomarker of chemotherapy effect for CRC patients.
Collapse
Affiliation(s)
- Meibao Feng
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, P. R. China
| | - Xuesong Wu
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, P. R. China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, P. R. China
| | - Pei Chen
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, P. R. China
| | - Senmi Qian
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, P. R. China
| | - Chengdong Chang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, P. R. China
| |
Collapse
|
13
|
Sheikh A, Kesharwani P, Almalki WH, Almujri SS, Dai L, Chen ZS, Sahebkar A, Gao F. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy. NANO-MICRO LETTERS 2024; 16:188. [PMID: 38698113 PMCID: PMC11065855 DOI: 10.1007/s40820-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
14
|
Tombuloglu G, Tombuloglu H, Slimani Y, Almessiere MA, Baykal A, Bostancioglu SM, Kirat G, Ercan I. Effects of foliar iron oxide nanoparticles (Fe 3O 4) application on photosynthetic parameters, distribution of mineral elements, magnetic behaviour, and photosynthetic genes in tomato (Solanum lycopersicum var. cerasiforme) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108616. [PMID: 38615444 DOI: 10.1016/j.plaphy.2024.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.
Collapse
Affiliation(s)
- Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221, Dammam, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221, Dammam, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221, Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey
| | - Safiye Merve Bostancioglu
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Goztepe Campus, Goztepe, 34722, Istanbul, Turkey
| | - Gokhan Kirat
- Scientific and Technological Research Center, Inonu University, Malatya, 44280, Turkey
| | - Ismail Ercan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81010, Duzce, Turkey
| |
Collapse
|
15
|
Khan A, Huo Y, Guo Y, Shi J, Hou Y. Ferroptosis is an effective strategy for cancer therapy. Med Oncol 2024; 41:124. [PMID: 38652406 DOI: 10.1007/s12032-024-02317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Ferroptosis is a form of intracellular iron-dependent cell death that differs from necrosis, autophagy and apoptosis. Intracellular iron mediates Fenton reaction resulting in lipid peroxidation production, which in turn promotes cell death. Although cancer cell exhibit's ability to escape ferroptosis by multiple pathways such as SLC7A11, GPX4, induction of ferroptosis could inhibit cancer cell proliferation, migration and invasion. In tumor microenvironment, ferroptosis could affect immune cell (T cells, macrophages etc.) activity, which in turn regulates tumor immune escape. In addition, ferroptosis in cancer cells could activate immune cell activity by antigen processing and presentation. Therefore, ferroptosis could be an effective strategy for cancer therapy such as chemotherapy, radiotherapy, and immunotherapy. In this paper, we reviewed the role of ferroptosis on tumor progression and therapy, which may provide a strategy for cancer treatment.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
- , Zhenjiang, People's Republic of China.
| |
Collapse
|
16
|
Fadeel B. Nanomaterials as protein mimics or nanologicals. Nanomedicine (Lond) 2024; 19:943-946. [PMID: 38530868 PMCID: PMC11221370 DOI: 10.2217/nnm-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden
| |
Collapse
|
17
|
Feng Z, Fan Y, Shi X, Luo X, Xie J, Liu S, Duan C, Wang Q, Ye Y, Yin W. Dysregulation of iron transport-related biomarkers in blood leukocytes is associated with poor prognosis of early trauma. Heliyon 2024; 10:e27000. [PMID: 38463887 PMCID: PMC10923684 DOI: 10.1016/j.heliyon.2024.e27000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Objective The early targeted and effective diagnosis and treatment of severe trauma are crucial for patients' outcomes. Blood leukocytes act as significant effectors during the initial inflammation and activation of innate immunity in trauma. This study aims to identify hub genes related to patients' prognosis in blood leukocytes at the early stages of trauma. Methods The expression profiles of Gene Expression Omnibus (GEO) Series (GSE) 36809 and GSE11375 were downloaded from the GEO database. R software, GraphPad Prism 9.3.1 software, STRING database, and Cytoscape software were used to process the data and identify hub genes in blood leukocytes of early trauma. Results Gene Ontology (GO) analysis showed that the differentially expressed genes (DEGs) of blood leukocytes at the early stages of trauma (0-4 h, 4-8 h, and 8-12 h) were mainly involved in neutrophil activation and neutrophil degranulation, neutrophil activation involved in immune response, neutrophil mediated immunity, lymphocyte differentiation, and cell killing. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly involved in Osteoclast differentiation and Hematopoietic cell lineage. Sixty-six down-regulated DEGs and 148 up-regulated DEGs were identified and 37 hub genes were confirmed by Molecular Complex Detection (MCODE) of Cytoscape. Among the hub genes, Lipocalin 2 (LCN2), Lactotransferrin (LTF), Olfactomedin 4 (OLFM4), Resistin (RETN), and Transcobalamin 1 (TCN1) were related to prognosis and connected with iron transport closely. LCN2 and LTF were involved in iron transport and had a moderate predictive value for the poor prognosis of trauma patients, and the AUC of LCN2 and LTF was 0.7777 and 0.7843, respectively. Conclusion As iron transport-related hub genes in blood leukocytes, LCN2 and LTF can be used for prognostic prediction of early trauma.
