1
|
Wang J, Liao Z, Jin X, Liao L, Zhang Y, Zhang R, Zhao X, Qin H, Chen J, He Y, Zhuang C, Tang J, Huang S. Xanthomonas oryzae pv. oryzicola effector Tal10a directly activates rice OsHXK5 expression to facilitate pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2423-2436. [PMID: 38995679 DOI: 10.1111/tpj.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.
Collapse
Affiliation(s)
- Jiuxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhouxiang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xia Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lindong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yaqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Rongbo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xiyao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Huajun Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jianghong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiliang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| |
Collapse
|
2
|
Melotto M, Fochs B, Jaramillo Z, Rodrigues O. Fighting for Survival at the Stomatal Gate. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:551-577. [PMID: 39038249 DOI: 10.1146/annurev-arplant-070623-091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA;
| | - Brianna Fochs
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Zachariah Jaramillo
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
3
|
Wei Y, Zhu B, Zhang Y, Ma G, Wu J, Tang L, Shi H. CPK1-HSP90 phosphorylation and effector XopC2-HSP90 interaction underpin the antagonism during cassava defense-pathogen infection. THE NEW PHYTOLOGIST 2024; 242:2734-2745. [PMID: 38581188 DOI: 10.1111/nph.19739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.
Collapse
Affiliation(s)
- Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Binbin Zhu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Ye Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Guowen Ma
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Jingyuan Wu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Luzhi Tang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| |
Collapse
|
4
|
Wu Y, Wang S, Wang P, Nie W, Ahmad I, Sarris PF, Chen G, Zhu B. Suppression of host plant defense by bacterial small RNAs packaged in outer membrane vesicles. PLANT COMMUNICATIONS 2024; 5:100817. [PMID: 38217288 PMCID: PMC11009154 DOI: 10.1016/j.xplc.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Noncoding small RNAs (sRNAs) packaged in bacterial outer membrane vesicles (OMVs) function as novel mediators of interspecies communication. While the role of bacterial sRNAs in enhancing virulence is well established, the role of sRNAs in the interaction between OMVs from phytopathogenic bacteria and their host plants remains unclear. In this study, we employ RNA sequencing to characterize differentially packaged sRNAs in OMVs of the phytopathogen Xanthomonas oryzae pv. oryzicola (Xoc). Our candidate sRNA (Xosr001) was abundant in OMVs and involved in the regulation of OsJMT1 to impair host stomatal immunity. Xoc loads Xosr001 into OMVs, which are specifically ttransferred into the mechanical tissues of rice leaves. Xosr001 suppresses OsJMT1 transcript accumulation in vivo, leading to a reduction in MeJA accumulation in rice leaves. Furthermore, the application of synthesized Xosr001 sRNA to the leaves of OsJMT1-HA-OE transgenic line results in the suppression of OsJMT1 expression by Xosr001. Notably, the OsJMT1-HA-OE transgenic line exhibited attenuated stomatal immunity and disease susceptibility upon infection with ΔXosr001 compared to Xoc. These results suggest that Xosr001 packaged in Xoc OMVs functions to suppress stomatal immunity in rice.
Collapse
Affiliation(s)
- Yan Wu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan
| | | | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Jiao Tong University Chongqing Research Institute, Shanghai, China.
| |
Collapse
|
5
|
Mou B, Zhao G, Wang J, Wang S, He F, Ning Y, Li D, Zheng X, Cui F, Xue F, Zhang S, Sun W. The OsCPK17-OsPUB12-OsRLCK176 module regulates immune homeostasis in rice. THE PLANT CELL 2024; 36:987-1006. [PMID: 37831412 PMCID: PMC10980343 DOI: 10.1093/plcell/koad265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/14/2023]
Abstract
Plant immunity is fine-tuned to balance growth and defense. However, little is yet known about molecular mechanisms underlying immune homeostasis in rice (Oryza sativa). In this study, we reveal that a rice calcium-dependent protein kinase (CDPK), OsCPK17, interacts with and stabilizes the receptor-like cytoplasmic kinase (RLCK) OsRLCK176, a close homolog of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE 1 (AtBIK1). Oxidative burst and pathogenesis-related gene expression triggered by pathogen-associated molecular patterns are significantly attenuated in the oscpk17 mutant. The oscpk17 mutant and OsCPK17-silenced lines are more susceptible to bacterial diseases than the wild-type plants, indicating that OsCPK17 positively regulates rice immunity. Furthermore, the plant U-box (PUB) protein OsPUB12 ubiquitinates and degrades OsRLCK176. OsCPK17 phosphorylates OsRLCK176 at Ser83, which prevents the ubiquitination of OsRLCK176 by OsPUB12 and thereby enhances the stability and immune function of OsRLCK176. The phenotypes of the ospub12 mutant in defense responses and disease resistance show that OsPUB12 negatively regulates rice immunity. Therefore, OsCPK17 and OsPUB12 reciprocally maintain OsRLCK176 homeostasis and function as positive and negative immune regulators, respectively. This study uncovers positive cross talk between CDPK- and RLCK-mediated immune signaling in plants and reveals that OsCPK17, OsPUB12, and OsRLCK176 maintain rice immune homeostasis.
