1
|
Reijers ILM, Menzies AM, Lopez-Yurda M, Versluis JM, Rozeman EA, Saw RPM, van Houdt WJ, Kapiteijn E, van der Veldt AAM, Suijkerbuijk KPM, Eriksson H, Hospers GAP, Klop WMC, Torres Acosta A, Grijpink-Ongering L, Gonzalez M, van der Wal A, Al-Mamgani A, Spillane AJ, Scolyer RA, van de Wiel BA, van Akkooi ACJ, Long GV, Blank CU. Impact of personalized response-directed surgery and adjuvant therapy on survival after neoadjuvant immunotherapy in stage III melanoma: Comparison of 3-year data from PRADO and OpACIN-neo. Eur J Cancer 2025; 214:115141. [PMID: 39602990 DOI: 10.1016/j.ejca.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Pathologic response following neoadjuvant immune checkpoint blockade (ICB) in stage III melanoma serves as a surrogate marker for long-term outcomes. This may support more personalized, response-directed treatment strategies. METHODS The OpACIN-neo and PRADO trials were phase 2 studies evaluating neoadjuvant treatment with ipilimumab and nivolumab in stage III melanoma. In OpACIN-neo, all patients underwent therapeutic lymph node dissection (TLND) without subsequent adjuvant therapy. In contrast, PRADO explored a response- directed strategy, where patients achieving a major pathologic response (MPR) omitted TLND and adjuvant therapy, while those without a pathologic response (pNR) received TLND and adjuvant therapy. Here, we provide a descriptive post-hoc comparison of 3-year survival outcomes between the non-personalized approach in OpACIN-neo and the response-directed approach in PRADO. RESULTS For patients who achieved an MPR, the 3-year recurrence-free survival (RFS) was 93 % for those without TLND versus 96 % for those with TLND (log-rank p = 0.47), and distant metastasis-free survival (DMFS) was 98 % compared to 96 % (log-rank p = 0.49), respectively. For patients with pNR, 3-year RFS rates were 64 % for those receiving adjuvant systemic therapy and 35 % for patients without (log-rank p = 0.10). DMFS rates were 70 % versus 52 % (log-rank p = 0.24), respectively. CONCLUSIONS These data suggest that TLND and adjuvant therapy may be safely omitted in most patients achieving an MPR, while adjuvant systemic therapy following TLND appears to improve RFS and DMFS in patients with pNR. Although these results are hypothesis-generating and require further validation, they offer a potential foundation for developing personalized neoadjuvant immunotherapy approaches.
Collapse
Affiliation(s)
- Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alexander M Menzies
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Judith M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Robyn P M Saw
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Winan J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid A M van der Veldt
- Departments of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanna Eriksson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Oncology/Skin Cancer Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Willem M C Klop
- Department of Head and Neck Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maria Gonzalez
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Anja van der Wal
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abrahim Al-Mamgani
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andrew J Spillane
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Breast and Melanoma Surgery, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Bart A van de Wiel
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alexander C J van Akkooi
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Georgina V Long
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands; Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; University Clinic Regensburg, Dept. Hematology and Medical Oncology, Regensburg, Germany.
| |
Collapse
|
2
|
Zhao M, Schoenfeld JD, Egloff AM, Hanna GJ, Haddad RI, Adkins DR, Uppaluri R. T cell dynamics with neoadjuvant immunotherapy in head and neck cancer. Nat Rev Clin Oncol 2024:10.1038/s41571-024-00969-w. [PMID: 39658611 DOI: 10.1038/s41571-024-00969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Immune-checkpoint inhibitors (ICIs) are being tested as neoadjuvant therapies in various solid tumours, including in patients with head and neck squamous cell carcinoma (HNSCC), with promising results. Key findings thus far include that this approach is well-tolerated with favourable clinical outcomes including promising pathological response rates in initial studies. Pathological responses are likely to be increased by combining other agents with anti-PD-(L)1 antibodies. Comparisons of baseline biopsy samples with post-treatment surgical specimens have enabled correlative studies utilizing multiomic and immunogenomic methods. Data from these studies suggest that pretreatment intratumoural tissue-resident memory CD8+ T cells are key drivers of tumour regression and give rise to both local and systemic antitumour immune responses. Analyses of systemic responses have defined a PD-1+KLRG1- circulating CD8+ T cell subpopulation that is highly predictive of response, and revealed the interrelationships between intratumoural clones and circulating CD8+ T cells. Lastly, interrogation of T cell populations within lymph nodes is beginning to delineate the immune crosstalk between the primary tumour and tumour-draining lymph nodes and how this relationship might be disrupted with tumour infiltration of the latter. In this Review, we examine data from trials testing neoadjuvant ICIs in patients with HNSCC, focusing on human papillomavirus-unrelated disease, and highlight correlative immunogenomic findings from these trials.
Collapse
Affiliation(s)
- Maryann Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan D Schoenfeld
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert I Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas R Adkins
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine/Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Pan Y, Li H, Zhu M, Xu B, Chen M, Zhang C, Zheng H. Neoadjuvant chemoimmunotherapy for laryngeal preservation in locally advanced hypopharyngeal cancer. Int Immunopharmacol 2024; 142:113197. [PMID: 39298814 DOI: 10.1016/j.intimp.2024.113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES To retrospectively investigate the pathological response rate, laryngeal preservation surgery (LPS) rate and progression free survival (PFS) of neoadjuvant chemoimmunotherapy in the treatment of locally advanced hypopharyngeal cancer (LAHPC). MATERIALS AND METHODS In this study, LAHPC patients, who were first diagnosed and underwent surgery at the First Affiliated Hospital of Naval Medical University between January 2021 and January 2024, preoperatively administered PD-1 inhibitor and TP induction regimen (albumin-bound paclitaxel 260 mg/m2 and cisplatin 80 mg/m2). The primary endpoint was major pathological response (MPR), with ORR rate, LPS rate and PFS as the secondary endpoints. Then, the correlation between MPR and overall response rate (ORR) was further validated. RESULTS A total of 46 patients satisfied the inclusion criteria, with the median follow-up period of 10.5 months. After neoadjuvant chemoimmunotherapy, the ORR was observed to be 71.9 %, and the LPS rate reached 80.4 % (76.5 % in stage IV patients). The pathological response indicated a favorable response, with the MPR ratio at 52.2 % and pathological complete response (pCR) ratio at 32.6 %. The imaging score highly correlated with pathological response (Kappa = 0.058, P<0.001), while the MPR and ORR shared a strong positive linear relationship (r = 0.753, P<0.001). The 1-year and 2-year PFS rates were 97.1 % and 93.8 % for all patients, with stage IV patients having a 1-year PFS of 92.2 %. Patients who achieved MPR demonstrated a significant prognostic advantage (P=0.008), with no recurrence instances or mortality reported. Grade 3 adverse events were observed in 8.7 % of the cohort. The most common Grade 1-2 adverse events were alopecia, reactive telangiosis and loss of appetite, and no delayed surgery occurred. CONCLUSION Neoadjuvant therapy of PD-1 inhibitor combined with TP effectively improved the MPR and LPS rates of LAHPC patients, especially in those at clinical stage IV.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| | - Haopu Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| | - Minhui Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| | - Bingqing Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| | - Min Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| | - Caiyun Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| | - Hongliang Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Naval Medical University China.
| |
Collapse
|
4
|
Cuiffo B, Maxwell M, Yan D, Guemiri R, Boone A, Bellet D, Rivest B, Cardia J, Robert C, Fricker SP. Self-delivering RNAi immunotherapeutic PH-762 silences PD-1 to generate local and abscopal antitumor efficacy. Front Immunol 2024; 15:1501679. [PMID: 39697325 PMCID: PMC11652358 DOI: 10.3389/fimmu.2024.1501679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024] Open
Abstract
Objective Immunotherapeutic inhibition of PD-1 by systemically administered monoclonal antibodies is widely used in cancer treatment, but it may cause severe immune-related adverse events (irSAEs). Neoadjuvant PD-1 inhibition before surgery has shown promise in reducing recurrence by stimulating durable antitumor immunity. Local intratumoral (IT) immunotherapy is a potential strategy to minimize irSAEs, but antibodies have limited tumor penetration, making them less suitable for this approach. Therapeutic self-delivering RNAi (INTASYL) is an emerging modality well-suited for neoadjuvant immunotherapy. This study presents preclinical proof-of-concept for PH-762, an INTASYL designed to silence PD-1, currently in clinical development for advanced cutaneous malignancies (ClinicalTrials.gov#NCT06014086). Methods and analysis PH-762 pharmacology was characterized in vitro, and in vivo antitumor efficacy was evaluated using a murine analogue (mPH-762) in syngeneic tumor models with varying PD-1 responsiveness. Bilateral Hepa1-6 models assessed abscopal effects of local treatment. Ex vivo analyses explored mechanisms of direct and abscopal efficacy. Results PH-762 was rapidly internalized by human T cells, silencing PD-1 mRNA and decreasing PD-1 surface protein, enhancing TCR-stimulated IFN-γ and CXCL10 secretion. In vivo, IT mPH-762 provided robust antitumor efficacy, local and lymphatic biodistribution, and was well tolerated. Ex vivo analyses revealed that IT mPH-762 depleted PD-1 protein, promoted leukocyte and T cell infiltration, and correlated with tumor control. IT mPH-762 also demonstrated efficacy against untreated distal tumors (abscopal effect) by priming systemic antitumor immunity. Conclusion These data support PH-762 as a promising candidate for neoadjuvant immunotherapy in clinical studies.
Collapse
Affiliation(s)
| | | | - Dingxue Yan
- Phio Pharmaceuticals, Marlborough, MA, United States
| | - Ramdane Guemiri
- Dermatology Unit, Gustave Roussy Cancer Center, Villejuif, France
| | - Andrew Boone
- Phio Pharmaceuticals, Marlborough, MA, United States
| | - Deborah Bellet
- Dermatology Unit, Gustave Roussy Cancer Center, Villejuif, France
| | | | - James Cardia
- Phio Pharmaceuticals, Marlborough, MA, United States
| | - Caroline Robert
- Dermatology Unit, Gustave Roussy Cancer Center, Villejuif, France
| | | |
Collapse
|
5
|
Tian X, Zhang H, Han Y, Gu B, Zhang Z. Current status and future prospects of combined immunotherapy and epidermal growth factor receptor inhibitors in head and neck squamous cell carcinoma. Cancer Treat Rev 2024; 132:102864. [PMID: 39672091 DOI: 10.1016/j.ctrv.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignancy with a poor prognosis, and the majority of patients with HNSCC are diagnosed at later stages owing to its hidden anatomical location and atypical clinical symptoms. It is notably prone to recurrence and metastasis. The traditional treatments include surgery, radiotherapy, chemotherapy, and targeted therapy. Although multiple treatment strategies have been established, the prognosis remains poor because most patients develop resistance to traditional treatments. In recent years, epidermal growth factor receptor (EGFR) inhibitors and immune checkpoint inhibitors (ICIs) have been shown to provide clinical benefits to these patients. Based on the promising results of both anti-EGFR therapy and immunotherapy, as well as the biological rationale for combining immunotherapy with anti-EGFR drugs, numerous preclinical and ongoing or completed clinical trials have explored the use of their synergistic effects. This review summarizes the feasibility of combining immunotherapy with EGFR inhibitors for HNSCC treatment and analyses the relevant biomarkers. It also summarizes the strategies for clinical applications. We found that immunotherapy and EGFR inhibitor combination therapy showed promise in treating patients with HNSCC and exhibited safety with acceptable adverse events. This review may provide valuable insights for the future development of treatments and formulation of therapeutic strategies for HNSCC, as well as useful information for the future design of clinical trials.