Collapse
Affiliation(s)
- Zhusheng Feng
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Yingnan Fan
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Xiaofei Shi
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Xu Luo
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Shanshou Liu
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
- Department of Neurosurgery, PLA 921th Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
18
|
Lu W, Wang Y, Luo T, Li F, Jiang Y, Wang J, Zhang W, Bai Y. Identification and global characterization of eccDNA reveals hallmarks in iron nanoparticles-treated breast cancer cells. Genes Dis 2024; 11:532-534. [PMID: 37692488 PMCID: PMC10491909 DOI: 10.1016/j.gendis.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/04/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ying Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tao Luo
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Fuyu Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, Xinjiang 835000, China
| | - Jinke Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Weizhong Zhang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, Xinjiang 835000, China
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
19
|
Yang JY, Lei XY, He KY, Guo JR, Liu MJ, Li JQ, Li QT, Jiang ZH, Zhang L, Wu DH, Li YJ, Sun QH, Jian YP, Xu ZX. HMGA1 drives chemoresistance in esophageal squamous cell carcinoma by suppressing ferroptosis. Cell Death Dis 2024; 15:158. [PMID: 38383528 PMCID: PMC10881472 DOI: 10.1038/s41419-024-06467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024]
Abstract
Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.
Collapse
Affiliation(s)
- Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qiu-Tong Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhi-Hao Jiang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
20
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
21
|
Han B, An Z, Gong T, Pu Y, Liu K. LCN2 Promotes Proliferation and Glycolysis by Activating the JAK2/STAT3 Signaling Pathway in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2024; 196:717-728. [PMID: 37178251 DOI: 10.1007/s12010-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to explore the molecular mechanism of LCN2 regulating aerobic glycolysis on abnormal proliferation of HCC cells. Based on the prediction of GEPIA database, the expression levels of LCN2 in hepatocellular carcinoma tissues were detected by RT-qPCR analysis, western blot, and immunohistochemical staining, respectively. In addition, CCK-8 kit, clone formation, and EdU staining were used to analyze the effect of LCN2 on the proliferation of hepatocellular carcinoma cells. Glucose uptake and lactate production were detected using kits. In addition, western blot was used to detect the expressions of aerobic glycolysis-related proteins. Finally, western blot was used to detect the expressions of phosphorylation of JAK2 and STAT3. We found LCN2 was upregualted in hepatocellular carcinoma tissues. CCK-8 kit, clone formation, and EdU staining results showed that LCN2 could promote the proliferation in hepatocellular carcinoma cells (Huh7 and HCCLM3 cells). Western blot results and kits confirmed that LCN2 significantly promotes aerobic glycolysis in hepatocellular carcinoma cells. Western blot results showed that LCN2 could significantly upregulate the phosphorylation of JAK2 and STAT3. Our results indicated that LCN2 activated the JAK2/STAT3 signaling pathway, promoted aerobic glycolysis, and accelerated malignant proliferation of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Baojun Han
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Zhiming An
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Teng Gong
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Yu Pu
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ke Liu
- General Surgery, Santai County Hospital of Traditional Chinese Medicine, Tongchuan Town, Santai County, Mianyang, 621100, Sichuan Province, China.
| |
Collapse
|
22
|
Su M, Hu Z, Sun Y, Qi Y, Yu B, Xu FJ. Hydroxyl-rich branched polycations for nucleic acid delivery. Biomater Sci 2024; 12:581-595. [PMID: 38014423 DOI: 10.1039/d3bm01394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recently, nucleic acid delivery has become an amazing route for the treatment of various malignant diseases, and polycationic vectors are attracting more and more attention among gene vectors. However, conventional polycationic vectors still face many obstacles in nucleic acid delivery, such as significant cytotoxicity, high protein absorption behavior, and unsatisfactory blood compatibility caused by a high positive charge density. To solve these problems, the fabrication of hydroxyl-rich branched polycationic vectors has been proposed. For the synthesis of hydroxyl-rich branched polycations, a one-pot method is considered as the preferred method due to its simple preparation process. In this review, typical one-pot methods for fabricating hydroxyl-rich polycations are presented. In particular, amine-epoxide ring-opening polymerization as a novel approach is mainly introduced. In addition, various therapeutic scenarios of hydroxyl-rich branched polycations via one-pot fabrication are also generalized. We believe that this review will motivate the optimized design of hydroxyl-rich branched polycations for potential nucleic acid delivery and their bio-applications.
Collapse
Affiliation(s)
- Mengrui Su
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zichen Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yujie Sun
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Qi
- China Meat Food Research Center, Beijing Academy of Food Sciences, Beijing 100068, PR China.
- Beijing Forestry University, Beijing, 100083, PR China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
23
|
Mo JQ, Zhang SY, Li Q, Chen MX, Zheng YQ, Xie X, Zhang R, Wang SS. Immunomodulation of cuproptosis and ferroptosis in liver cancer. Cancer Cell Int 2024; 24:22. [PMID: 38200525 PMCID: PMC10777659 DOI: 10.1186/s12935-023-03207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
According to statistics, the incidence of liver cancer is increasing yearly, and effective treatment of liver cancer is imminent. For early liver cancer, resection surgery is currently the most effective treatment. However, resection does not treat the disease in advanced patients, so finding a method with a better prognosis is necessary. In recent years, ferroptosis and cuproptosis have been gradually defined, and related studies have proved that they show excellent results in the therapy of liver cancer. Cuproptosis is a new form of cell death, and the use of cuproptosis combined with ferroptosis to inhibit the production of hepatocellular carcinoma cells has good development prospects and is worthy of in-depth discussion by researchers. In this review, we summarize the research progress on cuproptosis combined with ferroptosis in treating liver cancer, analyze the value of cuproptosis and ferroptosis in the immune of liver cancer, and propose potential pathways in oncotherapy with the combination of cuproptosis and ferroptosis, which can provide background knowledge for subsequent related research.