Collapse
Affiliation(s)
- Baohui Mou
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Guosheng Zhao
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Jiyang Wang
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xinhang Zheng
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Fuhao Cui
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Fang Xue
- Wetland Agriculture and Ecology Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Shiyong Zhang
- Wetland Agriculture and Ecology Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Wenxian Sun
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
6
|
Wang H, Song S, Gao S, Yu Q, Zhang H, Cui X, Fan J, Xin X, Liu Y, Staskawicz B, Qi T. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis. THE PLANT CELL 2024; 36:427-446. [PMID: 37851863 PMCID: PMC10827572 DOI: 10.1093/plcell/koad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
In the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown. Here, we show that the Nicotiana benthamiana RPW8-NLR central immune receptor ACTIVATED DISEASE RESISTANCE 1 (NbADR1), together with the key immune proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (NbEDS1) and PHYTOALEXIN DEFICIENT 4 (NbPAD4), plays an essential role in bacterial pathogen- and flg22-induced stomatal immunity by regulating the expression of salicylic acid (SA) and abscisic acid (ABA) biosynthesis or response-related genes. NbADR1 recruits NbEDS1 and NbPAD4 in stomata to form a stomatal immune response complex. The transcription factor NbWRKY40e, in association with NbEDS1 and NbPAD4, modulates the expression of SA and ABA biosynthesis or response-related genes to influence stomatal immunity. NbADR1, NbEDS1, and NbPAD4 are required for the pathogen infection-enhanced binding of NbWRKY40e to the ISOCHORISMATE SYNTHASE 1 promoter. Moreover, the ADR1-EDS1-PAD4 module regulates stomatal immunity in Arabidopsis (Arabidopsis thaliana). Collectively, our findings show the pivotal role of the core intracellular immune receptor module ADR1-EDS1-PAD4 in stomatal immunity, which enables plants to limit pathogen entry.
Collapse
Affiliation(s)
- Hanling Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shang Gao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haibo Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiulin Cui
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Fan
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiufang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yule Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Wang Y, Jia X, Li Y, Ma S, Ma C, Xin D, Wang J, Chen Q, Liu C. NopAA and NopD Signaling Association-Related Gene GmNAC27 Promotes Nodulation in Soybean ( Glycine max). Int J Mol Sci 2023; 24:17498. [PMID: 38139327 PMCID: PMC10744329 DOI: 10.3390/ijms242417498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Rhizobia secrete effectors that are essential for the effective establishment of their symbiotic interactions with leguminous host plants. However, the signaling pathways governing rhizobial type III effectors have yet to be sufficiently characterized. In the present study, the type III effectors, NopAA and NopD, which perhaps have signaling pathway crosstalk in the regulation of plant defense responses, have been studied together for the first time during nodulation. Initial qRT-PCR experiments were used to explore the impact of NopAA and NopD on marker genes associated with symbiosis and defense responses. The effects of these effectors on nodulation were then assessed by generating bacteria in which both NopAA and NopD were mutated. RNA-sequencing analyses of soybean roots were further utilized to assess signaling crosstalk between NopAA and NopD. NopAA mutant and NopD mutant were both found to repress GmPR1, GmPR2, and GmPR5 expression in these roots. The two mutants also significantly reduced nodules dry weight and the number of nodules and infection threads, although these changes were not significantly different from those observed following inoculation with double-mutant (HH103ΩNopAA&NopD). NopAA and NopD co-mutant inoculation was primarily found to impact the plant-pathogen interaction pathway. Common differentially expressed genes (DEGs) associated with both NopAA and NopD were enriched in the plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathways, and no further changes in these common DEGs were noted in response to inoculation with HH103ΩNopAA&NopD. Glyma.13G279900 (GmNAC27) was ultimately identified as being significantly upregulated in the context of HH103ΩNopAA&NopD inoculation, serving as a positive regulator of nodulation. These results provide new insight into the synergistic impact that specific effectors can have on the establishment of symbiosis and the responses of host plant proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, National Key Laboratory of Smart Farm Technology and System, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (X.J.); (Y.L.); (S.M.); (C.M.); (D.X.); (J.W.)