Collapse
Affiliation(s)
- Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Hongyan Zhang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Yiman Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Baoru Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
6
|
Orland MD, Ullah F, Yilmaz E, Geiger JL. Immunotherapy for Head and Neck Squamous Cell Carcinoma: Present and Future Approaches and Challenges. JCO Oncol Pract 2024; 20:1588-1595. [PMID: 38709998 DOI: 10.1200/op.24.00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Despite significant progress and improving outcomes in the management of head and neck squamous cell carcinoma (HNSCC), there are few effective treatment options for patients with recurrent or metastatic head and neck squamous cell carcinoma. The advent of immune checkpoint inhibitors has changed the treatment algorithm of head and neck squamous cell carcinoma and are approved in the frontline setting for recurrent and metastatic (R/M) head and neck squamous cell carcinomas. Although promising for some patients, most patients with R/M HNSCC do not derive clinical benefit from currently approved checkpoint inhibitors. Many studies are underway to identify the patient population that would benefit the most from immunotherapy as well as postimmunotherapy treatment failures, including novel combinations of immunomodulatory therapies. In this review, we summarize the clinical development of all major clinical trials of immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Mark D Orland
- Department of Internal Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Emrullah Yilmaz
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jessica L Geiger
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
7
|
Li HX, Gong YW, Yan PJ, Xu Y, Qin G, Wen WP, Teng FY. Revolutionizing head and neck squamous cell carcinoma treatment with nanomedicine in the era of immunotherapy. Front Immunol 2024; 15:1453753. [PMID: 39676875 PMCID: PMC11638222 DOI: 10.3389/fimmu.2024.1453753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor globally. Despite advancements in treatment methods, the overall survival rate remains low due to limitations such as poor targeting and low bioavailability, which result in the limited efficacy of traditional drug therapies. Nanomedicine is considered to be a promising strategy in tumor therapy, offering the potential for maximal anti-tumor effects. Nanocarriers can overcome biological barriers, enhance drug delivery efficiency to targeted sites, and minimize damage to normal tissues. Currently, various nano-carriers for drug delivery have been developed to construct new nanomedicine. This review aims to provide an overview of the current status of HNSCC treatment and the necessity of nanomedicine in improving treatment outcomes. Moreover, it delves into the research progress of nanomedicine in HNSCC treatment, with a focus on enhancing radiation sensitivity, improving the efficacy of tumor immunotherapy, effectively delivering chemotherapy drugs, and utilizing small molecule inhibitors. Finally, this article discussed the challenges and prospects of applying nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yu-Wen Gong
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei-Ping Wen
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Chang TG, Spathis A, Schäffer AA, Gavrielatou N, Kuo F, Jia D, Mukherjee S, Sievers C, Economopoulou P, Anastasiou M, Moutafi M, Pal LR, Vos J, Lee AS, Lam S, Zhao K, Jiang P, Allen CT, Foukas P, Gomatou G, Altan-Bonnet G, Morris LGT, Psyrri A, Ruppin E. Tumor and blood B-cell abundance outperforms established immune checkpoint blockade response prediction signatures in head and neck cancer. Ann Oncol 2024:S0923-7534(24)04914-7. [PMID: 39551185 DOI: 10.1016/j.annonc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Immunotherapy has improved the outcomes for some patients with head and neck squamous-cell carcinoma (HNSCC). However, the low and variable response rates observed highlight the need for robust response biomarkers to select patients for treatment. PATIENTS AND METHODS We assembled and analyzed a large HNSCC dataset, encompassing 11 clinical cohorts including 1232 patient samples, spanning a variety of disease subtypes and immune checkpoint blockade (ICB) treatment types, tissue sources, data modalities, and timing of measurements. We conducted a comprehensive evaluation of the predictive power of various cell types, traditional biomarkers, and emerging predictors in both blood and tumor tissues of HNSCC patients. RESULTS Tumor B-cell infiltration emerged as a strong and robust predictor of both patient survival and ICB response. It outperformed all other established biomarkers of response to ICB, including the tertiary lymphoid structure signature and numerous T-cell-based signatures. B-cell infiltration was associated with a 'hot' antitumor microenvironment that promotes tumor eradication. Furthermore, B-cell levels in peripheral blood mononuclear cells (PBMCs) correlated strongly with tumor B-cell levels and demonstrated high predictive value for ICB response, with high odds ratios (≥7.8) in two independent clinical cohorts. CONCLUSION B-cell abundance, whether assessed in PBMCs or tumor tissues, is one of the strongest predictors of ICB response in HNSCC. For translation to patient care, measuring B-cell abundance in PBMCs via cytometry offers a practical and accessible tool for clinical decision making.
Collapse
Affiliation(s)
- T-G Chang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - A Spathis
- Department of Pathology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - A A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - N Gavrielatou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - F Kuo
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - D Jia
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, CCR, NCI, Bethesda, USA
| | - S Mukherjee
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - C Sievers
- Surgical Oncology Program, CCR, NCI, NIH, Bethesda, USA
| | - P Economopoulou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - M Anastasiou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - M Moutafi
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - L R Pal
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - J Vos
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A S Lee
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - S Lam
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - K Zhao
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - P Jiang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - C T Allen
- Surgical Oncology Program, CCR, NCI, NIH, Bethesda, USA; Center for Immune-Oncology, CCR, NCI, NIH, Bethesda, USA
| | - P Foukas
- Department of Pathology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - G Gomatou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - G Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, CCR, NCI, Bethesda, USA
| | - L G T Morris
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - A Psyrri
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece.
| | - E Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
9
|
Xiao J, Li W, Tan G, Gao R. The m6A and immune regulatory gene signature predicts the prognosis and correlates with immune infiltration of head and neck squamous cell carcinoma. Heliyon 2024; 10:e39758. [PMID: 39524706 PMCID: PMC11550037 DOI: 10.1016/j.heliyon.2024.e39758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Recent investigations have underscored the epigenetic modulation of the immune response; however, the interplay between RNA N6-methyladenosine (m6A) modification and immunomodulation in head and neck squamous cell carcinoma (HNSC) remains relatively unexplored. To bridge this knowledge gap, we undertook an extensive examination of the potential contributions of m6A modification and immunomodulation in HNSC. We amalgamated and deduplicated 27 m6A -related genes (m6AGs) and 1342 immune regulation-related genes (IMRGs), resulting in a comprehensive dataset encompassing 1358 genes. This dataset was scrutinized for m6A modification and immunomodulatory patterns within HNSC specimens. Employing Cox regression analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) technique, we developed a prognostic risk model for m6A regulator-mediated methylation modification and immunomodulation-related differentially expressed genes (m6A&IMRDEGs). Our differential expression analysis delineated 29 m6A&IMRDEGs, and Weighted Gene Co-expression Network Analysis (WGCNA) elucidated two module genes (IL11 and MMP13) subjected to correlation analysis. The prognostic prediction models revealed that the clinical predictive efficacy peaked for 1-year forecasts, followed sequentially by 3-year and 5-year predictions. The risk scores derived from the model adeptly categorized HNSC patients into high- and low-risk cohorts, with the high-risk group exhibiting a more unfavorable prognosis. Protein-Protein Interaction (PPI) analysis identified 7 hub genes implicated in m6A and immune regulation, namely BPIFB1, BPIFB2, GP2, MUC5B, MUC7, PIP, and SCGB3A1. Furthermore, we noted marked disparities in the expression profiles of 18 immune cell types between the high- and low-risk groups. Our results substantiate that the clustering subpopulations and risk models associated with m6A and immune regulatory genes portend a poor prognosis in HNSC. The risk score emerges as a potent prognostic biomarker and predictive metric for HNSC patients. A thorough assessment of m6A and immune regulatory genes in HNSC will augment our comprehension of the tumor immune microenvironment and facilitate the advancement of HNSC therapeutics.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Guolin Tan
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ru Gao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
10
|
Zhao C, Zhu H, Tian Y, Sun Y, Zhang Z. SPINK5 is a key regulator of eosinophil extracellular traps in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:627. [PMID: 39508915 PMCID: PMC11543977 DOI: 10.1007/s12672-024-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Enhanced infiltration of eosinophils is observed surrounding solid tumors. Some studies indicate that Eosinophil extracellular traps (EETs) play a crucial role in tumor progression and metastasis. However, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study established a gene set associated with eosinophil differentiation, chemotaxis, and EETs release from previous research. Employing bioinformatics techniques, the expression and biological significance of these genes in HNSCC were analyzed. Briefly, unsupervised clustering based on expression patterns of 133 EETs-related genes to classify TCGA-HNSCC patients. Immune cell infiltration patterns were assessed using "ImmuCellAI" package. A prognostic model was constructed using ten algorithms, with EETs-related gene sets as input features. Here, unsupervised clustering of samples into two types revealed worse prognosis for Cluster 1 (C1) patients after the first year. Cluster 2 (C2) exhibited higher ImmuneScore, but with a distinct immune cell infiltration pattern from the C1. Additionally, high eosinophil abundance only in the C2 had a positive prognostic impact. Serine peptidase inhibitor kazal type 5 (SPINK5) emerged as a potential key gene mediating the formation of EETs in HNSCC. EETs not only exhibit a positive correlation with diverse anti-cancer pathways but also demonstrate positive associations with processes such as proliferation, migration, and other critical pathways. The random survival forest (RSF) model was identified as the optimal eosinophil-related prognostic model. Collectively, this study elucidates the potential impact and mediating pathways of EETs on tumors, providing a reference for targeted therapy based on EETs-related genes.
Collapse
Affiliation(s)
- Chifeng Zhao
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Haoran Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Yu Tian
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Yuewen Sun
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Zhenxing Zhang
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Lin P, Xie W, Li Y, Zhang C, Wu H, Wan H, Gao M, Liang F, Han P, Chen R, Cheng G, Liu X, Fan S, Huang X. Intratumoral and peritumoral radiomics of MRIs predicts pathologic complete response to neoadjuvant chemoimmunotherapy in patients with head and neck squamous cell carcinoma. J Immunother Cancer 2024; 12:e009616. [PMID: 39500529 PMCID: PMC11552555 DOI: 10.1136/jitc-2024-009616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND For patients with locally advanced head and neck squamous cell carcinoma (HNSCC), combined programmed death receptor-1 inhibitor and chemotherapy improved response rate to neoadjuvant therapy. However, treatment response varies among patients. There is no tool to predict pathologic complete response (pCR) with high accuracy for now. To develop a tool based on radiomics features of MRI to predict pCR to neoadjuvant chemoimmunotherapy (NACI) may provide valuable assistance in treatment regimen determination for HNSCC. METHODS From January 2021 to April 2024, a total of 172 patients with HNSCC from three medical center, who received NACI followed by surgery, were included and allocated into a training set (n=84), an internal validation set (n=37) and an external validation set (n=51). Radiomics features were extracted from intratumoral and different peritumoral areas, and radiomics signature (Rad-score) for each area was constructed. A radiomics-clinical nomogram was developed based on Rad-scores and clinicopathological characteristics, tested in the validation sets, and compared with clinical nomogram and combined positive score (CPS) in predicting pCR. RESULTS The radiomics-clinical nomogram, incorporating peritumoral Rad-score, intratumoral Rad-score and CPS, achieved the highest accuracy with areas under the receiver operating characteristic curve of 0.904 (95% CI, 0.835 to 0.972) in the training cohort, 0.860 (95% CI, 0.722 to 0.998) in the internal validation cohort, and 0.849 (95% CI, 0.739 to 0.959) in the external validation cohort, respectively, which outperformed the clinical nomogram and CPS in predict pCR to NACI for HNSCC. CONCLUSION A nomogram developed based on intratumoral and peritumoral MRI radiomics features outperformed CPS, a widely employed biomarker, in predict pCR to NACI for HNSCC, which would provide incremental value in treatment regimen determination.
