1
|
Ma S, Wen X, Jiang Y, Jiang J, Hao W, Zhang L, Liu M. Fluoride binding-modulated supramolecular chirality of urea-containing triarylamine and its photo-manifestation. NANOSCALE 2025; 17:4400-4407. [PMID: 39807012 DOI: 10.1039/d4nr04175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2025]
Abstract
In recent years, the regulation of anion-mediated chiral assemblies has gained significant interest. This study investigated the modulation of supramolecular chiroptical signals and chiral assembled structures in a triarylamine system containing a urea moiety through fluoride ion-urea bond interactions, aiming to understand the chiral sense amplification in supramolecular assemblies. Chiral triarylamine derivatives containing urea or amide units were synthesized and the self-assemblies were examined in the absence and presence of fluoride ions. The results revealed that the addition of F- led to an increase in the circular dichroism (CD) intensity for the triarylamine compounds containing urea, accompanied by a transformation of the nanofiber structure into chiral twists. Comparative studies with other anions confirmed the selective specificity for F-. Additionally, the combination of photo-induced triarylamine anion radicals allowed the F- in the system to be visualized through photoirradiation, resulting in distinct colour changes that were detectable by the naked eye. The research demonstrates that F- can selectively amplify supramolecular chirality through urea-F- interactions, which may have promising applications in the fields of sensing and chiroptical devices.
Collapse
Affiliation(s)
- Sijia Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Xin Wen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqian Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Jian Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Wenchao Hao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li T, Niu D, Ji L, Li Q, Guan B, Wang H, Ouyang G, Liu M. Supramolecular rosette intermediated homochiral double helix. Nat Commun 2025; 16:1698. [PMID: 39962065 PMCID: PMC11833066 DOI: 10.1038/s41467-025-57059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Precise organization of organic molecules into homochiral double-helix remains a challenge due to the difficulty in controlling both self-assembly process and chirality transfer across length scales. Here, we report that a type of bisnaphthalene bisurea molecule could assemble into chirality-controlled nanoscale double-helices by a supramolecular rosette-intermediated hierarchical self-assembly mechanism. A solvent-mixing self-assembly protocol is adopted to direct bisnaphthalene bisurea cyclization into chiral discrete rosettes through cooperative intramolecular and intermolecular hydrogen bonds. Controlled hexagonal packing of rosettes at higher concentrations gives one-dimensional single-stranded nanofibers, which intertwine into well-defined double-helix nanostructures with preferred chirality that depends on the absolute configurations of bisnaphthalene bisurea. The hierarchical organization of bisnaphthalene bisurea molecules enables effective excitation energy delocalization within the double-helix, which contributes to near-unity energy transfer from double-helix to adsorbed acceptor dyes even in donor/acceptor ratios over 1000, leading to bright circularly polarized luminescence from the originally achiral acceptor. The experimental and theoretical simulation results not only provide a hierarchical strategy to fabricate homochiral double-helix but also bring insights in understanding the high-efficiency light-harvesting process in photosystem II.
Collapse
Affiliation(s)
- Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Dian Niu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Lukang Ji
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Qian Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Bo Guan
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
3
|
Tian E, Cao G, Dong H, Xu Z, Shen Z. Triple circularly polarized luminescence of phenylalanine-based supramolecular gels regulated by kinetic and thermodynamic assembly pathways. Chem Commun (Camb) 2025; 61:2965-2968. [PMID: 39840990 DOI: 10.1039/d4cc05548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2025]
Abstract
A single phenylalanine-based gelator can self-assemble into various chiral nanostructures with triple circularly polarized luminescence (CPL). Its supramolecular assembly and CPL emission are found to be dependent on the kinetic and thermodynamic pathways. This work provides new insight into the regulation of CPL-active functional materials.