Collapse
Affiliation(s)
- Jia-Qian Mo
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China
| | - Shen-Yan Zhang
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China
| | - Qiang Li
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China and College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yue-Qing Zheng
- Guang Zhou Zengcheng District Centre for Disease Control and Prevention, Guang Dong, 511300, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China.
| | - Shan-Shan Wang
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China.
| |
Collapse
|
24
|
Dong Y, Zhang B, Wei Y, Murashev A, Wang S, Wu Y, Ma W, Liu T. Development of Cas13a-based therapy for cancer treatment. Mol Biol Rep 2024; 51:94. [PMID: 38194206 DOI: 10.1007/s11033-023-09129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Gene therapy has become a major focus of current biomedical research. CRISPR (Clustered Regularly Inter spaced Short Palindromic Repeats) systems have been extensively researched for disease treatment applications through genome editing specificity. Compared with Cas9 (CRISPR-associated proteins, Cas), a commonly used tool enzyme for genome editing, Cas13a exhibits RNA-dependent endonuclease activity, including collateral cleavage without obvious potential genetic risks. With its high specificity, Cas13a has significantly improved the sensitivity of viral diagnosis and shown potential to eliminate viruses. However, its efficacy in tumor therapy has not been determined. This review introduces the mechanism and research developments associated with the CRISPR-Cas13a system in tumor treatments and its potential to be used as a new tool for gene therapy. We hope more research would apply Cas13a-based therapy in cancer treatment in the future.
Collapse
Affiliation(s)
- Ying Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Bingyang Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Yi Wei
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Arkady Murashev
- Biological Testing Center of Shamyakin and Ovchimnikov Institute of Bioorganic Chemistry, Moscow, 142290, Russian Federation
| | - Suihai Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Weifeng Ma
- Department of Microbiology, School of Public Health, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China.
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
26
|
Wang F, Dai Q, Xu L, Gan L, Shi Y, Yang M, Yang S. Advances on the Role of Ferroptosis in Ionizing Radiation Response. Curr Pharm Biotechnol 2024; 25:396-410. [PMID: 37612860 DOI: 10.2174/1389201024666230823091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Ferroptosis is an iron-dependent programmed cell death mode that is distinct from other cell death modes, and radiation is able to stimulate cellular oxidative stress and induce the production of large amounts of reactive oxygen radicals, which in turn leads to the accumulation of lipid peroxide and the onset of ferroptosis. In this review, from the perspective of the role of ferroptosis in generating a radiation response following cellular irradiation, the relationship between ferroptosis induced by ionizing radiation stress and the response to ionizing radiation is reviewed, including the roles of MAPK and Nrf2 signaling pathways in ferroptosis, resulting from the oxidative stress response to ionizing radiation, the metabolic regulatory role of the p53 gene in ferroptosis, and regulatory modes of action of iron metabolism and iron metabolism-related regulatory proteins in promoting and inhibiting ferroptosis. It provides some ideas for the follow-up research to explore the specific mechanism and regulatory network of ferroptosis in response to ionizing radiation.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - QingHui Dai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Luhan Xu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yidi Shi
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shuhong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
27
|
Cai J, Xu X, Saw PE. Nanomedicine targeting ferroptosis to overcome anticancer therapeutic resistance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:19-40. [PMID: 37728804 DOI: 10.1007/s11427-022-2340-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 09/21/2023]
Abstract
A potential reason for the failure of tumor therapies is treatment resistance. Resistance to chemotherapy, radiotherapy, and immunotherapy continues to be a major obstacle in clinic, resulting in tumor recurrence and metastasis. The major mechanisms of therapy resistance are inhibitions of cell deaths, like apoptosis and necrosis, through drug inactivation and excretion, repair of DNA damage, tumor heterogeneity, or changes in tumor microenvironment, etc. Recent studies have shown that ferroptosis play a major role in therapies resistance by inducing phospholipid peroxidation and iron-dependent cell death. Some ferroptosis inducers in combination with clinical treatment techniques have been used to enhance the effect in tumor therapy. Notably, versatile ferroptosis nanoinducers exhibit an extensive range of functions in reversing therapy resistance, including directly triggering ferroptosis and feedback regulation. Herein, we provide a detailed description of the design, mechanism, and therapeutic application of ferroptosis-mediated synergistic tumor therapeutics. We also discuss the prospect and challenge of nanomedicine in tumor therapy resistance by regulating ferroptosis and combination therapy.
Collapse
Affiliation(s)
- Jing Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Foshan, 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Foshan, 528200, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Foshan, 528200, China.
| |
Collapse
|
28
|
Fromain A, Perez JE, Van de Walle A, Lalatonne Y, Wilhelm C. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation. Nat Commun 2023; 14:4637. [PMID: 37532698 PMCID: PMC10397343 DOI: 10.1038/s41467-023-40258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.