Collapse
Affiliation(s)
- Peiliang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Wenqian Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Chenjia Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Huiqian Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Pathology Department, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Huan Wan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Ming Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Faya Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Ping Han
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Renhui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Gui Cheng
- Department of Otolaryngology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-sen University, Shanwei, China
| | - Xuekui Liu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Xiaoming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Yu Y, Chen H, Huang Z, Yuan Z, Liu L, Zhao J, Wei Q. Anti-PD-(L)1-Based Neoadjuvant Therapy in Head and Neck Carcinoma: a Meta-analysis of Prospective Clinical Trials. Otolaryngol Head Neck Surg 2024; 171:1321-1340. [PMID: 38943451 DOI: 10.1002/ohn.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE This meta-analysis aims to evaluate the efficacy and safety of antiprogressive disease (PD)-(L)1-based neoadjuvant therapy in head and neck squamous cell carcinoma (HNSCC) patients and identify potential prognostic biomarkers. DATA SOURCES Databases were systematically searched for prospective clinical trials evaluating the efficacy and safety of anti-PD-(L)1-based neoadjuvant therapy for HNSCC before January 12, 2024. REVIEW METHODS We estimated the efficacy and safety of neoadjuvant immune checkpoint inhibitors. Subgroup and sensitivity analyses were further performed. RESULTS A total of 570 patients from 20 studies were included. The pooled major pathological response (MPR), pathological complete response (pCR), and partial pathological response (PPR) rates were 30.7%, 15.3%, and 68.2%, respectively. Surgical complications, surgical delayed rate, all grade treatment-related adverse effects (TRAEs) and ≥Grade 3 TRAEs were 0.6%, 0.3%, 82.6%, and 9.7%, respectively. Best MPR or pCR rate was detected in patients receiving neoadjuvant anti-PD-(L)1 therapy + radiotherapy (with MPR rate of 75.5% and pCR rate of 51.1%) and neoadjuvant anti-PD-(L)1 therapy + chemotherapy groups (with MPR rate of 57.5% and pCR rate of 26.7%). No differences were detected in subgroups stratified by neoadjuvant treatment cycles, human papillomavirus (HPV) status, and tumor location. Patients with baseline Combined Positive Score (CPS) ≥ 20 have higher MPR and pCR rates compared to patients with CPS < 20. High Tumor Cell Proportion Score was also associated with MPR and pCR. Objective response rate is a strong predictor of MPR (odds ratio [OR] = 7.78, 95% confidence interval [CI] = 3.20%-18.91%) and pCR (OR = 3.24, 95% CI = 1.40%-7.48%). CONCLUSION Anti-PD-(L)1-based neoadjuvant therapy was effective and safe for HNSCC patients.
Collapse
Affiliation(s)
- Yaner Yu
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhifei Huang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Yuan
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jian Zhao
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qichun Wei
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Nederlof I, Isaeva OI, de Graaf M, Gielen RCAM, Bakker NAM, Rolfes AL, Garner H, Boeckx B, Traets JJH, Mandjes IAM, de Maaker M, van Brussel T, Chelushkin M, Champanhet E, Lopez-Yurda M, van de Vijver K, van den Berg JG, Hofland I, Klioueva N, Mann RM, Loo CE, van Duijnhoven FH, Skinner V, Luykx S, Kerver E, Kalashnikova E, van Dongen MGJ, Sonke GS, Linn SC, Blank CU, de Visser KE, Salgado R, Wessels LFA, Drukker CA, Schumacher TN, Horlings HM, Lambrechts D, Kok M. Neoadjuvant nivolumab or nivolumab plus ipilimumab in early-stage triple-negative breast cancer: a phase 2 adaptive trial. Nat Med 2024; 30:3223-3235. [PMID: 39284953 PMCID: PMC11564107 DOI: 10.1038/s41591-024-03249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint inhibition (ICI) with chemotherapy is now the standard of care for stage II-III triple-negative breast cancer; however, it is largely unknown for which patients ICI without chemotherapy could be an option and what the benefit of combination ICI could be. The adaptive BELLINI trial explored whether short combination ICI induces immune activation (primary end point, twofold increase in CD8+ T cells or IFNG), providing a rationale for neoadjuvant ICI without chemotherapy. Here, in window-of-opportunity cohorts A (4 weeks of anti-PD-1) and B (4 weeks of anti-PD-1 + anti-CTLA4), we observed immune activation in 53% (8 of 15) and 60% (9 of 15) of patients, respectively. High levels of tumor-infiltrating lymphocytes correlated with response. Single-cell RNA sequencing revealed that higher pretreatment tumor-reactive CD8+ T cells, follicular helper T cells and shorter distances between tumor and CD8+ T cells correlated with response. Higher levels of regulatory T cells after treatment were associated with nonresponse. Based on these data, we opened cohort C for patients with high levels of tumor-infiltrating lymphocytes (≥50%) who received 6 weeks of neoadjuvant anti-PD-1 + anti-CTLA4 followed by surgery (primary end point, pathological complete response). Overall, 53% (8 of 15) of patients had a major pathological response (<10% viable tumor) at resection, with 33% (5 of 15) having a pathological complete response. All cohorts met Simon's two-stage threshold for expansion to stage II. We observed grade ≥3 adverse events for 17% of patients and a high rate (57%) of immune-mediated endocrinopathies. In conclusion, neoadjuvant immunotherapy without chemotherapy demonstrates potential efficacy and warrants further investigation in patients with early triple-negative breast cancer. ClinicalTrials.gov registration: NCT03815890 .
Collapse
Affiliation(s)
- Iris Nederlof
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olga I Isaeva
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon de Graaf
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Robbert C A M Gielen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Noor A M Bakker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Adrianne L Rolfes
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hannah Garner
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Joleen J H Traets
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid A M Mandjes
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michiel de Maaker
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thomas van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Maksim Chelushkin
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elisa Champanhet
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Koen van de Vijver
- Department of Pathology, UZ Gent - Universitair Ziekenhuis Gent, Gent, Belgium
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José G van den Berg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Natasja Klioueva
- Department of Pathology, OLVG Hospital, Amsterdam, the Netherlands
| | - Ritse M Mann
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Victoria Skinner
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sylvia Luykx
- Medical Oncology Department, Tergooi Hospital - locatie Hilversum, Hilversum, the Netherlands
| | - Emile Kerver
- Department of Oncology, OLVG Hospital, Amsterdam, the Netherlands
| | | | - Marloes G J van Dongen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roberto Salgado
- Department of Pathology, ZAS hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Caroline A Drukker
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ton N Schumacher
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hugo M Horlings
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Marleen Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
15
|
Fang S, Wang J, Liu T, Jiang Y, Hua Q. SAR1A Induces Cell Growth and Epithelial-Mesenchymal Transition Through the PI3K/AKT/mTOR Pathway in Head and Neck Squamous Cell Carcinoma: An In Vitro and In Vivo Study. Biomedicines 2024; 12:2477. [PMID: 39595043 PMCID: PMC11591717 DOI: 10.3390/biomedicines12112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) ranks sixth globally, with a 50% five-year survival rate. SAR1A exhibits high expression levels in various tumor types, yet its specific role in HNSCC remains to be clarified. METHODS In vitro assays, such as CCK8, EdU, colony formation, wound-healing, transwell, and Western blotting analyses, as well as in vivo assays, such as tumor xenografts and lung metastasis models, were conducted to evaluate the impacts of SAR1A on HNSCC proliferation, migration, and invasion. Transcriptome sequencing and KEGG enrichment pathway analysis revealed evident alterations in the PI3K/AKT/mTOR(PAM) pathways. LY294002 (a PI3K/AKT inhibitor) was used to investigate the role of the PAM pathway in proliferation, migration, and invasion in HNSCC. RESULTS Univariate and multivariate Cox regression were conducted to screen SAR1A as a gene prognostic biomarker in HNSCC, and it was validated in the Cancer Genome Atlas (TCGA) database. Functional assays demonstrated that the depletion of SAR1A leads to suppressed proliferation, migration, and invasion of HNSCC cells. This is accompanied by a decrease in the expression of epithelial-mesenchymal transition (EMT)-related markers in HNSCC cell lines. In addition, the diminished capacities of proliferation, migration, and invasion observed in SAR1A knockdown cells were reversed upon the overexpression of SAR1A. Furthermore, RNA-seq and KEGG enrichment analysis demonstrated a significant alteration in the PAM pathway following SAR1A knockdown. LY294002 effectively mitigated the increased proliferation, migration, and invasion induced by SAR1A overexpression. CONCLUSIONS SAR1A facilitates HNSCC proliferation and EMT via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
- Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
- Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| |
Collapse
|
16
|
Muijlwijk T, Nauta IH, van der Lee A, Grünewald KJT, Brink A, Ganzevles SH, Baatenburg de Jong RJ, Atanesyan L, Savola S, van de Wiel MA, Peferoen LAN, Bloemena E, van de Ven R, Leemans CR, Poell JB, Brakenhoff RH. Hallmarks of a genomically distinct subclass of head and neck cancer. Nat Commun 2024; 15:9060. [PMID: 39428388 PMCID: PMC11491468 DOI: 10.1038/s41467-024-53390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is caused by an accumulation of somatic mutations and copy number alterations (CNAs). Besides mutations, these copy number changes are key characteristics of cancer development. Nonetheless, some tumors show hardly any CNAs, a remarkable phenomenon in oncogenesis. Head and neck squamous cell carcinomas (HNSCCs) arise by either exposure to carcinogens, or infection with the human papillomavirus (HPV). HPV-negative HNSCCs are generally characterized by many CNAs and frequent mutations in CDKN2A, TP53, FAT1, and NOTCH1. Here, we present the hallmarks of the distinct subgroup of HPV-negative HNSCC with no or few CNAs (CNA-quiet) by genetic profiling of 802 oral cavity squamous cell carcinomas (OCSCCs). In total, 73 OCSCC (9.1%) are classified as CNA-quiet and 729 as CNA-other. The CNA-quiet group is characterized by wild-type TP53, frequent CASP8 and HRAS mutations, and a less immunosuppressed tumor immune microenvironment with lower density of regulatory T cells. Patients with CNA-quiet OCSCC are older, more often women, less frequently current smokers, and have a better 5-year overall survival compared to CNA-other OCSCC. This study demonstrates that CNA-quiet OCSCC should be considered as a distinct, clinically relevant subclass. Given the clinical characteristics, the patient group with these tumors will rapidly increase in the aging population.
Collapse
Affiliation(s)
- Tara Muijlwijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Irene H Nauta
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anabel van der Lee
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Kari J T Grünewald
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | | | - Suvi Savola
- MRC Holland, Oncogenetics, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Amsterdam UMC, Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Laura A N Peferoen
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
- Academic Center for Dentistry, Maxillofacial Surgery/ Oral Pathology, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
- Academic Center for Dentistry, Maxillofacial Surgery/ Oral Pathology, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - C René Leemans
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jos B Poell
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Ruud H Brakenhoff
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Lee AM, Weaver AN, Acosta P, Harris L, Bowles DW. Review of Current and Future Medical Treatments in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3488. [PMID: 39456583 PMCID: PMC11506581 DOI: 10.3390/cancers16203488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a complex cancer requiring a multidisciplinary approach. For patients with locally or regionally advanced disease, surgery and/or radiation are the cornerstones of definitive treatment. Medical therapy plays an important adjunct role in this setting, typically consisting of a platinum-based regimen given as induction, concurrent, or adjuvant treatment. While relapsed/metastatic HNSCC has historically been a difficult-to-treat disease with poor outcomes, options have considerably improved with the incorporation of biologics and immune checkpoint inhibitors. Clinical trials are ongoing to investigate novel approaches, including new and combination immunotherapies, targeted therapies, therapeutic vaccines, antibody-drug conjugates, and cellular therapies. The results thus far have been mixed, highlighting the knowledge gaps that continue to challenge the medical oncologist treating HNSCC. Here, we present the most updated and broad review of the current treatment landscape in both locoregional and metastatic HNSCC and discuss the expansive future medical therapies under investigation.