Collapse
Affiliation(s)
- Enquan Tian
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Guanghui Cao
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Zhichao Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhaocun Shen
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
4
|
Zou X, Gan N, Gao Y, Gu L, Huang W. Organic Circularly Polarized Room-Temperature Phosphorescence: Strategies, Applications and Challenges. Angew Chem Int Ed Engl 2025; 64:e202417906. [PMID: 39548951 DOI: 10.1002/anie.202417906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2024] [Indexed: 11/18/2024]
Abstract
Organic circularly polarized luminescence (CPL) plays crucial roles in chemistry and biology for the potential in chiral recognition, asymmetric catalysis, 3D displays, and biological probes. The long-lived luminescence, large Stokes shift, and unique chiroptical properties make organic circularly polarized room-temperature phosphorescence (CPP) a new research hotspot in recent years. Nevertheless, achieving high-performance organic CPP is still challenging due to the sensitivity and complexity of integrating triplet excitons and polarization within organic materials. This review summarizes the latest advances in organic CPP, ranging from design strategies and photophysical properties to underlying luminescence mechanisms and potential applications. Specifically, the design strategies for generating CPP are systemically categorized and discussed according to the interactions between chiral units and chromophores. The applications of organic CPP in organic light-emitting diodes, sensing, chiral recognition, afterglow displays, and information encryption are also illustrated. In addition, we present the current challenges and perspectives on developing organic CPP. We expect this review to provide some instructive design principles to fabricate high-performance organic CPP materials, offering an in-depth understanding of the luminescence mechanism and paving the way toward diverse practical applications.
Collapse
Affiliation(s)
- Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaru Gao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore, 117543
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
5
|
Ai L, Xiang W, Li ZW, Liu H, Xiao J, Song H, Yu J, Song Z, Zhu K, Pan Z, Wang H, Lu S. Hydrogen Bond-Induced Flexible and Twisted Self-Assembly of Functionalized Carbon Dots with Customized-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202410988. [PMID: 39283269 DOI: 10.1002/anie.202410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Indexed: 11/01/2024]
Abstract
Circularly polarized luminescence (CPL) has numerous applications in optical data storage, quantum computing, bioresponsive imaging, liquid crystal displays, and backlights in three-dimensional (3D) displays. In addition to their competitive optical properties, carbon dots (CDs) benefit from simple and low-cost preparation, facile post-modification, and excellent resistance to photo- and chemical bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. In this study, hydrophobic interactions of aromatic ligands, which participate in the surface-ligand post-modification process on the ground-state chiral carbon core, are employed to drive the oriented assembly. Furthermore, the residual chiral amides on CDs form multiple hydrogen bonds during gradual aggregation, causing the assembled materials to form an asymmetric bending structure. Superficial ligands interfere with the optical dynamics of the exciton radiation transition and stabilize the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands overcome the frequent aggregation-induced quenching phenomenon that present difficulties in conventional CDs, facilitate the assembly of self-supporting films, and improve chiral optical expression. The full-color and white CPL are manipulated by simply adjusting the functional groups of the ligands, which also illustrates the versatility of the post-modification strategy. Finally, large chiral flexible films and multicolor chiral light-emitting diodes based on the stable chiral powder phosphors were constructed, thereby providing feasible materials and technical support for flexible 3D displays.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Wenjuan Xiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhan-Wei Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Huimin Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jiping Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jingkun Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Ziqi Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Kai Zhu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhuohan Pan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haolin Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
6
|