Collapse
Affiliation(s)
- Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
29
|
Weng W, Zhang D, Li S. Life span-associated ferroptosis-related genes identification and validation for hepatocellular carcinoma patients as hepatitis B virus carriers. J Clin Lab Anal 2023; 37:e24930. [PMID: 37461802 PMCID: PMC10492458 DOI: 10.1002/jcla.24930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV)-infected population accounts for approximately 50% of all hepatocellular carcinoma (HCC) cases and has a relatively poor prognosis. Although the significant role of ferroptosis in the development and therapeutic response of various cancers has been validated, the key ferroptosis-related genes (FRGs) on the stratification of HBV-associated HCC are still unclear. METHODS Through the random forest, GSVA and Cox regression analyses, we established a comprehensive prognostic system covering multiple FRGs to elevate the predictive accuracy for the survival rate of HBV-related HCC using information obtained from public databases. The association between key FRGs and the immune microenvironment was evaluated, and the molecular mechanism was identified by GSEA and SNV analyses. Finally, the differential expression of key FRGs was validated by immunohistochemistry staining of patient tissue microarrays. RESULTS Within the top 10 key FRGs, EPAS1 and GABARAPL1 were taken as protective factors, and SQLE, RAD51AP1, RPL8, CAPG, RRM2, SLC1A5, SLC38A1, and SRC were the other eight dangerous markers. Cox regression analysis combined with clinicopathological features indicated the independent prognostic efficacy of GSVA complex score based on these FRGs. In addition, key FRGs were related to immune and metabolic-related functions. Especially, the immunohistochemical analysis of SQLE in 50 clinical samples showed significantly higher expression in HBV+ HCC tissues. CONCLUSIONS These results indicate that 10 FRGs may be potential biomarkers and therapeutic targets for long-term survival in HBV-related HCC.
Collapse
Affiliation(s)
- Weijie Weng
- The third people's hospital health care group of CixiCixiChina
| | - Defa Zhang
- Tianjin Second People HospitalTianjinChina
| | - Shuang Li
- Tianjin Second People HospitalTianjinChina
| |
Collapse
|
30
|
He J, Abikoye AM, McLaughlin BP, Middleton RS, Sheldon R, Jones RG, Schafer ZT. Reprogramming of iron metabolism confers ferroptosis resistance in ECM-detached cells. iScience 2023; 26:106827. [PMID: 37250802 PMCID: PMC10209538 DOI: 10.1016/j.isci.2023.106827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer cells often acquire resistance to cell death programs induced by loss of integrin-mediated attachment to extracellular matrix (ECM). Given that adaptation to ECM-detached conditions can facilitate tumor progression and metastasis, there is significant interest in effective elimination of ECM-detached cancer cells. Here, we find that ECM-detached cells are remarkably resistant to the induction of ferroptosis. Although alterations in membrane lipid content are observed during ECM detachment, it is instead fundamental changes in iron metabolism that underlie resistance of ECM-detached cells to ferroptosis. More specifically, our data demonstrate that levels of free iron are low during ECM detachment because of changes in both iron uptake and iron storage. In addition, we establish that lowering the levels of ferritin sensitizes ECM-detached cells to death by ferroptosis. Taken together, our data suggest that therapeutics designed to kill cancer cells by ferroptosis may be hindered by lack of efficacy toward ECM-detached cells.
Collapse
Affiliation(s)
- Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail M. Abikoye
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brett P. McLaughlin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan S. Middleton
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
31
|
Yuan T, Tang H, Xu X, Shao J, Wu G, Cho YC, Ping Y, Liang G. Inflammation conditional genome editing mediated by the CRISPR-Cas9 system. iScience 2023; 26:106872. [PMID: 37260750 PMCID: PMC10227425 DOI: 10.1016/j.isci.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
The specificity of CRISPR-Cas9 in response to particular pathological stimuli remains largely unexplored. Hence, we designed an inflammation-inducible CRISPR-Cas9 system by grafting a sequence that binds with NF-κB to the CRISPR-Cas9 framework, termed NBS-CRISPR. The genetic scissor function of this developed genome-editing tool is activated on encountering an inflammatory attack and is inactivated or minimized in non-inflammation conditions. Furthermore, we employed this platform to reverse inflammatory conditions by targeting the MyD88 gene, a crucial player in the NF-κB signaling pathway, and achieved impressive therapeutic effects. Finally, during inflammation, P65 (RELA) can translocate to the nucleus from the cytoplasm. Herein, to avoid Cas9 leaky DNA cleavage activity i, we constructed an NBS-P65-CRISPR system expressing the Cas9-p65 fusion protein. Our inflammation inducible Cas9-mediated genome editing strategy provides new perspectives and avenues for pathological gene interrogation.
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Shao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Young-Chang Cho
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
32
|
Wang Y, Wu X, Bao X, Mou X. Progress in the Mechanism of the Effect of Fe 3O 4 Nanomaterials on Ferroptosis in Tumor Cells. Molecules 2023; 28:molecules28114562. [PMID: 37299036 DOI: 10.3390/molecules28114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Ferroptosis is a new form of iron-dependent programmed cell death discovered in recent years, which is caused by the accumulation of lipid peroxidation (LPO) and reactive oxygen species (ROS). Recent studies have shown that cellular ferroptosis is closely related to tumor progression, and the induction of ferroptosis is a new means to inhibit tumor growth. Biocompatible Fe3O4 nanoparticles (Fe3O4-NPs), rich in Fe2+ and Fe3+, act as a supplier of iron ions, which not only promote ROS production but also participate in iron metabolism, thus affecting cellular ferroptosis. In addition, Fe3O4-NPs combine with other techniques such as photodynamic therapy (PDT); heat stress and sonodynamic therapy (SDT) can further induce cellular ferroptosis effects, which then enhance the antitumor effects. In this paper, we present the research progress and the mechanism of Fe3O4-NPs to induce ferroptosis in tumor cells from the perspective of related genes and chemotherapeutic drugs, as well as PDT, heat stress, and SDT techniques.