Collapse
Affiliation(s)
- Aaron M. Lee
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (A.M.L.); (A.N.W.)
| | - Alice N. Weaver
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (A.M.L.); (A.N.W.)
| | - Phillip Acosta
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Lauren Harris
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Daniel W. Bowles
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (A.M.L.); (A.N.W.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Fishman D, Choe J. Immunotherapy in Head and Neck Cancer: Treatment Paradigms, Future Directions, and Questions. Surg Oncol Clin N Am 2024; 33:605-615. [PMID: 39244283 DOI: 10.1016/j.soc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The use of immunotherapy in head and neck squamous cell carcinoma (HNSCC)has increased treatment options for patients who may not be candidates for traditional cytotoxic chemotherapy. Recent studies have resulted in the approval of immunotherapy in the first and second line setting for recurrent/metastatic disease. Various combinations of immunotherapy with targeted therapies, monoclonal antibodies, or human papilloma virus vaccines are also being studied in recurrent/metastatic disease. Currently, programmed death-ligand 1 status is the main marker utilized to assess potential response to immunotherapy. Studies are focused on identifying additional markers, which may help better predict response to immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Danielle Fishman
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue S, Nashville, TN 37232, USA; Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, PRB 790, Nashville, TN 37232, USA
| | - Jennifer Choe
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, PRB 790, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Seligson ND, Chen JL, Goodrich AC, Van Tine BA, Campbell JD, Richards AL, Antonescu CR, Liebner DA, Milhem MM, Streicher H, Tap WD, Schwartz GK, George S, D'Angelo SP. A multicenter, randomized, non-comparative, phase II study of nivolumab ± ipilimumab for patients with metastatic sarcoma (Alliance A091401): expansion cohorts and correlative analyses. J Immunother Cancer 2024; 12:e009472. [PMID: 39343511 PMCID: PMC11440204 DOI: 10.1136/jitc-2024-009472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND In this open-label, randomized, non-comparative, multicenter phase II study (Alliance A091401) we report on three expansion cohorts treated with nivolumab (N) with and without ipilimumab (N+I) and provide a multi-omic correlative analysis of actionable biomarkers. METHODS Patients were randomized (non-comparative) to receive either N or N+I. The primary endpoint was a 6-month confirmed response rate (CRR) defined by Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included treatment-related adverse events (TRAEs), progression-free survival, and overall survival. Multi-omic correlative analyses were conducted using samples from both the primary and expansion cohorts. RESULTS A total of 66 patients were evaluated for the primary endpoint with disease including gastrointestinal stromal tumor (GIST, n=18), undifferentiated pleomorphic sarcoma (UPS, n=24), and dedifferentiated liposarcoma (DDLPS, n=24). Neither N nor N+I achieved a complete or partial response in the GIST expansion cohort. In DDLPS and UPS, the primary response endpoint of CRR was met with N+I (both 16.6%, 2/12) but not with N alone (both 8.3%, 1/12). In the GIST cohort, TRAE was higher with N+I treatment, halting enrollment as required per protocol. In a correlative analysis of patients for the expansion cohort and the original cohort (n=86), traditional biomarkers of immunotherapy response were not correlated with response in any histological subtype. Markers of genomic instability including the presence of gene fusions and increased subclonal mutations correlated with improved clinical outcomes. CONCLUSIONS This expansion cohort reaffirms the outcomes of A091401. There remains a pressing need to determine the role of and predictive biomarkers for immunotherapy in sarcoma. TRIAL REGISTRATION NUMBER NCT02500797.
Collapse
Affiliation(s)
| | | | | | - Brian A Van Tine
- Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | | | - Cristina R Antonescu
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - William D Tap
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | - Suzanne George
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
20
|
Mamilos A, Winter L, Lein A, Spoerl S, Ludwig N, Ettl T, Künzel J, Reichert T, Spanier G, Brochhausen C. Metformin Treatment Is Not Associated with Altered PD-L1 Expression in Diabetic Patients with Oral Squamous Cell Carcinoma. J Clin Med 2024; 13:5632. [PMID: 39337118 PMCID: PMC11432554 DOI: 10.3390/jcm13185632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The anti-neoplastic activity of metformin is a subject of current debate. Preclinical data have suggested that metformin enhances PD-L1 anti-tumor effects in various cancer entities by decreasing insulin levels and inducing energetic stress. However, its impact on PD-L1 expression remains unclear in a clinical setting. Therefore, we aim to investigate the impact of metformin treatment in type 2 diabetes mellitus (DM) patients on PD-L1 expression in patients with oral squamous cell carcinoma (OSCC). Methods: We performed a retrospective analysis of patients with DM and OSCC treated at our tertiary referral center over a period of 12 years. The tumor proportion score (TPS), immune cell score (IC), and combined positive score (CPS) were used to quantify PD-L1 expression. PD-L1 expression of patients receiving metformin was compared to a control group without metformin prescription. Results: A total of 68 patients diagnosed with OSCC and DM were analyzed, with 24 receiving and 44 not receiving metformin therapy. No statistically significant differences were identified between the metformin and non-metformin groups for any of the scores (TPS: p = 0.818; IC: p = 0.748; CPS: p = 0.387). Conclusions: In contrast to previous studies, we could not find significant differences in PD-L1 expression between patients with and without metformin intake. Further research needs to shed light on the exact mechanism of metformin in different tumor entities. A comprehensive understanding of metformin's role in cancer therapy could provide valuable insights for potential use of metformin as an adjuvant treatment to immune checkpoint therapy.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Department of Pathology, German Oncology Centre, Limassol 4108, Cyprus
| | - Lina Winter
- Institute of Pathology Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alexander Lein
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Steffen Spoerl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Julian Künzel
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Torsten Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
21
|
Chelushkin MA, van Dorp J, van Wilpe S, Seignette IM, Mellema JJJ, Alkemade M, Gil-Jimenez A, Peters D, Brugman W, Stockem CF, Hooijberg E, Broeks A, van Rhijn BWG, Mertens LS, van der Heijden AG, Mehra N, van Montfoort ML, Wessels LFA, Vis DJ, van der Heijden MS. Platinum-Based Chemotherapy Induces Opposing Effects on Immunotherapy Response-Related Spatial and Stromal Biomarkers in the Bladder Cancer Microenvironment. Clin Cancer Res 2024; 30:4227-4239. [PMID: 39047168 DOI: 10.1158/1078-0432.ccr-24-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Platinum-based chemotherapy and immune checkpoint inhibitors are key components of systemic treatment for muscle-invasive and advanced urothelial cancer. The ideal integration of these two treatment modalities remains unclear as clinical trials have led to inconsistent results. Modulation of the tumor-immune microenvironment by chemotherapy is poorly characterized. We aimed to investigate this modulation, focusing on potential clinical implications for immune checkpoint inhibitor response. EXPERIMENTAL DESIGN We assessed immune cell densities, spatial relations, and tumor/stromal components from 116 patients with urothelial bladder cancer (paired data for 95 patients) before and after platinum-based chemotherapy. RESULTS Several published biomarkers for immunotherapy response changed upon chemotherapy treatment. The intratumoral CD8+ T-cell percentage increased after treatment and was associated with increased TNFα-via-NF-κB signaling. The percentage of PDL1+ immune cells was higher after chemotherapy. An increase in chemo-induced changes that potentially inhibit an antitumor immune response was also observed, including increased fibroblast-based TGFβ signaling and distances from immune cells to the nearest cancer cell. The latter two parameters correlated significantly in posttreatment samples, suggesting that TGFβ signaling in fibroblasts may play a role in spatially separating immune cells from cancer cells. We examined specific chemotherapy regimens and found that treatment with methotrexate, vinblastine, doxorubicin, and cisplatin was associated with an increase in the macrophage cell percentage. Gemcitabine-containing chemotherapy was associated with upregulation of fibroblast TGFβ signaling. CONCLUSIONS The opposing effects of platinum-based chemotherapy on the immune cell composition and stromal context of the tumor-immune microenvironment may explain the inconsistent results of clinical trials investigating chemotherapy and immune checkpoint inhibitor combinations in bladder cancer.
Collapse
Affiliation(s)
- Maksim A Chelushkin
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jeroen van Dorp
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Iris M Seignette
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan-Jaap J Mellema
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maartje Alkemade
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alberto Gil-Jimenez
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wim Brugman
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chantal F Stockem
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik Hooijberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas W G van Rhijn
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Urology, Caritas St. Josef Medical Center, University of Regensburg, Regensburg, Germany
| | - Laura S Mertens
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Daniel J Vis
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Michiel S van der Heijden
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Payne K, Nenclares P, Schilling C. The impact of elective cervical lymph node treatment on the tumour immune response in head and neck squamous cell carcinoma: time for a change in treatment strategy? BJC REPORTS 2024; 2:68. [PMID: 39516703 PMCID: PMC11524052 DOI: 10.1038/s44276-024-00095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
The elective ablation of cervical lymph nodes, via surgery or irradiation, is a mainstay in the treatment of head and neck squamous cell carcinoma (HNSCC). In this setting, the decision to treat the clinically node negative neck is based upon risk analysis of various factors, primarily derived from tumour features. However, the impact of ablation of tumour-draining lymph nodes upon the tumour-immune response and immunocompetence is largely unknown. In this review we highlight recent evidence of the communication between tumour and tumour-draining lymph nodes and the fundamental importance of this axis. We will provide a perspective of how recent cancer biology discoveries may juxtapose with current treatment pathways, with potential translational line of site for future research. In particular, neo-adjuvant therapy or biomarkers from tumour-draining lymph nodes may present opportunities to preserve lymphatics and harness improved immunocompetence in HNSCC patients.
Collapse
Affiliation(s)
- Karl Payne
- Head & Neck Academic Centre, University College London, London, UK.
- Department of Head & Neck Surgery, University College London Hospitals, London, UK.