Ai L, Wang H, Wang B, Liu S, Song H, Lu S. Concentration-Switchable Assembly of Carbon Dots for Circularly Polarized Luminescent Amplification in Chiral Logic Gates and Deep-Red Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410094. [PMID: 39361264 DOI: 10.1002/adma.202410094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Stimuli-responsive circularly polarized luminescent (CPL) materials are expected to find widespread application in advanced information technologies, such as 3D displays, multilevel encryption, and chiral optical devices. Here, using R-/S-α-phenylethylamine and 3,4,9,10-perylenetetracarboxylic dianhydride as precursors, chiral carbon dots (Ch-CDs) exhibiting bright concentration-dependent luminescence are synthesized, demonstrating reversible responses in both their morphologies and emission spectra. By adjusting Ch-CD concentration, the switchable wavelength is extended over 180 nm (539-720 nm), with the maximum quantum efficiency reaching 100%. Meanwhile, upon increasing Ch-CD concentration, the emission wavelength red-shifts, while the chirality of the assembled nanoribbons is synchronously amplified, ultimately achieving CPL at 709 nm and a maximum luminescence asymmetry factor of 2.18 × 10-2. These values represent the longest wavelength and the largest glum reported for CDs. Considering the remarkable optical properties of the synthesized Ch-CDs, multilevel chiral logic gates are designed, and their potential practical applications are demonstrated in multilevel anti-counterfeiting encryption, flexible electronic printing, and solid-state CPL. Furthermore, deep-red chiral electroluminescence light-emitting diodes (EL-LEDs) are prepared using these Ch-CDs, achieving an external quantum efficiency of 1.98%, which is the highest value reported to date for CDs in deep-red EL-LEDs, and the first report of chiral electronic devices based on CDs.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haolin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Boyang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suya Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haoqiang Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
8
|
Cen M, Liu J, Wang J, Li Y, Cai W, Cheng M, Kong D, Tang X, Cao T, Lu YQ, Liu YJ. Chirally Selective and Switchable Luminescence from Achiral Quantum Emitters on Suspended Twisted Stacking Metasurfaces. ACS NANO 2024. [PMID: 39004841 DOI: 10.1021/acsnano.4c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/16/2024]
Abstract
Dynamic control of circularly polarized photoluminescence has aroused great interest in quantum optics and nanophotonics. Chiral plasmonic metasurfaces enable the manipulation of the polarization state via plasmon-photon coupling. However, current plasmonic light-emitting metasurfaces for effective deterministic modulation of spin-dependent emission at near-infrared wavelengths are underexplored in terms of dissymmetry and tunability. Here, we demonstrate a microfluidic hybrid emitting system of a suspended twisted stacking metasurface coated with PbS quantum dots. The suspended metasurface is fabricated with a single step of electron beam exposure, exhibiting a strong optical chirality of 309° μm-1 with a thickness of less than λ/10 at key spectral locations. With significant chiral-selective interactions, enhanced photoluminescence is achieved with strong dissymmetry in circular polarization. The dissymmetry factor of the induced circularly polarized emission can reach 1.54. More importantly, altering the refractive index of the surrounding medium at the bottom surface of the metasurface can effectively manipulate the chiroptical responses of the hybrid system, hence leading to chirality-reversed emission. This active hybrid emitting system could be a resultful platform for chirality-switchable light emission from achiral quantum emitters, holding great potential for anticounterfeiting, biosensing, light sources, imaging, and displays.
Collapse
Affiliation(s)
- Mengjia Cen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Cheng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Delai Kong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Chen X, Zhu R, Zhang B, Zhang X, Cheng A, Liu H, Gao R, Zhang X, Chen B, Ye S, Jiang J, Zhang G. Rapid room-temperature phosphorescence chiral recognition of natural amino acids. Nat Commun 2024; 15:3314. [PMID: 38632229 PMCID: PMC11024135 DOI: 10.1038/s41467-024-47648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Xiaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Aoyuan Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Ruiying Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230094, China.
| |
Collapse
|
10
|
Zhang F, Shen Z, Sui K, Liu M. Disassembly of spherical structures into nanohelices by good solvent dilution. J Colloid Interface Sci 2024; 657:853-857. [PMID: 38091908 DOI: 10.1016/j.jcis.2023.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/02/2024]
Abstract
Supramolecular self-assembly of low molecular weight molecules into various organic nanostructures has attracted considerable research interest. However, preparing organic nanostructures through a top-down method, such as the disassembly of one large structure into many smaller nanoscale nanostructures, still remains a big challenge. Here, we make use of anti-solvent method to regulate the hierarchical self-assembly of an achiral C3-symmetric molecule in THF/water to prepare various nanostructures, including spherical structures, nanofibers, nanoribbons and nanotwists. Interestingly, the spherical structures could disassemble into nanohelices through good solvent dilution, providing a nanoscale top-down method to prepare organic nanostructures.