| | - Chunyan Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, National Key Laboratory of Smart Farm Technology and System, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (X.J.); (Y.L.); (S.M.); (C.M.); (D.X.); (J.W.)
| |
Collapse
|
9
|
Wei J, Sun W, Zheng X, Qiu S, Jiao S, Babilonia K, Koiwa H, He P, Shan L, Sun W, Cui F. Arabidopsis RNA polymerase II C-terminal domain phosphatase-like 1 targets mitogen-activated protein kinase cascades to suppress plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2380-2394. [PMID: 37534615 DOI: 10.1111/jipb.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant defense against phytopathogens downstream of immune receptor complexes. The amplitude and duration of MAPK activation must be strictly controlled, but the underlying mechanism remains unclear. Here, we identified Arabidopsis CPL1 (C-terminal domain phosphatase-like 1) as a negative regulator of microbe-associated molecular pattern (MAMP)-triggered immunity via a forward-genetic screen. Disruption of CPL1 significantly enhanced plant resistance to Pseudomonas pathogens induced by the bacterial peptide flg22. Furthermore, flg22-induced MPK3/MPK4/MPK6 phosphorylation was dramatically elevated in cpl1 mutants but severely impaired in CPL1 overexpression lines, suggesting that CPL1 might interfere with flg22-induced MAPK activation. Indeed, CPL1 directly interacted with MPK3 and MPK6, as well as the upstream MKK4 and MKK5. A firefly luciferase-based complementation assay indicated that the interaction between MKK4/MKK5 and MPK3/MPK6 was significantly reduced in the presence of CPL1. These results suggest that CPL1 plays a novel regulatory role in suppressing MAMP-induced MAPK cascade activation and MAMP-triggered immunity to bacterial pathogens.
Collapse
Affiliation(s)
- Junjun Wei
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Wei Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Shuangyu Jiao
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Kevin Babilonia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Peduzzi C, Sagia A, Burokienė D, Nagy IK, Fischer-Le Saux M, Portier P, Dereeper A, Cunnac S, Roman-Reyna V, Jacobs JM, Bragard C, Koebnik R. Complete Genome Sequencing of Three Clade-1 Xanthomonads Reveals Genetic Determinants for a Lateral Flagellin and the Biosynthesis of Coronatine-Like Molecules in Xanthomonas. PHYTOPATHOLOGY 2023; 113:1185-1191. [PMID: 36611232 DOI: 10.1094/phyto-10-22-0373-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Evolutionarily, early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, as well as Xanthomonas translucens, which infects small-grain cereals and diverse grasses but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches have indicated that this clade likely contains more, yet-undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean, and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. Furthermore, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.
Collapse
Affiliation(s)
- Chloé Peduzzi
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Angeliki Sagia
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Daiva Burokienė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Pathology, Vilnius, Lithuania
| | | | | | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Alexis Dereeper
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sébastien Cunnac
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Claude Bragard
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
11
|
Singh S, Sarki YN, Marwein R, Singha DL, Velmurugan N, Chikkaputtaiah C. Unraveling the role of effector proteins in Bipolaris oryzae infecting North East Indian rice cultivars through time-course transcriptomics analysis. Fungal Biol 2023; 127:1098-1110. [PMID: 37495300 DOI: 10.1016/j.funbio.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 07/28/2023]
Abstract
Bipolaris oryzae, causing brown spot disease in rice, is one of the neglected diseases reducing rice productivity. Limited knowledge is available on the genetics of host-pathogen interaction. Here, we used time-course transcriptome sequencing to elucidate the differential transcriptional responses of the pathogen genes in two contradictory infection-responsive rice hosts. Evaluation of transcriptome data showed similar regulation of fungal genes within susceptible (1733) and resistant (1846) hosts at an early stage however, in the later stage, the number was significantly higher in susceptible (2877) compared to resistant (1955) hosts. GO enrichment terms for upregulated genes showed a similar pattern in both the hosts at an early stage, but in the later stage terms related to degradation of carbohydrates, carbohydrate transport, and pathogenesis are enriched extensively within the susceptible host. Likewise, similar expression responses were observed with the secretory and effector proteins. Plant pathogenic homologs genes such as those involved in appressorium and conidia formation, host cell wall degradative enzymes, etc. were reported to be highly upregulated within the susceptible host. This study predicts the successful establishment of B. oryzae BO1 in both the host surfaces at an early stage, while disease progression only occurs in the susceptible host in later stage.