| | - Pablo Nenclares
- Department of Clinical Oncology, Barts Cancer Centre, London, UK
| | - Clare Schilling
- Head & Neck Academic Centre, University College London, London, UK
- Department of Head & Neck Surgery, University College London Hospitals, London, UK
| |
Collapse
|
23
|
Zhao X, Zhou Y, Peng G, Wen L, Hong X, Hu Y, Wu B, Liu X, Zhang Z, Xiao G, JingHuang, Ding Q, Yang C, Xiong X, Ma H, Shi L, Yang J, Wei J, Qin Y, Wan C, Zhong Y, Leng Y, Zhang T, Wu G, MinYao, Jia Y, Zhang X, Yang K. Final analysis of a phase II trial of neoadjuvant chemoimmunotherapy for locoregionally advanced head and neck squamous cell carcinoma. Oral Oncol 2024; 156:106918. [PMID: 38943870 DOI: 10.1016/j.oraloncology.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVES Neoadjuvant chemoimmunotherapy has shown promising results for resectable, locoregionally advanced (LA) head and neck squamous cell carcinoma (L/A HNSCC). We published the first phase II trial of neoadjuvant camrelizumab combined with chemotherapy in resectable, L/A HNSCC, demonstrating it was safe and feasible with favorable pathological complete response (pCR). Here, we report the final analysis results for neoadjuvant chemoimmunotherapy in L/A HNSCC (minimum 2.0 years of follow-up). MATERIALS AND METHODS Three cycles of chemoimmunotherapy were administered before surgery to patients with L/A HNSCC. Two-year disease-free survival (DFS), overall survival (OS) and quality of life (QOL) were reported. RESULTS The overall two-year DFS and OS rates were 90 % and 100 %, respectively. With a median follow-up of 33.7 months, 9 of 10 (90 %) patients with pCR were alive and disease free. Patients with TNM stage (II/III) or < 20 % of residual viable tumor trended toward improved DFS; hazard ratio (HR), 0.44 [95 % confidence interval (CI), 0.04-5.28] and HR, 0.26 (95 % CI, 0.03-2.36), respectively. All QLQ-C30 functioning and symptom scales other than nausea and vomiting were resolved at 2 years after the completion of radiotherapy. CONCLUSION Neoadjuvant camrelizumab in combination with chemotherapy provided encouraging clinical outcomes for patients with L/A HNSCC. Further studies with longer follow-up and larger samples are warranted. TRIAL REGISTRATION Chictr.org.cn, ChiCTR1900025303. Registered Aug 22, 2019. https://www.chictr.org.cn/showproj.html?proj=41380.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yuan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Guixiang Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - JingHuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qian Ding
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chengzhang Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingao Xiong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangliang Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jinsong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jielin Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - MinYao
- Department of Radiation Oncology, Penn State Health, Penn State Cancer Institute, Hershey, PA, United States
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomeng Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
24
|
Wang XX, Liu YT, Ren JG, Liu HM, Fu Q, Yang Y, Fu QY, Chen G. Salivary Microbiome Relates to Neoadjuvant Immunotherapy Response in OSCC. J Dent Res 2024; 103:988-998. [PMID: 39101654 DOI: 10.1177/00220345241262759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Most patients diagnosed with oral squamous cell carcinoma (OSCC) present with locally advanced stages, which are typically associated with poor outcomes. Although immunotherapy offers potential improvements in patient survival, its efficacy is hampered by low response rates. The microbiome is widely involved in tumor immunity and may play a role in immunotherapy. This study aimed to investigate the potential association between the oral (salivary) microbiome and immunotherapy response in patients with OSCC. Salivary metagenome sequencing was performed on 47 patients with OSCC undergoing neoadjuvant immunotherapy (NAIT) in a clinical trial (NCT04649476). Patients were divided into responders and nonresponders based on their pathological responses. The results showed that the species richness of the salivary microbiome was lower in the nonresponders before NAIT than in the responders. Differential analysis revealed that nonresponders exhibited a lower relative abundance of 34 bacterial species and a higher relative abundance of 4 bacterial species. Notably, low levels of Eubacterium infirmum, Actinobaculum, and Selenomas (EAS) in the saliva may be associated with the nonresponse of patients with OSCC to NAIT. A nomogram based on EAS was developed and validated to determine the efficacy of NAIT. The area under the curve for the training cohort was 0.81 (95% confidence interval, 0.66 to 0.81). Quantitative polymerase chain reaction confirmed that low levels of salivary EAS effectively identified nonresponders to NAIT. Furthermore, the low abundance of salivary EAS was closely correlated with a low density of intratumoral CD4+, CD14+, CD68+, and FOXP3+ cells. Metabolic functional annotation revealed numerous biosynthetic processes associated with EAS that were more active in responders. In summary, this study provides valuable data resources for the salivary microbiome and reveals that nonresponders have different salivary microbiome profiles than responders do before NAIT. Low salivary EAS levels can serve as potential biomarkers for distinguishing nonresponders from responders.
Collapse
Affiliation(s)
- X X Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y T Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J G Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H M Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Fu
- GEMEXO BIOTECH (Wuhan) Co., Ltd., Wuhan, China
| | - Y Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Q Y Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Liu C, Li M, Liu X, Shi T, Wang Y, Sui C, Zhang W, Wang B. Evaluating the efficacy and safety of different neoadjuvant immunotherapy combinations in locally advanced HNSCC: a systematic review and meta-analysis. Front Immunol 2024; 15:1467306. [PMID: 39267732 PMCID: PMC11390592 DOI: 10.3389/fimmu.2024.1467306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Immune checkpoint inhibitors have demonstrated promising therapeutic outcomes in recurrent/metastatic (R/M) Head and Neck Squamous Cell Carcinoma (HNSCC), prompting numerous clinical trials to investigate the safety and efficacy of this approach in neoadjuvant therapy. This systematic review aims to consolidate and analyze the findings from various clinical trials combining neoadjuvant immunotherapy for HNSCC, with the goal of identifying the most effective neoadjuvant immunotherapy regimen. Methods The system conducted searches across electronic databases including PubMed, Embase, the Cochrane Library and Web of science from their inception to July 1, 2024. The primary focus was on evaluating efficacy (particularly pathological complete response (pCR), major pathological response (MPR), and overall response rate (ORR)) and safety (primarily assessed by grade 3-4 treatment-related adverse reactions). Results A total of 1943 patients from 32 studies were analyzed. Combining neoadjuvant immunotherapy with chemotherapy or radiotherapy demonstrated superiority over neoadjuvant immunotherapy alone in terms of the MPR rate, while showing no statistically significant difference in the pCR rate. Furthermore, the combination of neoadjuvant immunotherapy with chemotherapy or radiotherapy exhibited a lower CR rate compared to neoadjuvant immunotherapy with radiotherapy alone, but a higher PR rate and SD rate. Apart from the neoadjuvant immunotherapy group in isolation, there were no statistically significant differences in grade ≥3 treatment-related adverse events (TRAEs) and immune-related adverse events (irAEs) among the other three combination therapy groups. Conclusion This systematic review and meta-analysis indicate that patients with locally advanced HNSCC might benefit from neoadjuvant immunotherapy, particularly when used in conjunction with chemotherapy or radiotherapy. Nonetheless, additional data is required to definitively confirm its efficacy. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=553753, identifier CRD42024553753.
Collapse
Affiliation(s)
- Chang Liu
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| | - Mingzhu Li
- Department of implantology, Affiliated Hospital of Binzhou Medical College, Yantai Stomatology Hospital, Yantai, China
| | - Xiaojie Liu
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| | - Ting Shi
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| | - Yun Wang
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| | - Chaoyang Sui
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| | - Wenan Zhang
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| | - Bowen Wang
- Department of Burns and Plastic Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
26
|
Cao LM, Zhong NN, Chen Y, Li ZZ, Wang GR, Xiao Y, Liu XH, Jia J, Liu B, Bu LL. Less is more: Exploring neoadjuvant immunotherapy as a de-escalation strategy in head and neck squamous cell carcinoma treatment. Cancer Lett 2024; 598:217095. [PMID: 38964728 DOI: 10.1016/j.canlet.2024.217095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) constitutes a significant global cancer burden, given its high prevalence and associated mortality. Despite substantial progress in survival rates due to the enhanced multidisciplinary approach to treatment, these methods often lead to severe tissue damage, compromised function, and potential toxicity. Thus, there is an imperative need for novel, effective, and minimally damaging treatment modalities. Neoadjuvant treatment, an emerging therapeutic strategy, is designed to reduce tumor size and curtail distant metastasis prior to definitive intervention. Currently, neoadjuvant chemotherapy (NACT) has optimized the treatment approach for a subset of HNSCC patients, yet it has not produced a noticeable enhancement in overall survival (OS). In the contemporary cancer therapeutics landscape, immunotherapy is gaining traction at an accelerated pace. Notably, neoadjuvant immunotherapy (NAIT) has shown promising radiological and pathological responses, coupled with encouraging efficacy in several clinical trials. This potentially paves the way for a myriad of possibilities in treatment de-escalation of HNSCC, which warrants further exploration. This paper reviews the existing strategies and efficacies of neoadjuvant immune checkpoint inhibitors (ICIs), along with potential de-escalation strategies. Furthermore, the challenges encountered in the context of the de-escalation strategies of NAIT are explored. The aim is to inform future research directions that strive to improve the quality of life (QoL) for patients battling HNSCC.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
27
|
Wichmann G, Wald T, Pirlich M, Napp J, Münter I, Asendorf T, Tostmann R, Vogt J, Vogel K, Meuret S, Stoehr M, Zebralla V, Nicolay NH, Kuhnt T, Hambsch P, Guntinas-Lichius O, Klußmann JP, Wiegand S, Dietz A. The European Larynx Organ Preservation Study [MK-3475-C44]. Front Oncol 2024; 14:1433238. [PMID: 39239277 PMCID: PMC11374655 DOI: 10.3389/fonc.2024.1433238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/12/2024] [Indexed: 09/07/2024] Open
Abstract
The European Larynx Organ Preservation Study (ELOS; NCT06137378) is a prospective, randomized, open-label, two-armed parallel group controlled, phase II multicenter larynx organ preservation (LOP) trial in locoregionally advanced (LA) stage III, IVA/B head and neck squamous cell carcinoma of the larynx or hypopharynx (LHSCC) amenable for total laryngectomy (TL) with PD-L1 expression within tumor tissue biopsy, calculated as CPS ≥ 1. Induction chemotherapy (IC) with docetaxel and cisplatin (TP) followed by radiation will be compared to TP plus PD-1 inhibition by pembrolizumab (MK-3475; 200 mg i.v. starting day 1 q3w for 17 cycles). After a short induction early response evaluation (ERE) 21 ± 3 days after the first cycle of IC (IC-1), responders achieving endoscopic estimated tumor surface shrinkage (ETSS) ≥30% will get an additional two cycles of IC followed by intensity-modulated radiotherapy 70-72 Gy (EQD2/α/β = 10) aiming at LOP. Nonresponders (ETSS < 30% or progressing disease) will receive TL and bilateral neck dissection followed by postoperative radiation or chemoradiation as recommended by the clinic's multidisciplinary tumor board. Pembrolizumab treatment will be continued in the intervention arm regardless of ETSS status after IC-1 in both responders and laryngectomized nonresponders, independent of subsequent decisions on adjuvant therapy after TL. Clinical Trial Registration clinicaltrials.gov, identifier NCT06137378.
Collapse
Affiliation(s)
- Gunnar Wichmann
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Theresa Wald
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Markus Pirlich
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Joanna Napp
- Clinical Trial Unit, University Medical Center Goettingen, Göttingen, Germany
| | - Ina Münter
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas Asendorf
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Ralf Tostmann
- Clinical Trial Unit, University Medical Center Goettingen, Göttingen, Germany
| | - Jeannette Vogt
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Kathrin Vogel
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Sylvia Meuret
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Matthaeus Stoehr
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Veit Zebralla
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Nils Henrik Nicolay
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Clinic for Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Kuhnt
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Clinic for Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Hambsch
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Clinic for Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Orlando Guntinas-Lichius
- ENT Department, Jena University Hospital, Jena, Germany
- The Comprehensive Cancer Center Central Germany, Jena University Hospital, Jena, Germany
| | - Jens Peter Klußmann
- Department of Oto-Rhino-Laryngology Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Susanne Wiegand
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andreas Dietz
- Clinic for Otorhinolaryngology and Head and Neck Surgery, Department of Head Medicine and Oral Health, University of Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
28
|
Chen Z, Cai H, Ye W, Wu J, Liu J, Xie Y, Feng S, Jin Y, Lv Y, Ye H, Cai C, Cai G. TP63 transcriptionally regulates SLC7A5 to suppress ferroptosis in head and neck squamous cell carcinoma. Front Immunol 2024; 15:1445472. [PMID: 39234254 PMCID: PMC11371717 DOI: 10.3389/fimmu.2024.1445472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Background Most head and neck squamous cell carcinoma (HNSCC) patients are diagnosed at an advanced local stage. While immunotherapy has improved survival rates, only a minority of patients respond durably to targeted immunotherapies, posing substantial clinical challenges. We investigated the heterogeneity of the tumor microenvironment in HNSCC cohorts before and after immunotherapy by analyzing single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing datasets retrieved from public databases. Methods We constructed a single-cell transcriptome landscape of HNSCC patients before and after immunotherapy and analyzed the cellular composition, developmental trajectories, gene regulatory networks, and communication patterns of different cell type subpopulations. Additionally, we assessed the expression levels of relevant indicators in HNSCC cells via western blot, ELISA, and fluorescent probe techniques. Results At the single-cell level, we identified a subpopulation of TP63+ SLC7A5+ HNSCC that exhibited a ferroptosis-resistant phenotype. This subpopulation suppresses ferroptosis in malignant cells through the transcriptional upregulation of SLC7A5 mediated by high TP63 expression, thereby promoting tumor growth and resistance to immunotherapy. The experimental results demonstrated that the overexpression of TP63 upregulated the expression of SLC7A5 and suppressed the concentrations of Fe2+ and ROS in HNSCC cells. By integrating bulk transcriptome data, we developed a clinical scoring model based on TP63 and SLC7A5, which are closely associated with tumor stage, revealing the significant prognostic efficacy of the TP63+ SLC7A5+ HNSCC-mediated ferroptosis mechanism in HNSCC patients. Conclusion Our research elucidates the TME in HNSCC before and after immunotherapy, revealing a novel mechanism by which TP63+ SLC7A5+ HNSCC inhibits ferroptosis and enhances tumor resistance via TP63-induced SLC7A5 upregulation. These insights lay the foundation for the development of more effective treatments for HNSCC.