Collapse
Affiliation(s)
- Fang Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Zhaocun Shen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
11
|
Fu K, Liu G. Full-Color Circularly Polarized Luminescence of Supramolecular Polymers with Handedness Inversion Regulated by Anion and Temperature. ACS NANO 2024; 18:2279-2289. [PMID: 38206175 DOI: 10.1021/acsnano.3c10151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2024]
Abstract
Constructing full-color circularly polarized luminescence (CPL) materials with switchable handedness in the solid state is an appealing yet considerably challenging task, especially for supramolecular polymer films assembled from homochiral monomers. Herein, supramolecular polymers with full-color CPL and inverted handedness are realized through the coassembly of a homochiral cholesterol derivative (PVPCC), metal ions (Zn2+), and achiral fluorescent dyes. The obtained coassembled systems show anion-directed supramolecular chirality inversion by exchanging the anions of NO3-, ClO4-, BF4-, and Cl-. For instance, the negative CD and right-handed CPL are detected in the PVPCC/Zn(NO3)2 aggregates, which convert into positive CD and left-handed CPL after introducing Cl-, corresponding to the transformation from nanorods to nanofibers. Furthermore, the tunable CPL color and handedness inversion of the coassembly system of PVPCC/Zn(NO3)2 and achiral fluorescent dyes can be established by alternately changing the assembling temperature of 298 and 273 K. Importantly, the full-color CPL polymeric materials are then constructed by doping the PVPCC/Zn(NO3)2/dyes complexes into poly(methyl methacrylate) (PMMA) film, which maintains the handedness inversion and shows the enhanced CPL performance. The work not only deepens the understanding of chirality inversion in supramolecular chemistry but also helps to construct full-color CPL materials with switchable handedness from homochiral building blocks in materials science.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
12
|
Li S, Pei H, He S, Liang H, Guo R, Liu N, Mo Z. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications. Chem Asian J 2023; 18:e202300770. [PMID: 37819766 DOI: 10.1002/asia.202300770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Chiral carbon dots (CCDs) can be widely used in various fields such as chiral recognition, chiral catalysis and biomedicine because of their unique optical properties, low toxicity and good biocompatibility. In addition, CCDs with circularly polarized luminescence (CPL) can be synthesized, thus broadening the prospects of CCDs applications. Since the research on CCDs is still in its infancy, this paper reviews the chiral origin, formation mechanism, chiral evolution, synthesis and emerging applications of CCDs, with a special focus on CCDs with CPL activity. It is hoped that it will provide some reference to solve the current problems faced by CCDs. Finally, the opportunities and challenges of the current research on CCDs are described, and their future development trends have also been prospected.
Collapse
Affiliation(s)
- Shijing Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Liang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
13
|
Yin K, Zhang J, Xing P, Li H. Chiral Polymer Dots Show Unexpected Versatility of Highly Ordered Self-Assembly into Chiroptical Liquid Crystals, Ultra-Thin Films, and Long-Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302668. [PMID: 37150858 DOI: 10.1002/smll.202302668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/29/2023] [Revised: 04/16/2023] [Indexed: 05/09/2023]
Abstract
Compared to the organic counterparts, chiral self-assembly of nanomaterials shows persistency to kinetic factors such as solvent environments, and consequently, dynamic modulation of self-assembly and functions remains major challenge. Here, it is shown that alkylated, chiral polymer dots (c-PDs) give highly ordered self-assemblies with amplified chirality adaptive to solvent environments, and one-to-many hierarchical aggregation can be realized. The c-PDs tended to self-assemble into nanohelices with cubic packing in the solid state, which, thanks to the thermo-responsiveness, transformed into thermic liquid crystals upon heating. Cotton effects and circularly polarized luminescence evidenced the chirality transfer from central chirality to supramolecular chirality. At the air-water interface, the c-PDs are self-assembled into monolayers, which further stack into multiple layers with chirality transfer and highly ordered packing. In addition, undergoing a good/poor solvent exchange, the c-PDs afforded ultra-long microribbons up to a length scale of millimeters, which are constituted by the bilayer lamellar stacking. The versatile chiral self-assembly modalities with long-range ordered packing arrays of carbonized c-PDs via solvent strategy are realized. This feature is comparable to the organic species, although the c-PDs have no atomic precise structures. This work would surely expand the applications of quantum dot ordered self-assembly with adaptiveness to kinetic factors.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Honguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
14
|
Lee H, Hwang JH, Song SH, Han H, Han S, Suh BL, Hur K, Kyhm J, Ahn J, Cho JH, Hwang DK, Lee E, Choi C, Lim JA. Chiroptical Synaptic Heterojunction Phototransistors Based on Self-Assembled Nanohelix of π-Conjugated Molecules for Direct Noise-Reduced Detection of Circularly Polarized Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304039. [PMID: 37501319 PMCID: PMC10520648 DOI: 10.1002/advs.202304039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/16/2023] [Indexed: 07/29/2023]
Abstract
High-performance chiroptical synaptic phototransistors are successfully demonstrated using heterojunctions composed of a self-assembled nanohelix of a π-conjugated molecule and a metal oxide semiconductor. To impart strong chiroptical activity to the device, a diketopyrrolopyrrole-based π-conjugated molecule decorated with chiral glutamic acid is newly synthesized; this molecule is capable of supramolecular self-assembly through noncovalent intermolecular interactions. In particular, nanohelix formed by intertwinded fibers with strong and stable chiroptical activity in a solid-film state are obtained through hydrogen-bonding-driven, gelation-assisted self-assembly. Phototransistors based on interfacial charge transfer at the heterojunction from the chiroptical nanohelix to the metal oxide semiconductor show excellent chiroptical detection with a high photocurrent dissymmetry factor of 1.97 and a high photoresponsivity of 218 A W-1 . The chiroptical phototransistor demonstrates photonic synapse-like, time-dependent photocurrent generation, along with persistent photoconductivity, which is attributed to the interfacial charge trapping. Through the advantage of synaptic functionality, a trained convolutional neural network successfully recognizes noise-reduced circularly polarized images of handwritten alphabetic characters with better than 89.7% accuracy.
