1
|
Liu B, Tian X, Li L, Zhang R, Wu J, Jiang N, Yuan M, Chen D, Su A, Xu S, Wu Z. Severe fever with thrombocytopenia syndrome virus induces lactylation of m6A reader protein YTHDF1 to facilitate viral replication. EMBO Rep 2024:10.1038/s44319-024-00310-7. [PMID: 39496835 DOI: 10.1038/s44319-024-00310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging infectious pathogen with a high fatality rate, is an enveloped tripartite segmented single-stranded negative-sense RNA virus. SFTSV infection is characterized by suppressed host innate immunity, proinflammatory cytokine storm, failure of B-cell immunity, and robust viral replication. m6A modification has been shown to play a role in viral infections. However, interactions between m6A modification and SFTSV infection remain poorly understood. Through MeRIP-seq, we identify m6A modifications on SFTSV RNA. We show that YTHDF1 can bind to m6A modification sites on SFTSV, decreasing the stability of SFTSV RNA and reducing the translation efficiency of SFTSV proteins. The SFTSV virulence factor NSs increases lactylation of YTHDF1 and YTHDF1 degradation, thus facilitating SFTSV replication. Our findings indicate that the SFTSV protein NSs induce lactylation to inhibit YTHDF1 as a countermeasure to host's YTHDF1-mediated degradation of m6A-marked viral mRNAs.
Collapse
Affiliation(s)
- Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Linrun Li
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Meng Yuan
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Airong Su
- Clinical Molecular Diagnostic Laboratory, The 2nd Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, People's Republic of China.
| |
Collapse
|
2
|
Mo J, Weng X, Zhou X. Detection, Clinical Application, and Manipulation of RNA Modifications. Acc Chem Res 2023; 56:2788-2800. [PMID: 37769231 DOI: 10.1021/acs.accounts.3c00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ConspectusWith increasing research interest, more than 170 types of chemical modifications of RNA have been characterized. The epigenetic modifications of RNA do not alter the primary sequence of RNA but modulate the gene activity. Increasing numbers of regulatory functions of these RNA modifications, particularly in controlling mRNA fate and gene expression, are being discovered. To gain a deeper understanding of the biological significance and clinical prospects of RNA modifications, the development of innovative labeling and detection methodologies is of great importance. Owing to the dynamic features of RNA modifications and the fact that only a portion of genes are modified, detection methods should accurately reveal the precise distribution and modification level of RNA modifications. In general, detection methodologies identify specific RNA modifications in two ways: (1) enriching modification-containing RNAs; and (2) altering the Watson-Crick base pairing pattern to produce truncation or mutation signatures. Additionally, it is important to develop flexible and accurate manipulation tools that enable the installation or removal of RNA modifications at specific positions to investigate the biological functions of a single site. With the development of detection and manipulation methods, the scientific understanding of the biological functions of RNA modifications has increased, paving the way for applications of RNA modifications in disease diagnosis and treatments.In this Account, we provide a brief summary of recent efforts to develop methodologies for detecting RNA modifications. Through the evolution of these detection techniques, our team has uncovered the potential biological roles of RNA modifications in diseases such as diabetic cardiovascular complications, viral infections, and hematologic malignancies. We mainly summarize the recently developed strategies for manipulating RNA modifications. The advent of these programmable editing tools allows for the precise installation or removal of RNA modifications at specific positions. As a result, the biological functions of RNA modifications at these specific loci could be identified, further advancing our knowledge in this field.With this Account, we anticipate providing chemical and biological researchers with comprehensive strategies to discover the underlying mechanisms of RNA modification-mediated biological processes. Although the field of RNA modifications has undergone rapid progress in recent years, our understanding of most of these RNA modifications remains incomplete. We hope to inspire efforts to expand the toolbox for investigating RNA modifications and promote translational research on epigenetics in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Mo