Collapse
Affiliation(s)
- Yaxuan Wang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xiao Wu
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
| | - Xiaoying Bao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
33
|
Yang M, Luo H, Yi X, Wei X, Jiang D. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm (Beijing) 2023; 4:e267. [PMID: 37229485 PMCID: PMC10203370 DOI: 10.1002/mco2.267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Ferroptosis is a form of regulated cell death triggered by the iron-dependent peroxidation of phospholipids. Interactions of iron and lipid metabolism factors jointly promote ferroptosis. Ferroptosis has been demonstrated to be involved in the development of various diseases, such as tumors and degenerative diseases (e.g., aortic dissection), and targeting ferroptosis is expected to be an effective strategy for the treatment of these diseases. Recent studies have shown that the regulation of ferroptosis is affected by multiple mechanisms, including genetics, epigenetics, posttranscriptional modifications, and protein posttranslational modifications. Epigenetic changes have garnered considerable attention due to their importance in regulating biological processes and potential druggability. There have been many studies on the epigenetic regulation of ferroptosis, including histone modifications (e.g., histone acetylation and methylation), DNA methylation, and noncoding RNAs (e.g., miRNAs, circRNAs, and lncRNAs). In this review, we summarize recent advances in research on the epigenetic mechanisms involved in ferroptosis, with a description of RNA N6-methyladenosine (m6A) methylation included, and the importance of epigenetic regulation in biological processes and ferroptosis-related diseases, which provides reference for the clinical application of epigenetic regulators in the treatment of related diseases by targeting ferroptosis.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xin Yi
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiang Wei
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanHubeiChina
| | - Ding‐Sheng Jiang
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanHubeiChina
| |
Collapse
|
34
|
Liu X, Guan P, Mu J, Meng Z, Lian H. Metal-rich cascade nanosystem for dual-pathway ferroptosis resistance regulation and photothermal effect for efficient tumor combination therapy. Biomater Sci 2023; 11:3906-3920. [PMID: 37092601 DOI: 10.1039/d3bm00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Despite the therapeutic response of ferroptosis in various tumors, ferroptosis resistance has been found in numerous studies, significantly hindering the progress of ferroptosis anti-tumor therapy. Herein, we propose a metal-rich cascade nanosystem (Simvastatin-HMPB-Mn@GOx) combined with the dual-pathway regulation of ferroptosis resistance and photothermal therapy for efficient tumor combination therapy. The manganese-bonded hollow mesoporous Prussian blue (HMPB-Mn) serves as the photothermal agent and metal donor, and dissociates multivalent metal ions Mn2+, Fe3+ and Fe2+ to consume glutathione and amplify the Fenton reaction. Glucose oxidase (GOx) absorbed serves as the converter to provide hydrogen peroxide (H2O2) for the cascade Fenton reaction, causing a high burst of hydroxyl radicals (˙OH) and lipid peroxidation. Simvastatin innovatively acts as a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) inhibitor to decrease the expression of coenzyme Q10 (CoQ10) and glutathione peroxidase 4 (GPX4), eventually defeating ferroptosis resistance. The nanosystem acted in both classical and non-classical ferroptosis pathways and showed significant ferroptosis- and hyperthermia-induced anti-tumor efficacy both in vitro and in vivo. Thus, this study offers a promising way for ferroptosis and phototherapy to achieve complete tumor regression.
Collapse
Affiliation(s)
- Xinran Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaxiang Mu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - He Lian
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
35
|
Fatima SF, Sabouni R, Garg R, Gomaa H. Recent advances in Metal-Organic Frameworks as nanocarriers for triggered release of anticancer drugs: Brief history, biomedical applications, challenges and future perspective. Colloids Surf B Biointerfaces 2023; 225:113266. [PMID: 36947901 DOI: 10.1016/j.colsurfb.2023.113266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Metal-Organic Frameworks (MOFs) have emerged as a promising biomedical material due to its unique features such as high surface area, pore volume, variable pore size, flexible functional groups, and excellent efficiency for drug loading. In this review, we explored the use of novel and smart metal organic frameworks as drug delivery vehicles to discover a safer and more controlled mode of drug release aiming to minimize their side effects. Here, we systematically discussed the background of MOFs following a thorough review on structural and physical properties of MOFs, their synthesis techniques, and the important characteristics to establish a strong foundation for future research. Furthermore, the current status on the potential applications of MOF-based stimuli-responsive drug delivery systems, including pH-, ion-, temperature-, light-, and multiple responsive systems for the delivery of anticancer drugs has also been presented. Lastly, we discuss the prospects and challenges in implementation of MOF-based materials in the drug delivery. Therefore, this review will help researchers working in the relevant fields to enhance their understanding of MOFs for encapsulation of various drugs as well as their stimuli responsive mechanism.