Collapse
Affiliation(s)
- Hanna Lee
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Seung Ho Song
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hyemi Han
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Seo‐Jung Han
- Chemical and Biological Integrative Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolUniversity of Science and Technology of KoreaSeoul02792Republic of Korea
| | - Bong Lim Suh
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jihoon Kyhm
- Technology Support CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jongtae Ahn
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Do Kyung Hwang
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| | - Eunji Lee
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Changsoon Choi
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jung Ah Lim
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
15
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
16
|
Chen XM, Chen X, Hou XF, Zhang S, Chen D, Li Q. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications. NANOSCALE ADVANCES 2023; 5:1830-1852. [PMID: 36998669 PMCID: PMC10044677 DOI: 10.1039/d2na00934j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University Kent OH 44242 USA
| |
Collapse
|
17
|
Yang X, Jin X, Zheng A, Duan P. Dual Band-Edge Enhancing Overall Performance of Upconverted Near-Infrared Circularly Polarized Luminescence for Anticounterfeiting. ACS NANO 2023; 17:2661-2668. [PMID: 36648200 DOI: 10.1021/acsnano.2c10646] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
Circularly polarized luminescence (CPL) is one of the critical chiroptical properties for chiral nanomaterials, which exhibit wide potential applications in many research fields. However, it remains a big challenge for real application, limited by their small luminescence dissymmetry factor or low emission intensity. Here, an upconverted near-infrared circularly polarized luminescence (UC-NIR-CPL) system is constructed based on the chiroptical property of chiral liquid crystals, embedding with the lanthanide-doped upconversion nanoparticles. More importantly, a strategy for improving the overall performance of UC-NIR-CPL was proposed and realized by taking advantage of the "dual-band-edge enhancement effect", wherein the glum value was amplified, while the NIR emission intensity showed dual enhancement and the threshold of excitation was decreased. Based on the improved overall performance of the UC-NIR-CPL, which can be used as a distinctive covert light, a kind of photonic barcode with multiple encryptions was realized. These findings will upgrade the level of information encryption through improving the overall performance of CPL-active materials.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Anyi Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| |
Collapse
|
18
|
Huang Z, He Z, Ding B, Tian H, Ma X. Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films. Nat Commun 2022; 13:7841. [PMID: 36543785 PMCID: PMC9772410 DOI: 10.1038/s41467-022-35625-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Here, a type of photoinduced circularly polarized RTP materials are constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. These substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of the films under UV light irradiation endow materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as anti-counterfeiting materials involving photoprogrammability.
Collapse
Affiliation(s)
- Zizhao Huang
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Zhenyi He
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Bingbing Ding
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - He Tian
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Xiang Ma
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| |
Collapse
|
19
|
Gao X, Zhao B, Deng J. Chirality Transfer from Polylactide to Achiral Fluorophore in Hierarchical Crystallization for Realizing Handedness-Tunable and Nonreciprocal Circularly Polarized Luminescence. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Parzyszek S, Tessarolo J, Pedrazo-Tardajos A, Ortuño AM, Bagiński M, Bals S, Clever GH, Lewandowski W. Tunable Circularly Polarized Luminescence via Chirality Induction and Energy Transfer from Organic Films to Semiconductor Nanocrystals. ACS NANO 2022; 16:18472-18482. [PMID: 36342742 PMCID: PMC9706675 DOI: 10.1021/acsnano.2c06623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Accepted: 10/28/2022] [Indexed: 06/03/2023]
Abstract
Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herein, we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chirality induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors glum ∼ 10-2. The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semiconductor quantum dots (QDs) into the LC matrix, which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to ∼10-2 and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.