- College of Chemistry and Molecular Sciences, Department of Clinical Laboratory of Zhongnan Hospital, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Department of Clinical Laboratory of Zhongnan Hospital, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Department of Clinical Laboratory of Zhongnan Hospital, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Zhang Z, Hu X, Jiang Q, Hu W, Li A, Deng L, Xiong Y. Clinical characteristics and outcomes of acute kidney injury in patients with severe fever with thrombocytopenia syndrome. Front Microbiol 2023; 14:1236091. [PMID: 37779695 PMCID: PMC10533938 DOI: 10.3389/fmicb.2023.1236091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonosis caused by a novel bunyavirus. Until recently, the SFTS related acute kidney injury (AKI) was largely unexplored. This study aimed to investigate the clinical characteristics and outcomes of AKI in patients with SFTS. Methods The non-AKI and AKI groups were compared in terms of general characteristics, clinical features, laboratory parameters and cumulative survival rate. The independent risk factors for in-hospital mortality in patients with SFTS were analyzed by multivariate logistic regression to identify the population with poor prognosis. Results A total of 208 consecutive patients diagnosed with SFTS were enrolled, including 153 (73.6%) patients in the non-AKI group and 55 (26.4%) patients in the AKI group. Compared with patients without AKI, patients with AKI were older and had a higher frequency of diabetes. Among these laboratory parameters, platelet count, albumin and fibrinogen levels of patients with AKI were identified to be significantly lower than those of patients without AKI, while ALT, AST, ALP, triglyceride, LDH, BUN, uric acid, creatine, Cys-C, β2-MG, potassium, AMY, lipase, CK-MB, TnI, BNP, APTT, thrombin time, D-dimer, CRP, IL-6, PCT and ESR levels were significantly higher in patients with AKI. A higher SFTS viral load was also detected in the AKI patients than in the non-AKI patients. The cumulative survival rates of patients at AKI stage 2 or 3 were significantly lower than those of patients without AKI or at AKI stage 1. However, there was no significant difference in the cumulative survival rates between patients without AKI and those with stage 1 AKI. Univariate and multivariate binary logistic regression analyses demonstrated that stage 2 or 3 AKI was an independent risk factor for in-hospital mortality in patients with SFTS. Conclusion AKI is associated with poor outcomes in patients with SFTS, especially patients at AKI stage 2 or 3, who generally have high mortality. Our findings support the importance of early identification and timely treatment of AKI in patients with SFTS.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qunqun Jiang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjia Hu
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liping Deng
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Wang Y, Zhou X. N 6-methyladenosine and Its Implications in Viruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:695-706. [PMID: 35835441 PMCID: PMC10787122 DOI: 10.1016/j.gpb.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
N6-methyladenine (m6A) is the most abundant RNA modification in mammalian messenger RNAs (mRNAs), which participates in and regulates many important biological activities, such as tissue development and stem cell differentiation. Due to an improved understanding of m6A, researchers have discovered that the biological function of m6A can be linked to many stages of mRNA metabolism and that m6A can regulate a variety of complex biological processes. In addition to its location on mammalian mRNAs, m6A has been identified on viral transcripts. m6A also plays important roles in the life cycle of many viruses and in viral replication in host cells. In this review, we briefly introduce the detection methods of m6A, the m6A-related proteins, and the functions of m6A. We also summarize the effects of m6A-related proteins on viral replication and infection. We hope that this review provides researchers with some insights for elucidating the complex mechanisms of the epitranscriptome related to viruses, and provides information for further study of the mechanisms of other modified nucleobases acting on processes such as viral replication. We also anticipate that this review can stimulate collaborative research from different fields, such as chemistry, biology, and medicine, and promote the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Quan C, Liu Q, Yu L, Li C, Nie K, Ding G, Zhou H, Wang X, Sun W, Wang H, Yue M, Wei L, Zheng W, Lyu Q, Xing W, Zhang Z, Carr MJ, Zhang H, Shi W. SFTSV infection is associated with transient overproliferation of monoclonal lambda-type plasma cells. iScience 2023; 26:106799. [PMID: 37250798 PMCID: PMC10212991 DOI: 10.1016/j.isci.2023.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The impairment of antibody-mediated immunity is a major factor associated with fatal cases of severe fever with thrombocytopenia syndrome (SFTS). By collating the clinical diagnosis reports of 30 SFTS cases, we discovered the overproliferation of monoclonal plasma cells (MCP cells, CD38+cLambda+cKappa-) in bone marrow, which has only been reported previously in multiple myeloma. The ratio of CD38+cLambda+ versus CD38+cKappa+ in SFTS cases with MCP cells was significantly higher than that in normal cases. MCP cells presented transient expression in the bone marrow, which was distinctly different from multiple myeloma. Moreover, the SFTS patients with MCP cells had higher clinical severity. Further, the overproliferation of MCP cells was also observed in SFTS virus (SFTSV)-infected mice with lethal infectious doses. Together, SFTSV infection induces transient overproliferation of monoclonal lambda-type plasma cells, which have important implications for the study of SFTSV pathogenesis, prognosis, and the rational development of therapeutics.