Collapse
Affiliation(s)
- Syeda Fiza Fatima
- Master of Science in Biomedical Engineering Program, College of Engineering, American University of Sharjah, P.O. BOX 26666, Sharjah, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Hassan Gomaa
- Department of Chemical and Biochemical Engineering, Western University, London, Canada
| |
Collapse
|
36
|
Liu X, Li Y, Chen S, Yang J, Jing J, Li J, Wu X, Wang J, Wang J, Zhang G, Tang Z, Nie H. Dihydromyricetin attenuates intracerebral hemorrhage by reversing the effect of LCN2 via the system Xc- pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154756. [PMID: 37130481 DOI: 10.1016/j.phymed.2023.154756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The limited understanding of the pathological mechanisms of intracerebral hemorrhage (ICH) and the absence of successful therapies lead to poor prognoses for patients with ICH. Dihydromyricetin (DMY) has many physiological functions, such as regulating lipid and glucose metabolism and modulating tumorigenesis. Moreover, DMY has been proven to be an effective treatment of neuroprotection. However, no reports to date have been made regarding the impact of DMY on ICH. PURPOSE This investigation aimed to identify the role of DMY on ICH in mice and the underlying mechanisms. METHODS/RESULTS This study demonstrated that DMY treatment effectively reduced hematoma size and cell apoptosis of brain tissue, and improved neurobehavioral outcomes in mice with ICH. Transcriptional and network pharmacological analyses revealed that lipocalin-2 (LCN2) was a potential target of DMY in ICH. After ICH, LCN2 mRNA and protein expression in brain tissue increased and DMY could inhibit the expression of LCN2. The rescue experiment with the implementation of LCN2 overexpression verified these observations. Furthermore, after DMY treatment, there was a significant decrease in cyclooxygenase 2 (COX2), phospho-extracellular regulated protein kinase (P-ERK), iron deposition, and the number of abnormal mitochondria, which were reversed by the overexpression of LCN2. Proteomics analysis suggests that SLC3A2 may be the downstream target of LCN2, promoting ferroptosis. Finally, LCN2 was shown to bind to SLC3A2 and regulate the downstream glutathione (GSH) synthesis and Glutathione Peroxidase 4 (GPX4) expression and glutathione (GSH) synthesis, as determined by molecular docking and co-immunoprecipitation analysis. CONCLUSION Our study confirmed for the first time that DMY might offer a favorable treatment for ICH through its action on LCN2. The possible mechanism for this could be that DMY reverses the inhibitory effect of LCN2 on the system Xc-, lessening ferroptosis in brain tissue. The findings of this study offer a greater understanding of how DMY affects ICH at a molecular level and could be conducive to developing therapeutic targets for ICH.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Yunjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jingfei Yang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jie Jing
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| |
Collapse
|
37
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
38
|
Huang Y, Wang S, Ke A, Guo K. Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188848. [PMID: 36502929 DOI: 10.1016/j.bbcan.2022.188848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Exploring effective systemic treatments for liver cancer is still a great challenge worldwide. As a novel form of regulated cell death, ferroptosis has been paid more and more attention in the cancer research field. In recent years, targeting ferroptosis has become an encouraging strategy for liver cancer treatment. Cancer cells can be directly killed by inducing ferroptosis; in contrast, ferroptosis can also ameliorate the tumor immunosuppressive microenvironment and sensitize cancers to immunotherapy. Here, we summarize fully current progress in the iron homeostasis in the liver, the internal association between imbalanced iron homeostasis and ferroptosis in liver carcinogenesis and development, as well as ferroptosis-related regulators in liver cancer. Furthermore, we discuss thoroughly the interaction between ferroptosis and tumor immune microenvironment. Finally, we provide certainly a future insight on the potential value of ferroptosis in the immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Siwei Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China; Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Tang X, Wang L, Wang D, Zhang Y, Wang T, Zhu Z, Weng Y, Tao G, Wang Q, Tang L, Yan F, Wang Y. Maggot extracts chemo-prevent inflammation and tumorigenesis accompanied by changes in the intestinal microbiome and metabolome in AOM/DSS-induced mice. Front Microbiol 2023; 14:1143463. [PMID: 37200915 PMCID: PMC10185807 DOI: 10.3389/fmicb.2023.1143463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory responses and intestinal microbiome play a crucial role in the progression of colitis-associated carcinoma (CAC). The traditional Chinese medicine maggot has been widely known owing to its clinical application and anti-inflammatory function. In this study, we investigated the preventive effects of maggot extract (ME) by intragastric administration prior to azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CAC in mice. The results showed that ME had superior advantages in ameliorating disease activity index score and inflammatory phenotype, in comparison with the AOM/DSS group. The number and size of polypoid colonic tumors were decreased after pre-administration of ME. In addition, ME was found to reverse the downregulation of tight junction proteins (zonula occluden-1 and occluding) while suppressing the levels of inflammatory factors (IL-1β and IL-6) in models. Moreover, Toll-like receptor 4 (TLR4) mediated intracellular nuclear factor-κB (NF-κB)-containing signaling cascades, including inducible nitric oxide synthase and cyclooxygenase-2, and exhibited decreasing expression in the mice model after ME pre-administration. 16s rRNA analysis and untargeted-metabolomics profiling of fecal samples inferred that ME revealed ideal prevention of intestinal dysbiosis in CAC mice, accompanied by and correlated with alterations in the composition of metabolites. Overall, ME pre-administration might be a chemo-preventive candidate in the initiation and development of CAC.