Collapse
Affiliation(s)
- Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India
| | - Yogita N Sarki
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Riwandahun Marwein
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun, 791110, Arunachal Pradesh, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
12
|
St. Louis BM, Quagliato SM, Lee PC. Bacterial effector kinases and strategies to identify their target host substrates. Front Microbiol 2023; 14:1113021. [PMID: 36846793 PMCID: PMC9950578 DOI: 10.3389/fmicb.2023.1113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Post-translational modifications (PTMs) are critical in regulating protein function by altering chemical characteristics of proteins. Phosphorylation is an integral PTM, catalyzed by kinases and reversibly removed by phosphatases, that modulates many cellular processes in response to stimuli in all living organisms. Consequently, bacterial pathogens have evolved to secrete effectors capable of manipulating host phosphorylation pathways as a common infection strategy. Given the importance of protein phosphorylation in infection, recent advances in sequence and structural homology search have significantly expanded the discovery of a multitude of bacterial effectors with kinase activity in pathogenic bacteria. Although challenges exist due to complexity of phosphorylation networks in host cells and transient interactions between kinases and substrates, approaches are continuously being developed and applied to identify bacterial effector kinases and their host substrates. In this review, we illustrate the importance of exploiting phosphorylation in host cells by bacterial pathogens via the action of effector kinases and how these effector kinases contribute to virulence through the manipulation of diverse host signaling pathways. We also highlight recent developments in the identification of bacterial effector kinases and a variety of techniques to characterize kinase-substrate interactions in host cells. Identification of host substrates provides new insights for regulation of host signaling during microbial infection and may serve as foundation for developing interventions to treat infection by blocking the activity of secreted effector kinases.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | | |
Collapse
|
13
|
Yang J, Zhang N, Wang J, Fang A, Fan J, Li D, Li Y, Wang S, Cui F, Yu J, Liu Y, Wang WM, Peng YL, He SY, Sun W. SnRK1A-mediated phosphorylation of a cytosolic ATPase positively regulates rice innate immunity and is inhibited by Ustilaginoidea virens effector SCRE1. THE NEW PHYTOLOGIST 2022; 236:1422-1440. [PMID: 36068953 DOI: 10.1111/nph.18460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is becoming one of the most recalcitrant rice diseases worldwide. However, the molecular mechanisms underlying rice immunity against U. virens remain unknown. Using genetic, biochemical and disease resistance assays, we demonstrated that the xb24 knockout lines generated in non-Xa21 rice background exhibit an enhanced susceptibility to the fungal pathogens U. virens and Magnaporthe oryzae. Consistently, flg22- and chitin-induced oxidative burst and expression of pathogenesis-related genes in the xb24 knockout lines were greatly attenuated. As a central mediator of energy signaling, SnRK1A interacts with and phosphorylates XB24 at Thr83 residue to promote ATPase activity. SnRK1A is activated by pathogen-associated molecular patterns and positively regulates plant immune responses and disease resistance. Furthermore, the virulence effector SCRE1 in U. virens targets host ATPase XB24. The interaction inhibits ATPase activity of XB24 by blocking ATP binding to XB24. Meanwhile, SCRE1 outcompetes SnRK1A for XB24 binding, and thereby suppresses SnRK1A-mediated phosphorylation and ATPase activity of XB24. Our results indicate that the conserved SnRK1A-XB24 module in multiple crop plants positively contributes to plant immunity and uncover an unidentified molecular strategy to promote infection in U. virens and a novel host target in fungal pathogenesis.