Collapse
Affiliation(s)
- Chuansong Quan
- Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Qinghua Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Lijuan Yu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Chunjing Li
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Kaixiao Nie
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| | - Hong Zhou
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xinli Wang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenwen Sun
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Huiliang Wang
- Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Maokui Yue
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenjun Zheng
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Qiang Lyu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| | - Zhenjie Zhang
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Michael J. Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N20 W10 Kita-ku, Sapporo 001-0020, Japan
| | - Hong Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Weifeng Shi
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| |
Collapse
|
6
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Tang H, Peng J, Peng S, Wang Q, Jiang X, Xue X, Tao Y, Xiang L, Ji Q, Liu SM, Weng X, Zhou X. Live-cell RNA imaging using the CRISPR-dCas13 system with modified sgRNAs appended with fluorescent RNA aptamers. Chem Sci 2022; 13:14032-14040. [PMID: 36540819 PMCID: PMC9728512 DOI: 10.1039/d2sc04656c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/06/2022] [Indexed: 09/10/2023] Open
Abstract
The development of RNA imaging strategies in live cells is essential to improve our understanding of their role in various cellular functions. We report an efficient RNA imaging method based on the CRISPR-dPspCas13b system with fluorescent RNA aptamers in sgRNA (CasFAS) in live cells. Using modified sgRNA attached to fluorescent RNA aptamers that showed reduced background fluorescence, this approach provides a simple, sensitive way to image and track endogenous RNA with high accuracy and efficiency. In addition, color switching can be easily achieved by changing the fluorogenic dye analogues in living cells through user-friendly washing and restaining operations. CasFAS is compatible with orthogonal fluorescent aptamers, such as Broccoli and Pepper, enabling multiple colors RNA labeling or intracellular RNA-RNA interaction imaging. Finally, the visualization of severe fever with thrombocytopenia syndrome virus (SFTSV) was achieved by CasFAS, which may facilitate further studies on this virus.
Collapse
Affiliation(s)
- Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Junran Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xiaocheng Xue
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yanxin Tao
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University Wuhan 430072 Hubei P. R. China
| | - Limin Xiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 P. R. China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| |
Collapse
|
8
|
Inferring bona fide Differentially Expressed Genes and Their Variants Associated with Vitamin K Deficiency Using a Systems Genetics Approach. Genes (Basel) 2022; 13:genes13112078. [PMID: 36360315 PMCID: PMC9690332 DOI: 10.3390/genes13112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Systems genetics is key for integrating a large number of variants associated with diseases. Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK disease phenotypes, viz., myocardial infarction, renal failure and prostate cancer. We sought to ask whether or not any DEGs harbor pathogenic variants common in these conditions, attempt to bridge the gap in finding characteristic biomarkers and discuss the role of long noncoding RNAs (lncRNAs) in the biogenesis of VK deficiencies.
Collapse
|
9
|
Wang YN, Zhang YF, Peng XF, Ge HH, Wang G, Ding H, Li Y, Li S, Zhang LY, Zhang JT, Li H, Zhang XA, Liu W. Mast Cell-Derived Proteases Induce Endothelial Permeability and Vascular Damage in Severe Fever with Thrombocytopenia Syndrome. Microbiol Spectr 2022; 10:e0129422. [PMID: 35612327 PMCID: PMC9241724 DOI: 10.1128/spectrum.01294-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever acquired by tick bites. Whether mast cells (MCs), the body's first line of defense against pathogens, might influence immunity or pathogenesis during SFTS virus (SFTSV) infection remained unknown. Here, we found that SFTSV can cause MC infection and degranulation, resulting in the release of the vasoactive mediators, chymase, and tryptase, which can directly act on endothelial cells, break the tight junctions of endothelial cells and threaten the integrity of the microvascular barrier, leading to microvascular hyperpermeability in human microvascular endothelial cells. Local activation of MCs (degranulation) and MC-specific proteases-facilitated endothelial damage were observed in mouse models. When MC-specific proteases were injected subcutaneously into the back skin of mice, signs of capillary leakage were observed in a dose-dependent manner. MC-specific proteases, chymase, and tryptase were tested in the serum collected at the acute phase of SFTS patients, with the higher level significantly correlated with fatal outcomes. By performing receiver operator characteristic curve (ROC) analysis, chymase was determined as a biomarker with the area under the curve value of 0.830 (95% CI = 0.745 to 0.915) for predicting fatal outcomes in SFTS. Our findings highlight the importance of MCs in SFTSV-induced disease progression and outcome. An emerging role for MCs in the clinical prognosis and blocking MC activation as a potential drug target during SFTSV infection was proposed. IMPORTANCE We revealed a pathogenic role for MCs in response to SFTSV infection. The study also identifies potential biomarkers that could differentiate patients at risk of a fatal outcome for SFTS, as well as novel therapeutic targets for the clinical management of SFTS. These findings might shed light on an emerging role for MCs as a potential drug target during infection of other viral hemorrhagic fever diseases with similar host pathology as SFTS.
Collapse
Affiliation(s)
- Yu-Na Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Yun-Fa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Hong-Han Ge
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Heng Ding
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Shuang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Jing-Tao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|