Collapse
Affiliation(s)
- Zilong Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Haoxi Cai
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Weiwei Ye
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
| | - Junming Wu
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong, Hong Kong SAR, China
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jing Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
| | - Yun Xie
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
| | - Shiqiang Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
| | - Yuanpei Jin
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
| | - Yunxia Lv
- Department of Thyroid and Head and Neck Surgery, Nanchang University Second Affiliated Hospital, Nanchang, China
| | - Hui Ye
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
| | - Chengfu Cai
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
- Department of Clinical Medical, Fujian Medical University, Fuzhou, China
| | - Gengming Cai
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Medical College Affiliated Haicang Hospital, The Sixth Hospital of Xiamen City, The Haicang Hospital of Xiamen, Xiamen, China
- Department of Clinical Medical, Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Joshi A, Ghosh A, Ramachandran V, Kuriakose M, Prabhash K, Kumar P. Precision Medicine and Clinical Trials in Advanced and Metastatic Oral Cancer. J Maxillofac Oral Surg 2024; 23:772-782. [PMID: 39118916 PMCID: PMC11303629 DOI: 10.1007/s12663-024-02254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Oral cancer is a significant global health concern, with high morbidity and mortality rates, particularly in regions with prevalent tobacco usage such as Asia. Majority of oral cancers are detected at an advanced stage resulting in poor survival outcomes. Moreover, the treatment modalities of oral cancers have remained constant with surgery and concurrent chemoradiotherapy being mainstays of the treatment. This review provides a significant progress made in understanding the molecular landscape of oral cancers and the evolution of therapeutic strategies toward precision medicine. Methods A comprehensive literature review was conducted to gather recent studies on the molecular landscape of oral cancers, genomic insights, and clinical trials. Results Firstly, genomic insights into oral cancers, including key driver mutations and copy number alterations, are discussed in the context of personalized medicine approaches. Subsequently, advancements in therapeutic strategies, particularly focusing on clinical trials investigating immunotherapy and targeted agents, are highlighted. Conclusion Despite promising results, challenges persist in identifying reliable biomarkers for treatment response and resistance. Continued research efforts are warranted to validate biomarkers and optimize therapeutic interventions, with the goal of enhancing patient outcomes and reducing the global burden of oral cancer.
Collapse
Affiliation(s)
- Asim Joshi
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
- Karkinos Foundation, Mumbai, Maharashtra 400086 India
| | - Abantika Ghosh
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
| | - Venkataramanan Ramachandran
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
- Karkinos Foundation, Mumbai, Maharashtra 400086 India
- Center of Excellence for Cancer – Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
| | - Moni Kuriakose
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094 India
| | - Prashant Kumar
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
- Karkinos Foundation, Mumbai, Maharashtra 400086 India
- Center of Excellence for Cancer – Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
| |
Collapse
|
30
|
Muijlwijk T, Nijenhuis DNLM, Ganzevles SH, Ekhlas F, Ballesteros-Merino C, Peferoen LAN, Bloemena E, Fox BA, Poell JB, Leemans CR, Brakenhoff RH, van de Ven R. Immune cell topography of head and neck cancer. J Immunother Cancer 2024; 12:e009550. [PMID: 39053947 DOI: 10.1136/jitc-2024-009550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Approximately 50% of head and neck squamous cell carcinomas (HNSCC) recur after treatment with curative intent. Immune checkpoint inhibitors are treatment options for recurrent/metastatic HNSCC; however, less than 20% of patients respond. To increase this response rate, it is fundamental to increase our understanding of the spatial tumor immune microenvironment (TIME). METHODS In total, 53 HNSCC specimens were included. Using a seven-color multiplex immunohistochemistry panel we identified tumor cells, CD163+macrophages, B cells, CD8+T cells, CD4+T helper cells and regulatory T cells (Tregs) in treatment-naive surgical resection specimens (n=29) and biopsies (n=18). To further characterize tumor-infiltrating CD8+T cells, we stained surgical resection specimens (n=12) with a five-color tumor-resident panel including CD103, Ki67, CD8 and pan-cytokeratin. Secretome analysis was performed on matched tumor suspensions (n=11) to measure protein levels. RESULTS Based on CD8+T cell infiltrates, we identified four different immunotypes: fully infiltrated, stroma-restricted, immune-excluded, and immune-desert. We found higher cytokine levels in fully infiltrated tumors compared with other immunotypes. While the highest immune infiltrates were observed in the invasive margin for all immune cells, CD163+macrophages and Tregs had the highest tendency to infiltrate the tumor center. Within the tumor center, especially B cells stayed at the tumor stroma, whereas CD163+macrophages, followed by T cells, were more often localized within tumor fields. Also, B cells were found further away from other cells and often formed aggregates while T cells and CD163+macrophages tended to be more closely located to each other. Across resection specimens from various anatomical sites within the head and neck, oral cavity tumors exhibited the highest densities of Tregs. Moreover, the distance from B cells and T cells to tumor cells was shortest in oral cavity squamous cell carcinoma (OCSCC), suggesting more interaction between lymphocytes and tumor cells. Also, the fraction of T cells within 10 µm of CD163+macrophages was lowest in OCSCC, indicating fewer myeloid/T-cell suppressive interactions in OCSCC. CONCLUSIONS We comprehensively described the TIME of HNSCC using a unique data set of resection specimens. We discovered that the composition, as well as the relative localization of immune cells in the TIME, differed in distinct anatomical sites of the head and neck.
Collapse
Affiliation(s)
- Tara Muijlwijk
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dennis N L M Nijenhuis
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Fatima Ekhlas
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Carmen Ballesteros-Merino
- Molecular and Tumor Immunology Laboratory, Providence Cancer Institute, Robert W. Franz Research Center at the Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Laura A N Peferoen
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Pathology, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Maxillofacial Surgery/ Oral Pathology, Academic Center for Dentistry, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Pathology, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Maxillofacial Surgery/ Oral Pathology, Academic Center for Dentistry, Amsterdam, The Netherlands
| | - Bernard A Fox
- Molecular and Tumor Immunology Laboratory, Providence Cancer Institute, Robert W. Franz Research Center at the Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Jos B Poell
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - C René Leemans
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Wondergem NE, Miedema IHC, van de Ven R, Zwezerijnen GJC, de Graaf P, Karagozoglu KH, Hendrickx JJ, Eerenstein SEJ, Bun RJ, Mulder DC, Voortman J, Boellaard R, Windhorst AD, Hagers JP, Peferoen LAN, de Gruijl TD, Bloemena E, Brakenhoff RH, Leemans CR, Menke-van der Houven van Oordt CW. Circulating T cell status and molecular imaging may predict clinical benefit of neoadjuvant PD-1 blockade in oral cancer. J Immunother Cancer 2024; 12:e009278. [PMID: 39038919 PMCID: PMC11268040 DOI: 10.1136/jitc-2024-009278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Addition of neoadjuvant immune checkpoint inhibition to standard-of-care interventions for locally advanced oral cancer could improve clinical outcome. METHODS In this study, 16 evaluable patients with stage III/IV oral cancer were treated with one dose of 480 mg nivolumab 3 weeks prior to surgery. Primary objectives were safety, feasibility, and suitability of programmed death receptor ligand-1 positron emission tomography (PD-L1 PET) as a biomarker for response. Imaging included 18F-BMS-986192 (PD-L1) PET and 18F-fluorodeoxyglucose (FDG) PET before and after nivolumab treatment. Secondary objectives included clinical and pathological response, and immune profiling of peripheral blood mononuclear cells (PBMCs) for response prediction. Baseline tumor biopsies and postnivolumab resection specimens were evaluated by histopathology. RESULTS Grade III or higher adverse events were not observed and treatment was not delayed in relation to nivolumab administration and other study procedures. Six patients (38%) had a pathological response, of whom three (19%) had a major (≥90%) pathological response (MPR). Tumor PD-L1 PET uptake (quantified using standard uptake value) was not statistically different in patients with or without MPR (median 5.3 vs 3.4). All major responders showed a significantly postnivolumab decreased signal on FDG PET. PBMC immune phenotyping showed higher levels of CD8+ T cell activation in MPR patients, evidenced by higher baseline expression levels of PD-1, TIGIT, IFNγ and lower levels of PD-L1. CONCLUSION Together these data support that neoadjuvant treatment of advanced-stage oral cancers with nivolumab was safe and induced an MPR in a promising 19% of patients. Response was associated with decreased FDG PET uptake as well as activation status of peripheral T cell populations.
Collapse
Affiliation(s)
- Niels E Wondergem
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Iris H C Miedema
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Gerben J C Zwezerijnen
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Pim de Graaf
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - K Hakki Karagozoglu
- Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Oral and Maxillofacial Surgery/Oral Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jan-Jaap Hendrickx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Simone E J Eerenstein
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Rolf J Bun
- Oral and Maxillofacial Surgery, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Dorien C Mulder
- Oral and Maxillofacial Surgery, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Jens Voortman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - J Pascal Hagers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Laura A N Peferoen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - C René Leemans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - C Willemien Menke-van der Houven van Oordt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Wei LJ, Fu J, Yang HX, Yang X, Liang HY, Luo RZ, Liu LL. Evaluation of pathological response to neoadjuvant chemotherapy in locally advanced cervical cancer. J Transl Med 2024; 22:655. [PMID: 39004706 PMCID: PMC11247755 DOI: 10.1186/s12967-024-05482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Neoadjuvant chemotherapy (NACT) is a viable therapeutic option for women diagnosed locally advanced cervical cancer (LACC). However, the factors influencing pathological response are still controversial. We collected pair specimens of 185 LACC patients before and after receiving NACT and conducted histological evaluation. 8 fresh tissues pre-treatment were selected from the entire cohort to conducted immune gene expression profiling. A novel pathological grading system was established by comprehensively assessing the percentages of viable tumor, inflammatory stroma, fibrotic stroma, and necrosis in the tumor bed. Then, 185 patients were categorized into either the good pathological response (GPR) group or the poor pathological response (PPR) group post-NACT, with 134 patients (72.4%, 134/185) achieving GPR. Increasing tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating lymphocytes volume (TILV) pre-treatment were correlated with GPR, with TILV emerging as an independent predictive factor for GPR. Additionally, CIBERSORT analysis revealed noteworthy differences in the expression of immune makers between cPR and non-cPR group. Furthermore, a significantly heightened density of CD8 + T cells and a reduced density of FOXP3 + T cells were observed in GPR than PPR. Importantly, patients exhibiting GPR or inflammatory type demonstrated improved overall survival and disease-free survival. Notably, stromal type was an independent prognostic factor in multivariate analysis. Our study indicates the elevated TILV in pre-treatment specimens may predict a favorable response to NACT, while identifying stromal type in post-treatment specimens as an independent prognostic factor. Moreover, we proposed this pathological grading system in NACT patients, which may offer a more comprehensive understanding of treatment response and prognosis.