Collapse
Affiliation(s)
- Jiyun Yang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Nan Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jiyang Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Anfei Fang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jing Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Yuejiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Wen-Ming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - You-Liang Peng
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Sheng Yang He
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
14
|
Liu L, Li Y, Xu Z, Chen H, Zhang J, Manion B, Liu F, Zou L, Fu ZQ, Chen G. The Xanthomonas type III effector XopAP prevents stomatal closure by interfering with vacuolar acidification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1994-2008. [PMID: 35972796 DOI: 10.1111/jipb.13344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid (ABA) or salicylic acid (SA) and after recognition of pathogen-associated molecular patterns (PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type III effectors (T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms. Here, we show that the virulence and infection of Xanthomonas oryzae pv. oryzicola (Xoc), which is the causal agent of rice bacterial leaf streak disease, drastically increased in transgenic rice (Oryza sativa L.) plants overexpressing the Xoc T3E gene XopAP, which encodes a protein annotated as a lipase. We discovered that XopAP binds to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ), a membrane phospholipid that functions in pH control in lysosomes, membrane dynamics, and protein trafficking. XopAP inhibited the acidification of vacuoles by competing with vacuolar H+ -pyrophosphatase (V-PPase) for binding to PtdIns(3,5)P2 , leading to stomatal opening. Transgenic rice overexpressing XopAP also showed inhibition of stomatal closure when challenged by Xoc infection and treatment with the PAMP flg22. Moreover, XopAP suppressed flg22-induced gene expression, reactive oxygen species burst and callose deposition in host plants, demonstrating that XopAP subverts PAMP-triggered immunity during Xoc infection. Taken together, these findings demonstrate that XopAP overcomes stomatal immunity in plants by binding to lipids.
Collapse
Affiliation(s)
- Longyu Liu
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | - Ying Li
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Xu
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jingyi Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Brittany Manion
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lifang Zou
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | - Gongyou Chen
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Ustilaginoidea virens Nuclear Effector SCRE4 Suppresses Rice Immunity via Inhibiting Expression of a Positive Immune Regulator OsARF17. Int J Mol Sci 2022; 23:ijms231810527. [PMID: 36142440 PMCID: PMC9501289 DOI: 10.3390/ijms231810527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Rice false smut caused by the biotrophic fungal pathogen Ustilaginoidea virens has become one of the most important diseases in rice. The large effector repertory in U. virens plays a crucial role in virulence. However, current knowledge of molecular mechanisms how U. virens effectors target rice immune signaling to promote infection is very limited. In this study, we identified and characterized an essential virulence effector, SCRE4 (Secreted Cysteine-Rich Effector 4), in U. virens. SCRE4 was confirmed as a secreted nuclear effector through yeast secretion, translocation assays and protein subcellular localization, as well as up-regulation during infection. The SCRE4 gene deletion attenuated the virulence of U. virens to rice. Consistently, ectopic expression of SCRE4 in rice inhibited chitin-triggered immunity and enhanced susceptibility to false smut, substantiating that SCRE4 is an essential virulence factor. Furthermore, SCRE4 transcriptionally suppressed the expression of OsARF17, an auxin response factor in rice, which positively regulates rice immune responses and resistance against U. virens. Additionally, the immunosuppressive capacity of SCRE4 depended on its nuclear localization. Therefore, we uncovered a virulence strategy in U. virens that transcriptionally suppresses the expression of the immune positive modulator OsARF17 through nucleus-localized effector SCRE4 to facilitate infection.
Collapse
|
16
|
Zheng X, Fang A, Qiu S, Zhao G, Wang J, Wang S, Wei J, Gao H, Yang J, Mou B, Cui F, Zhang J, Liu J, Sun W. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. THE PLANT CELL 2022; 34:3088-3109. [PMID: 35639755 PMCID: PMC9338817 DOI: 10.1093/plcell/koac154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is emerging as a devastating disease of rice (Oryza sativa) worldwide; however, the molecular mechanisms underlying U. virens virulence and pathogenicity remain largely unknown. Here we demonstrate that the small cysteine-rich secreted protein SCRE6 in U. virens is translocated into host cells during infection as a virulence factor. Knockout of SCRE6 leads to attenuated U. virens virulence to rice. SCRE6 and its homologs in U. virens function as a novel family of mitogen-activated protein kinase phosphatases harboring no canonical phosphatase motif. SCRE6 interacts with and dephosphorylates the negative immune regulator OsMPK6 in rice, thus enhancing its stability and suppressing plant immunity. Ectopic expression of SCRE6 in transgenic rice promotes pathogen infection by suppressing the host immune responses. Our results reveal a previously unidentified fungal infection strategy in which the pathogen deploys a family of tyrosine phosphatases to stabilize a negative immune regulator in the host plant to facilitate its infection.