Collapse
Affiliation(s)
- Xun Tang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lei Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Daojuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tingyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengquan Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Weng
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gaojian Tao
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Tang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- *Correspondence: Feng Yan
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Nanjing University (Suzhou) High-Tech Institute, Nanjing University, Suzhou, China
- Yong Wang
| |
Collapse
|
40
|
Wang C, Wang J, Pan X, Yu S, Chen M, Gao Y, Song Z, Hu H, Zhao X, Chen D, Han F, Qiao M. Reversing ferroptosis resistance by MOFs through regulation intracellular redox homeostasis. Asian J Pharm Sci 2023; 18:100770. [PMID: 36660553 PMCID: PMC9841358 DOI: 10.1016/j.ajps.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
As a non-apoptotic cell death form, ferroptosis offers an alternative approach to overcome cancer chemotherapy resistance. However, accumulating evidence indicates cancer cells can develop ferroptosis resistance by evolving antioxidative defense mechanisms. To address this issue, we prepared a Buthionine-(S,R)-sulfoximine (BSO) loaded metal organic framework (MOF) of BSO-MOF-HA (BMH) with the combination effect of boosting oxidative damage and inhibiting antioxidative defense. MOF nanoparticle was constructed by the photosensitizer of [4,4,4,4-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid)] (TCPP) and the metal ion of Zr6, which was further decorated with hyaluronic acid (HA) in order to impart active targeting to CD44 receptors overexpressed cancer cells. BMH exhibited a negative charge and spherical shape with average particle size about 162.5 nm. BMH was found to restore the susceptibility of 4T1 cells to ferroptosis under irradiation. This was attributed to the combination of photodynamic therapy (PDT) and γ-glutamylcysteine synthetase inhibitor of BSO, shifting the redox balance to oxidative stress. Enhanced ferroptosis also induced the release of damage associated molecular patterns (DAMPs) to maturate dendritic cells and activated T lymphocytes, leading to superior anti-tumor performance in vivo. Taken together, our findings demonstrated that boosting oxidative damage with photosensitizer serves as an effective strategy to reverse ferroptosis resistance.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Wang
- Yantai Luyin Pharmaceutical Co. Ltd., Yantai 264002, China
| | - Xue Pan
- Qingdao Marine Biomedical Research Institute, Qingdao 266071, China
| | - Shuang Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meiqi Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| |
Collapse
|
41
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
42
|
Abstract
In 2020, nearly 20 million peoples got cancer and nearly 10 million peoples died of cancer, indicating the cancer remains a great threat to human health and life. New therapies are still in urgent demand. We here develop a novel cancer therapy named Ferroptosis ASsassinates Tumor (FAST) by combining iron oxide nanoparticles with cancer-selective knockdown of seven key ferroptosis-resistant genes (FPN, LCN2, FTH1, FSP1, GPX4, SLC7A11, NRF2). We found that FAST had notable anti-tumor activity in a variety of cancer cells but little effect on normal cells. Especially, FAST eradicated three different types of tumors (leukemia, colon cancer, and lung metastatic melanoma) from over 50% of cancer mice, making the mice survive up to 250 days without tumor relapse. FAST also significantly inhibited and prevented the growth of spontaneous breast cancer and improved survival in mice. FAST showed high pan anti-tumor efficacy, high cancer specificity, and in vivo safety. FAST defines a new form of advanced nanomaterials, advanced combinatorial nanomaterials, by combining two kinds of nanomaterials, a chemical nanomaterial (iron oxide nanoparticles) and a biochemical nanomaterial (adeno-associated virus), which successfully turns a general iron nanomaterial into an unprecedented assassin to cancer.
Collapse
Affiliation(s)
- Tao Luo
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Yile Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Jinke Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| |
Collapse
|
43
|
HIF-α activation by the prolyl hydroxylase inhibitor roxadustat suppresses chemoresistant glioblastoma growth by inducing ferroptosis. Cell Death Dis 2022; 13:861. [PMID: 36209275 PMCID: PMC9547873 DOI: 10.1038/s41419-022-05304-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Patients with glioblastoma (GBM) have poor prognosis and limited treatment options, largely due to therapy resistance upon the induction of apoptosis. Ferroptosis emerges as a potential antineoplastic strategy to bypass apoptosis resistance in traditional therapeutics. Hypoxia is a fundamental hallmark of GBM and hypoxia-inducible factor (HIF) is the main regulator of hypoxia response, however, the role of HIF has not been sufficiently explored in GBM. Herein, we first discovered that amplifying HIF signals by the prolyl hydroxylase (PHD) inhibitor roxadustat significantly suppressed GBM cell growth in vitro and in vivo, especially when the cells were resistant to temozolomide (TMZ). The accumulation of lipid peroxidation and cellular iron in GBM cells following roxadustat treatment indicated that the cells underwent ferroptosis, which was also supported by morphological changes in mitochondrial ultrastructure and immunogenic signals release. Moreover, in vivo studies further confirmed the ferroptosis induction and verified that roxadustat significantly prolonged survival of the mice harboring chemoresistant GBM without visible organ toxicity. Finally, we proved that the ferroptosis induction by roxadustat is HIF-α independent, especially activation of HIF-2α upregulating lipid regulatory genes was revealed to be mainly responsible for the enhanced lipid peroxidation. Altogether, our study provided novel evidence that amplifying HIF signals induced ferroptosis in chemoresistant GBM cells and suppressed the tumor growth in vivo, highlighting that ferroptosis induction by targeting HIF-α might provide new approaches to improve GBM treatment.