Collapse
Affiliation(s)
- Li-Jun Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jia Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Hai-Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518101, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Hao-Yu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
33
|
van Harten AM, Shah R, de Boer DV, Buijze M, Kreft M, Song JY, Zürcher LM, Jacobs H, Brakenhoff RH. Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients. Oncogenesis 2024; 13:26. [PMID: 38992100 PMCID: PMC11239817 DOI: 10.1038/s41389-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Vicky de Boer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Yang H, Zhou L, Shi M, Yu J, Xie Y, Sun Y. Ubiquitination-Related Gene Signature, Nomogram and Immune Features for Prognostic Prediction in Patients with Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2024; 15:880. [PMID: 39062659 PMCID: PMC11276148 DOI: 10.3390/genes15070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan-Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan-Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
35
|
Eric H, Piersiala K, Lagebro V, Farrajota Neves Da Silva P, Petro M, Starkhammar M, Elliot A, Bark R, Margolin G, Kumlien Georén S, Cardell LO. High expression of PD-L1 on conventional dendritic cells in tumour-draining lymph nodes is associated with poor prognosis in oral cancer. Cancer Immunol Immunother 2024; 73:165. [PMID: 38954023 PMCID: PMC11219651 DOI: 10.1007/s00262-024-03754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC), while common and with a favorable prognosis in early stages, presents a marked reduction in survival rate upon metastasis to lymph nodes. Early detection of lymph node metastasis via biomarkers could enhance the therapeutic strategy for OSCC. Here, we explored dendritic cells (DCs) and cytotoxic T-cells in tumour-draining lymph nodes (TDLNs) as potential biomarkers. METHOD Dendritic cells and cytotoxic T-cells in 33 lymph nodes were analyzed with multi-parameter flow cytometry in TDLNs, regional non-TDLNs surgically excised from 12 OSCC patients, and compared to 9 lymph nodes from patients with benign conditions. RESULTS Our results displayed a higher proportion of conventional cDC1s with immunosuppressive features in TDLN. Further, high PD-L1 expression on cDC1 in TDLNs was associated with metastasis and/or recurrent disease risk. Also, elevated levels of memory CD8+ T-cells and terminally exhausted PD-1+TCF-1-CD8+ T-cells were observed in TDLNs and non-TDLNs compared to healthy lymph nodes. CONCLUSIONS We conclude that TDLNs contain cells that could trigger an anti-tumor adaptive response, as evidenced by activated cDC1s and progenitor-like TCF-1+ T-cells. The detection of high PDL1 expression on cDC1s was indicative of TDLN metastasis and an adverse prognosis, proposing that PD-L1 on dendritic cells in TDLN could serve as a predictive biomarker of OSCC patients with a worse prognosis.
Collapse
Affiliation(s)
- Hjalmarsson Eric
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Krzysztof Piersiala
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Marianne Petro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Starkhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Elliot
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Head and Neck Surgery, Medical Unit Head Neck Lung and Skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Rusana Bark
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Head and Neck Surgery, Medical Unit Head Neck Lung and Skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Gregori Margolin
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
37
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
38
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
39
|
Li J, Luo Z, Jiang S, Li J. Advancements in neoadjuvant immune checkpoint inhibitor therapy for locally advanced head and neck squamous Carcinoma: A narrative review. Int Immunopharmacol 2024; 134:112200. [PMID: 38744175 DOI: 10.1016/j.intimp.2024.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The prevalent treatment paradigm for locally advanced head and neck squamous carcinoma (HNSCC) typically entails surgery followed by adjuvant radiotherapy and chemotherapy. Despite this, a significant proportion of patients experience recurrence and metastasis. Immune checkpoint inhibitors (ICIs), notably pembrolizumab and nivolumab, have been established as the first and second lines of treatment for recurrent and metastatic HNSCC (R/M HNSCC). The application of ICIs as neoadjuvant immunotherapy in this context is currently under rigorous investigation. This review synthesizes data from clinical trials focusing on neoadjuvant ICIs, highlighting that the pathological responses elicited by these treatments are promising. Furthermore, it is noted that the safety profiles of both monotherapy and combination therapies with ICIs are manageable, with no new safety signals identified. The review concludes by contemplating the future direction and challenges associated with neoadjuvant ICI therapy, encompassing aspects such as the refinement of imaging and pathological response criteria, selection criteria for adjuvant therapies, evaluation of the efficacy and safety of various combination treatment modalities, and the identification of responsive patient cohorts.
Collapse
Affiliation(s)
- Jin Li
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Zhenqin Luo
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Siqing Jiang
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| |
Collapse
|
40
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Dwivedi R, Jain A, Gupta S, Chandra S. Immunotherapy: The Fourth Domain in Oral Cancer Therapeutics. Indian J Otolaryngol Head Neck Surg 2024; 76:2257-2272. [PMID: 38883453 PMCID: PMC11169205 DOI: 10.1007/s12070-024-04565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
Owing to high global prevalence, incidence and associated mortality, cancer of head and neck particularly oral cancer remains a cardinal domain for research and trials. Immune-modulatory therapies that employ patients own immune system for therapeutic benefits in oral cancer seems promising. The aim of this review is to gauge the potential of immunotherapy as fourth domain of Oral cancer therapeutics. Articles were searched using suitable search terms in MEDLINE and Google Scholar database to include clinical trials, meta-analyses, and research in humans/animals/cell lines published in peer reviewed journals. A total of 97 articles were included in this review. Literature has several studies and trials where different types of immunotherapies has been attempted but it is crucial to identify precise biomarkers of genome based targeted agents and to find parameters to select patients who might benefit from immunotherapy. Also further research is required to estimate predictive value of tumor mutational burden and mutational signatures so as to aid in personalized prediction of oral cancer therapeutic response.
Collapse
Affiliation(s)
- Ruby Dwivedi
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Ayushi Jain
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Shalini Gupta
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Shaleen Chandra
- Atal Bihari Vajpayee Medical University, Lucknow, Uttar Pradesh India
| |
Collapse
|
42
|
Iancu D, Fulga A, Vesa D, Zenovia A, Fulga I, Sarbu MI, Tatu AL. Metastatic patterns and treatment options for head and neck cutaneous squamous cell carcinoma (Review). Mol Clin Oncol 2024; 20:40. [PMID: 38756868 PMCID: PMC11097132 DOI: 10.3892/mco.2024.2739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
According to current predictions, one-fifth of all Americans will develop skin cancer during their lifetime. Cutaneous squamous cell carcinoma (cSCC) most commonly occurs in the head and neck region, which is the area of the body with the highest level of sun exposure. High-risk head and neck cSCC (HNcSCC) is a broad category with numerous high-risk factors that are associated with unfavorable results. In cSCC staging systems, clinical and tumor traits that are likely to result in poor outcomes are identified. Metastasis occurs in ~2.5% of patients with cSCC, most often in the local lymph nodes, and there is some indication that lymph node metastasis has a distinct pattern based on the tumor site. Current findings on tumor molecular targets have suggested the use of systemic treatments, particularly immunotherapy (such as cemiplimab, pembrolizumab and nivolumab), over radiotherapy or chemotherapy for this type of metastasis. However, when used simultaneously with immunotherapy, radiotherapy may be beneficial in the treatment of metastatic HNcSCC by improving the efficacy of immunotherapy. The present review aims to assess the existing literature on metastatic HNcSCC pathways and treatment options, in order to define current and future directions. Notably, there is an urgent need to identify patients who may benefit from local or systemic cancer treatments. The treatment of lymph node metastasis presents a therapeutic challenge and requires comprehensive management.
Collapse
Affiliation(s)
- Doriana Iancu
- Department of Otorhinolaryngology, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Ana Fulga
- Department of Otorhinolaryngology, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Doina Vesa
- Department of Otorhinolaryngology, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Andrei Zenovia
- Department of Otorhinolaryngology, ‘Cai Ferate’ General Hospital, 800223 Galati, Romania
| | - Iuliu Fulga
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
- Department of Forensic Medicine, ‘Sfantul Andrei’ Emergency Clinical Hospital of Galati, 800578 Galati, Romania
| | - Mihaela Ionela Sarbu
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
| | - Alin Laurentiu Tatu
- Clinical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University of Galati, 800010 Galati, Romania
- Department of Dermatology, ‘Sfanta Cuvioasa Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research, 800179 Galati, Romania
| |
Collapse
|
43
|
Liu H, Zhu C, Wang X, Chen X, Li Z, Xian J. Prediction of pathological complete response in locally advanced head and neck squamous cell carcinoma treated with neoadjuvant chemo-immunotherapy using volumetric multisequence MRI histogram analysis. Neuroradiology 2024; 66:919-929. [PMID: 38503986 DOI: 10.1007/s00234-024-03339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE This study aimed to develop a multisequence MRI-based volumetric histogram metrics model for predicting pathological complete response (pCR) in advanced head and neck squamous cell carcinoma (HNSCC) patients undergoing neoadjuvant chemo-immunotherapy (NCIT) and compare its predictive performance with AJCC staging and RECIST 1.1 criteria. METHODS Twenty-four patients with locally advanced HNSCC from a prospective phase II trial were enrolled for analysis. All patients underwent pre- and post-NCIT MRI examinations from which whole-tumor histogram features were extracted, including T1WI, T2WI, enhanced T1WI (T1Gd), diffusion-weighted imaging (DWI) sequences, and their corresponding apparent diffusion coefficient (ADC) maps. The pathological results divided the patients into pathological complete response (pCR) and non-pCR (N-pCR) groups. Delta features were calculated as the percentage change in histogram features from pre- to post-treatment. After data reduction and feature selection, logistic regression was used to build prediction models. ROC analysis was performed to assess the diagnostic performance. RESULTS Eleven of 24 patients achieved pCR. Pre_T2_original_firstorder_Minimum, Post_ADC_original_firstorder_MeanAbsoluteDeviation, and Delta_T1Gd_original_firstorder_Skewness were associated with achieving pCR after NCIT. The Combined_Model demonstrated the best predictive performance (AUC 0.95), outperforming AJCC staging (AUC 0.52) and RECIST 1.1 (AUC 0.72). The Pre_Model (AUC 0.83) or Post-Model (AUC 0.83) had a better predictive ability than AJCC staging. CONCLUSION Multisequence MRI-based volumetric histogram analysis can non-invasively predict the pCR status of HNSCC patients undergoing NCIT. The use of histogram features extracted from pre- and post-treatment MRI exhibits promising predictive performance and offers a novel quantitative assessment method for evaluating pCR in HNSCC patients receiving NCIT.