Collapse
Affiliation(s)
- Xinhang Zheng
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Anfei Fang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shanshan Qiu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Guosheng Zhao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shanzhi Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Junjun Wei
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyun Yang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Baohui Mou
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Fuhao Cui
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | | |
Collapse
|
17
|
What's new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem 2022; 66:621-634. [PMID: 35723080 PMCID: PMC9528078 DOI: 10.1042/ebc20210088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth, tight immune regulation is required to prevent unnecessary rechannelling of valuable resources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of immunity initiated after sensing microbial patterns at the cell surface or pathogen effectors secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation suggests a close interplay of signalling pathways and defense responses downstream of perception that is still poorly understood. This review will focus on controls on plant immunity through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a complete overview, we highlight “what’s new in protein kinase/phosphatase signalling” in the immunity field. In addition to phosphoregulation of components in the pattern recognition receptor (PRR) complex, we will cover the actions of the major immunity-relevant intracellular protein kinases/phosphatases in the ‘signal relay’, namely calcium-regulated kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein kinases (MAPKs), and various protein phosphatases. We discuss how these factors define a phosphocode that generates cellular decision-making ‘logic gates’, which contribute to signalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation, we summarize strategies employed by pathogens to subvert plant immune phosphopathways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode as the mechanistic control of the PTI-ETI continuum.
Collapse
|
18
|
Liu H, Lu C, Li Y, Wu T, Zhang B, Liu B, Feng W, Xu Q, Dong H, He S, Chu Z, Ding X. The bacterial effector AvrRxo1 inhibits vitamin B6 biosynthesis to promote infection in rice. PLANT COMMUNICATIONS 2022; 3:100324. [PMID: 35576156 PMCID: PMC9251433 DOI: 10.1016/j.xplc.2022.100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 06/02/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc), which causes rice bacterial leaf streak, invades leaves mainly through stomata, which are often closed as a plant immune response against pathogen invasion. How Xoc overcomes stomatal immunity is unclear. Here, we show that the effector protein AvrRxo1, an ATP-dependent protease, enhances Xoc virulence and inhibits stomatal immunity by targeting and degrading rice OsPDX1 (pyridoxal phosphate synthase), thereby reducing vitamin B6 (VB6) levels in rice. VB6 is required for the activity of aldehyde oxidase, which catalyzes the last step of abscisic acid (ABA) biosynthesis, and ABA positively regulates rice stomatal immunity against Xoc. Thus, we provide evidence supporting a model in which a major bacterial pathogen inhibits plant stomatal immunity by directly targeting VB6 biosynthesis and consequently inhibiting the biosynthesis of ABA in guard cells to open stomata. Moreover, AvrRxo1-mediated VB6 targeting also explains the poor nutritional quality, including low VB6 levels, of Xoc-infected rice grains.
Collapse
Affiliation(s)
- Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China; College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Tao Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Baogang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Wenjie Feng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Qian Xu
- College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Shengyang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei, PR China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China.
| |
Collapse
|
19
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
20
|
Wu T, Zhang H, Bi Y, Yu Y, Liu H, Yang H, Yuan B, Ding X, Chu Z. Tal2c Activates the Expression of OsF3H04g to Promote Infection as a Redundant TALE of Tal2b in Xanthomonas oryzae pv. oryzicola. Int J Mol Sci 2021; 22:ijms222413628. [PMID: 34948428 PMCID: PMC8707247 DOI: 10.3390/ijms222413628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote infection in the highly virulent strain of X. oryzae pv. oryzicola HGA4. Here, we reveal that another clustered TALE, Tal2c, also functioned as a virulence factor to target rice OsF3H04g, a homologue of OsF3H03g. Transferring Tal2c into RS105 induced expression of OsF3H04g to coincide with increased susceptibility in rice. Overexpressing OsF3H04g caused higher susceptibility and less salicylic acid (SA) production compared to wild-type plants. Moreover, CRISPR–Cas9 system-mediated editing of the effector-binding element in the promoters of OsF3H03g or OsF3H04g was found to specifically enhance resistance to Tal2b- or Tal2c-transferring strains, but had no effect on resistance to either RS105 or HGA4. Furthermore, transcriptome analysis revealed that several reported SA-related and defense-related genes commonly altered expression in OsF3H04g overexpression line compared with those identified in OsF3H03g overexpression line. Overall, our results reveal a functional redundancy mechanism of pathogenic virulence in Xoc in which tandem Tal2b and Tal2c specifically target homologues of host genes to interfere with rice immunity by reducing SA.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.D.); (Z.C.); Tel.: +86-538-8245569 (X.D.); +86-27-68752095 (Z.C.)
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Correspondence: (X.D.); (Z.C.); Tel.: +86-538-8245569 (X.D.); +86-27-68752095 (Z.C.)
| |
Collapse
|