Collapse
|
44
|
Xu J, Ning J, Wang Y, Xu M, Yi C, Yan F. Carbon dots as a promising therapeutic approach for combating cancer. Bioorg Med Chem 2022; 72:116987. [DOI: 10.1016/j.bmc.2022.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
|
45
|
Luo T, Zheng Q, Shao L, Ma T, Mao L, Wang M. Intracellular Delivery of Glutathione Peroxidase Degrader Induces Ferroptosis In Vivo. Angew Chem Int Ed Engl 2022; 61:e202206277. [DOI: 10.1002/anie.202206277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Tianli Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tianyu Ma
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
46
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
47
|
Luo T, Zheng Q, Shao L, Ma T, Mao L, Wang M. Intracellular Delivery of Glutathione Peroxidase Degrader Induces Ferroptosis In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tianli Luo
- ICCAS: Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Qizhen Zheng
- ICCAS: Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Leihou Shao
- ICCAS: Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Tianyu Ma
- ICCAS: Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry CHINA
| | - Ming Wang
- ICCAS: Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems 2nd Zhongguancun North First Street 100190 Beijing CHINA
| |
Collapse
|
48
|
Gong S, Xiong L, Luo Z, Yin Q, Huang M, Zhou Y, Li J. SIRT6 promotes ferroptosis and attenuates glycolysis in pancreatic cancer through regulation of the NF-κB pathway. Exp Ther Med 2022; 24:502. [PMID: 35837046 PMCID: PMC9257961 DOI: 10.3892/etm.2022.11430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/16/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high mortality worldwide. SIRT6 plays versatile roles in human cancers. However, SIRT6 has rarely been studied in PC. The purpose of the present study was to explore the function and potential mechanism of SIRT6 in PC. The expression of SIRT6 in PC tissues and cells was detected by reverse transcription-quantitative PCR and western blotting. The overall survival time was analyzed through the Kaplan Meier method. Cell viability was measured by the Cell Counting Kit-8 assay. The Fe2+ content, glucose uptake, lactic acid and ATP production were detected through the corresponding kits. ROS was evaluated using the DCFH-DA detection kit. Protein expression was assessed by immunohistochemistry or western blot analysis. In the present study, SIRT6 was lowly expressed in PC tissues and cells compared with normal tissues and cells. Moreover, the low expression of SIRT6 was associated with a poor prognosis in patients with PC. Upregulation of SIRT6 significantly promoted the ferroptosis and inhibited the glycolysis in PC cells. However, knockdown of SIRT6 resisted ferroptosis and increased glycolysis in PC cells. Further studies found that the activation of NF-κB could reverse the effect of SIRT6 on PC cells. In addition, overexpression of SIRT6 restrained the growth of xenografted tumors and suppressed the nuclear transcription of NF-κB in vivo. Collectively, the present study indicated that SIRT6 promoted ferroptosis and inhibited glycolysis through inactivating the NF-κB signaling pathway in PC. These findings suggested that SIRT6 may become a therapeutic target for PC.
Collapse
Affiliation(s)
- Shuangxi Gong
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Lixin Xiong
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Qinghua Yin
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ming Huang
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Jian Li
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
49
|
Qiao C, Wang H, Guan Q, Wei M, Li Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: Insights and future perspectives. Asian J Pharm Sci 2022; 17:613-629. [PMID: 36382305 PMCID: PMC9640473 DOI: 10.1016/j.ajps.2022.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
There are limited options for patients who develop liver metastasis from colorectal cancer (CRC), the leading cause of cancer-related mortality worldwide. Emerging evidence has provided insights into iron deficiency and excess in CRC. Ferroptosis is an iron-dependent form of programmed cell death characterized by aberrant iron and lipid metabolism, which play crucial roles in tumorigenesis, tumor progression, and treatment options. A better understanding of the underlying molecular mechanism of ferroptosis has shed light on the current findings of ferroptosis-based nanodrug targeting strategies, such as driving ferroptosis in tumor cells and the tumor microenvironment, emerging combination therapy and against multidrug resistance. Furthermore, this review highlights the challenge and perspective of a ferroptosis-driven nanodrug delivery system for CRC-targeted therapy.
Collapse
Affiliation(s)
- Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
50
|
Fernández-Acosta R, Iriarte-Mesa C, Alvarez-Alminaque D, Hassannia B, Wiernicki B, Díaz-García AM, Vandenabeele P, Vanden Berghe T, Pardo Andreu GL. Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules 2022; 27:molecules27133970. [PMID: 35807217 PMCID: PMC9268471 DOI: 10.3390/molecules27133970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
The use of nanomaterials rationally engineered to treat cancer is a burgeoning field that has reported great medical achievements. Iron-based polymeric nano-formulations with precisely tuned physicochemical properties are an expanding and versatile therapeutic strategy for tumor treatment. Recently, a peculiar type of regulated necrosis named ferroptosis has gained increased attention as a target for cancer therapy. Here, we show for the first time that novel iron oxide nanoparticles coated with gallic acid and polyacrylic acid (IONP–GA/PAA) possess intrinsic cytotoxic activity on various cancer cell lines. Indeed, IONP–GA/PAA treatment efficiently induces ferroptosis in glioblastoma, neuroblastoma, and fibrosarcoma cells. IONP–GA/PAA-induced ferroptosis was blocked by the canonical ferroptosis inhibitors, including deferoxamine and ciclopirox olamine (iron chelators), and ferrostatin-1, the lipophilic radical trap. These ferroptosis inhibitors also prevented the lipid hydroperoxide generation promoted by the nanoparticles. Altogether, we report on novel ferroptosis-inducing iron encapsulated nanoparticles with potent anti-cancer properties, which has promising potential for further in vivo validation.
Collapse
Affiliation(s)
- Roberto Fernández-Acosta
- Department of Pharmacy, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Claudia Iriarte-Mesa
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
- Institute of Inorganic Chemistry—Functional Materials, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Daniel Alvarez-Alminaque
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Behrouz Hassannia
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Bartosz Wiernicki
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Alicia M. Díaz-García
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
- Ferroptosis and Inflammation Research (FAIR), VIB Research Center, Ghent University, 9052 Ghent, Belgium
- Ferroptosis and Inflammation Research (FAIR), University of Antwerp, 2000 Antwerp, Belgium
| | - Gilberto L. Pardo Andreu
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
- Correspondence:
| |
Collapse
|