Collapse
Affiliation(s)
- Hangzhi Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Changyu Zhu
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Xinyan Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Xiaohong Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Zhixin Li
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
44
|
Hayashi Y, Miyoshi S, Watanabe I, Yano N, Nagashio K, Kaneko M, Kaminota T, Sanada T, Hosokawa Y, Kitani T, Mitani S, Choudhury ME, Yano H, Tanaka J, Hato N. Simultaneous disturbance of NHE1 and LOXL2 decreases tumorigenicity of head and neck squamous cell carcinoma. Auris Nasus Larynx 2024; 51:472-480. [PMID: 38520980 DOI: 10.1016/j.anl.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Although there have been brilliant advancements in the practical application of therapies targeting immune checkpoints, achieving success in targeting the microenvironment remains elusive. In this study, we aimed to address this gap by focusing on Na+ / H+ exchanger 1 (NHE1) and Lysyl Oxidase Like 2 (LOXL2), which are upregulated in head and neck squamous cell carcinoma (HNSCC) cells. METHODS The malignancy of a metastatic human HNSCC cell line was assessed in a mouse tongue cancer xenograft model by knocking down (KD) NHE1, responsible for regulating intracellular pH, and LOXL2, responsible for extracellular matrix (ECM) reorganization via cross-linking of ECM proteins. In addition to assessing changes in PD-L1 levels and collagen accumulation following knockdown, the functional status of the PD-L1 / PD-1 immune checkpoint was examined through co-culture with NK92MI, a PD-1 positive phagocytic human Natural Killer (NK) cell line. RESULTS The tumorigenic potential of each single KD cell line was similar to that of the control cells, whereas the potential was attenuated in cells with simultaneous KD of both factors (double knockdown [dKD]). Additionally, we observed decreased PD-L1 levels in NHE1 KD cells and compromised collagen accumulation in LOXL2 KD and dKD cells. NK92MI cells exhibited phagocytic activity toward HNSCC cells in co-culture, and the number of remaining dKD cells after co-culture was the lowest in comparison to the control and single KD cells. CONCLUSION This study demonstrated the possibility of achieving efficient anti-tumor effects by simultaneously disturbing multiple factors involved in the modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuji Hayashi
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shoko Miyoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Itaru Watanabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Nagomi Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Kodai Nagashio
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mihiro Kaneko
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Tomoyoshi Sanada
- Department of Otorhinolaryngology, Head and Neck Surgery, Uwajima City Hospital, Uwajima, Ehime, Japan
| | - Yuki Hosokawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takashi Kitani
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Sohei Mitani
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
45
|
Deuss E, Kürten C, Fehr L, Kahl L, Zimmer S, Künzel J, Stauber RH, Lang S, Hussain T, Brandau S. Standardized Digital Image Analysis of PD-L1 Expression in Head and Neck Squamous Cell Carcinoma Reveals Intra- and Inter-Sample Heterogeneity with Therapeutic Implications. Cancers (Basel) 2024; 16:2103. [PMID: 38893222 PMCID: PMC11171694 DOI: 10.3390/cancers16112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
For practical reasons, in many studies PD-L1 expression is measured by combined positive score (CPS) from a single tumor sample. This does not reflect the heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma (HNSCC). We investigated the extent and relevance of PD-L1 expression heterogeneity in HNSCC analyzing primary tumors and recurrences (LRs), as well as metastases. Tumor tissue from 200 HNSCC patients was immunohistochemically stained for PD-L1 and analyzed using image-analysis software QuPath v3.4 with multiple specimens per patient. CPS was ≥20 in 25.6% of primary tumors. Intra-tumoral heterogeneity led to a therapeutically relevant underestimation of PD-L1 expression in 28.7% of patients, when only one specimen per patient was analyzed. Inter-tumoral differences in PD-L1 expression between primary tumors and lymph node metastasis (LNM) or LR occurred in 44.4% and 61.5% (CPS) and in 40.6% and 50% of cases (TPS). Overall survival was increased in patients with CPS ≥ 1 vs. CPS < 1 in primary tumors and LNM (hazard ratio: 0.46 and 0.35; p < 0.005); CPS in LR was not prognostic. Our analysis shows clinically relevant intra- and inter-sample heterogeneity of PD-L1 expression in HNSCC. To account for heterogeneity and improve patient selection for immunotherapy, multiple sample analyses should be performed, particularly in patients with CPS/TPS < 1.
Collapse
Affiliation(s)
- Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Cornelius Kürten
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Lara Fehr
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Laura Kahl
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Julian Künzel
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Stephan Lang
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Timon Hussain
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
- Department of Otorhinolaryngology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| |
Collapse
|
46
|
Liao Z, Fan H, Weng J, Zhou J, Zheng Y. FAP Serves as a Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2024; 2024:8810804. [PMID: 38826849 PMCID: PMC11142855 DOI: 10.1155/2024/8810804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses significant challenges with poor survival rates and limited therapeutic strategies. Our study, using The Cancer Genome Atlas (TCGA) data, assesses cancer-associated fibroblast (CAF) gene signatures' clinical relevance. In our analysis across TCGA tumor types, differential gene expression analysis revealed that fibroblast activation protein (FAP) is upregulated in tumor tissues and associated with poorer survival rates in HNSCC. Furthermore, mechanistic studies employing gene-silencing techniques substantiated that FAP knockout led to a significant decrease in cellular proliferation, invasion, and migration in HNSCC cell lines. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we established that high FAP expression correlates with vital biological processes such as extracellular matrix organization, angiogenesis, and cellular motility. Importantly, FAP was found to regulate these processes by promoting the expression of key proteins involved in epithelial-mesenchymal transition-related pathways. Additionally, our analysis revealed a significant correlation between FAP expression and the expression profiles of immune checkpoint molecules, underscoring its potential role in immune modulation. Collectively, our findings illuminate FAP's pivotal role in HNSCC pathogenesis and its potential as a prognostic biomarker and therapeutic target. This research lays the groundwork for understanding the multifaceted roles and regulatory mechanisms of CAFs in HNSCC, thereby offering valuable perspectives for the development of targeted therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Zhanpeng Liao
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Junquan Weng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Zhou
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
47
|
Kim CG, Hong MH, Kim D, Lee BH, Kim H, Ock CY, Kelly G, Bang YJ, Kim G, Lee JE, Kim C, Kim SH, Hong HJ, Park YM, Sim NS, Park H, Park JW, Lee CG, Kim KH, Park G, Jung I, Han D, Kim JH, Cha J, Lee I, Kang M, Song H, Oum C, Kim S, Kim S, Lim Y, Kim-Schulze S, Merad M, Yoon SO, Kim HJ, Koh YW, Kim HR. A Phase II Open-Label Randomized Clinical Trial of Preoperative Durvalumab or Durvalumab plus Tremelimumab in Resectable Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2024; 30:2097-2110. [PMID: 38457288 DOI: 10.1158/1078-0432.ccr-23-3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/06/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.
Collapse
Affiliation(s)
- Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dahee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Brian Hyohyoung Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwook Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yoon Ji Bang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gamin Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chaeyeon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se-Heon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jun Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heejung Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Geol Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Goeun Park
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dawoon Han
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junha Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Heon Song
- Lunit Inc., Seoul, Republic of Korea
| | | | | | | | | | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miriam Merad
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Je Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genome Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
48
|
Kürten CHL, Ferris RL. Neoadjuvant immunotherapy for head and neck squamous cell carcinoma. Laryngorhinootologie 2024; 103:S167-S187. [PMID: 38697147 DOI: 10.1055/a-2183-5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The neoadjuvant immunotherapy approach marks a significant shift in the treatment paradigm of potentially curable HNSCC. Here, current therapies, despite being highly individualized and advanced, often fall short in achieving satisfactory long-term survival rates and are frequently associated with substantial morbidity.The primary advantage of this approach lies in its potential to intensify and enhance treatment regimens, offering a distinct modality that complements the existing triad of surgery, radiotherapy, and chemotherapy. Checkpoint inhibitors have been at the forefront of this evolution. Demonstrating moderate yet significant survival benefits in the recurrent-metastatic setting with a relatively better safety profile compared to conventional treatments, these agents hold promise when considered for earlier stages of HNSCC.On the other hand, a significant potential benefit of introducing immunotherapy in the neoadjuvant phase is the possibility of treatment de-escalation. By reducing the tumor burden before surgery, this strategy could lead to less invasive surgical interventions. The prospect of organ-sparing protocols becomes a realistic and highly valued goal in this context. Further, the early application of immunotherapy might catalyze a more effective and durable immune response. The induction of an immune memory may potentially lead to a more effective surveillance of residual disease, decreasing the rates of local, regional, and distant recurrences, thereby enhancing overall and recurrence-free survival.However, neoadjuvant immunotherapy is not without its challenges. One of the primary concerns is the safety and adverse events profile. While data suggest that adverse events are relatively rare and manageable, the long-term safety profile in the neoadjuvant setting, especially in the context of curative intent, remains a subject for ongoing research. Another unsolved issue lies in the accurate assessment of treatment response. The discrepancy between radiographic assessment using RECIST criteria and histological findings has been noted, indicating a gap in current imaging techniques' ability to accurately reflect the true efficacy of immunotherapy. This gap underscores the necessity for improved imaging methodologies and the development of new radiologic and pathologic criteria tailored to evaluate the response to immunotherapy accurately.Treatment combinations and timing represent another layer of complexity. There is a vast array of possibilities in combining immunotherapy agents with conventional chemotherapy, targeted therapy, radiation, and other experimental treatments. Determining the optimal treatment regimen for individual patients becomes an intricate task, especially when comparing small, single-arm, non-randomized trials with varying regimens and outcome measures.Moreover, one needs to consider the importance of pre- and intraoperative decision-making in the context of neoadjuvant immunotherapy. As experience with this treatment paradigm grows, there is potential for more tailored surgical approaches based on the patient's remaining disease post-neoadjuvant treatment. This consideration is particularly relevant in extensive surgeries, where organ-sparing protocols could be evaluated.In practical terms, the multi-modal nature of this treatment strategy introduces complexities, especially outside clinical trial settings. Patients face challenges in navigating the treatment landscape, which involves coordination across multiple medical disciplines, highlighting the necessity for streamlined care pathways at specialized centers to facilitate effective treatment management if the neoadjuvant approach is introduced to the real-world.These potential harms and open questions underscore the critical need for meticulously designed clinical trials and correlational studies to ensure patient safety and efficacy. Only these can ensure that this new treatment approach is introduced in a safe way and fulfils the promise it theoretically holds.
Collapse
Affiliation(s)
- Cornelius H L Kürten
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Yan S, Liu L, Zhang X, Wei L, Jiang W, Gao X, Yang A, Liu X, Chen W, Chen Y, Li H, Lin Q, Li M, Chen J, Zhang Q, Chen S, Song M. Neoadjuvant chemoimmunotherapy shows major pathological response and low recurrence in head and neck squamous cell carcinoma. Clin Transl Oncol 2024; 26:1192-1202. [PMID: 37989823 DOI: 10.1007/s12094-023-03342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The study aimed to investigate the efficacy and survival outcomes of neoadjuvant chemotherapy combined with programmed cell death protein 1 (PD-1) blockade (neoadjuvant chemoimmunotherapy) for patients with resectable head and neck squamous cell carcinoma (HNSCC). METHODS A retrospective analysis was conducted. Patients with initially diagnosed, resectable HNSCCs who received the neoadjuvant chemoimmunotherapy and radical surgery were included. Correlation analysis between patients' clinical characteristics and pathological responses, and survival analysis were performed. RESULTS A total of 79 patients were included. The majority of patients (55, 69.6%) were diagnosed at locally advanced stages and most of them (58, 73.4%) had tumor located at the oral cavity. Nearly half of patients (35, 44.3%) received two cycles of neoadjuvant chemoimmunotherapy and the rest had three or more cycles. The R0 resection rate was 98.7%. In the pathological evaluation, 53.1% of patients reached pathological complete responses or major pathological responses. After a median follow-up of 17.0 months, the 1-year disease-free survival (DFS) and overall survival (OS) rates were 87.2% and 97.4%, respectively. The pathological response showed a significantly positive association with survival benefits (p < 0.001). Patients with human papillomavirus (HPV)-positive oropharyngeal cancer had the best pathological response and survival outcomes. Besides, history of radiation at head and neck region and poor pathological response were found to be independent risk factors of DFS for patients receiving such treatments. CONCLUSION Neoadjuvant chemoimmunotherapy of HNSCC showed high rate of pathological response and low recurrence rate, holding promise for becoming the new standard of care for resectable HNSCC.
Collapse
Affiliation(s)
- Shida Yan
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lili Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xing Zhang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lijun Wei
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Wenmei Jiang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xianlu Gao
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Ankui Yang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xuekui Liu
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Wenkuan Chen
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yanfeng Chen
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Hui Li
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Qiaohong Lin
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Menghua Li
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jingtao Chen
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Quan Zhang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Shuwei Chen
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Ming Song
- Department of Head and Neck, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
50
|
Song A, Wu L, Zhang BX, Yang QC, Liu YT, Li H, Mao L, Xiong D, Yu HJ, Sun ZJ. Glutamine inhibition combined with CD47 blockade enhances radiotherapy-induced ferroptosis in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216727. [PMID: 38431035 DOI: 10.1016/j.canlet.2024.216727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.
Collapse
Affiliation(s)
- An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Lei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Bo-Xin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Liang Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|