Collapse
Affiliation(s)
- Sylwia Parzyszek
- Faculty
of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Jacopo Tessarolo
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Ana M. Ortuño
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Guido H. Clever
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
21
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022; 61:e202210604. [DOI: 10.1002/anie.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Shang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Cui
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Kaiang Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Xing M, Han Y, Zhu Y, Sun Y, Shan Y, Wang KN, Liu Q, Dong B, Cao D, Lin W. Two Ratiometric Fluorescent Probes Based on the Hydroxyl Coumarin Chalcone Unit with Large Fluorescent Peak Shift for the Detection of Hydrazine in Living Cells. Anal Chem 2022; 94:12836-12844. [PMID: 36062507 DOI: 10.1021/acs.analchem.2c02798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Hydrazine is widely used in industrial and agricultural production, but excessive hydrazine possesses a serious threat to human health and environment. Here two new ratiometric fluorescence probes, DDP and DDC, with the hydroxyl coumarin chalcone unit as the sensing site are developed, which can achieve colorimetric and ratiometric recognition for hydrazine with good sensitivity, excellent selectivity, and anti-interference. The calculated fluorescence limits of detections are 0.26 μM (DDC) and 0.14 μM (DDP). The ratiometric fluorescence response to hydrazine is realized through the adjustment of donor and receptor units in coumarin conjugate structure terminals, accompanied by fluorescence peak shift about 200 nm (DDC, 188 nm; DDP, 229 nm). Stronger electropositivity in the carbon-carbon double bond is helpful to the first phase addition reaction between the probe and hydrazine. Higher phenol activity in the hydroxyl coumarin moiety will facilitate the following dihydro-pyrazole cyclization reaction. In addition, both of these probes realized the convenient detection of hydrazine vapor. The probes were also successfully applied to detect hydrazine in actual water samples, different soils, and living cells.
Collapse
Affiliation(s)
- Miaomiao Xing
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Han
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yilin Zhu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yatong Sun
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Shan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kang-Nan Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baoli Dong
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Weiying Lin
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
23
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202208574. [DOI: 10.1002/anie.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Song
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
24
|
Yao K, Liu Z, Li H, Xu D, Zheng WH, Quan YW, Cheng YX. Reversal of circularly polarized luminescence direction and an “on-off” switch driven by exchange between UV light irradiation and the applied direct current electric field. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
25
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weili Shang
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Yuqian Jiang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Jie Cui
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Kaiang Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Tiesheng Li
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
26
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Song
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Shuai Qiu
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Wei Tian
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
27
|
Tailoring co-assembly loading of doxorubicin in solvent-triggering gel. J Colloid Interface Sci 2022; 626:619-628. [PMID: 35810701 DOI: 10.1016/j.jcis.2022.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
|
28
|
Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co-assembly Polymers. Angew Chem Int Ed Engl 2022; 61:e202202718. [PMID: 35318788 DOI: 10.1002/anie.202202718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2022] [Indexed: 11/09/2022]
Abstract
Two chiral binaphthyl polymers (R/S-P1 and R/S-P2) with different dihedral angles of the binaphthyl moiety were chosen as chiral inducers to construct chiral co-assemblies with an achiral pyrene-naphthalimide dye (NPy) and then acted as the emitting layer (EML) of circularly polarized electroluminescence (CP-EL) devices. The anchored dihedral angle of R/S-P2 not only exhibited the enhanced chirality signal, but also had a strong chirality-inducing effect on the achiral NPy dye in the chiral co-assembly (R/S-P2)0.6 -(NPy)0.4 . After annealing at 120 °C, the CPL signal (|gem |) of ordered helical nano-fibers (R/S-P2)0.6 -(NPy)0.4 was amplified to 5.6×10-2 , which was about 6-fold larger than that of (R/S-P1)0.6 -(NPy)0.4 . The amplified gem value of (R/S-P2)0.6 -(NPy)0.4 was due to the formation of a helical co-assembly through the strong π-π stacking interaction between the R/S-P2 and the achiral NPy. This kind of ordered helical nano-fibers (R/S-P2)0.6 -(NPy)0.4 acted as the EML of CP-OLEDs, and achieved an excellent CP-EL performance (|gEL |=4.8×10-2 ).
Collapse
Affiliation(s)
- Zhongxing Geng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
29
|
Algoazy N, Clarke RG, Penfold TJ, Waddell PG, Probert MR, Aerts R, Herrebout W, Stachelek P, Pal R, Hall MJ, Knight J. NIR Circularly Polarised Luminescence from Helically‐Extended Chiral N,N,O,O‐Boron Chelated Dipyrromethenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nawaf Algoazy
- Newcastle University School of natural and environmental sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE17RU Newcastle upon Tyne UNITED KINGDOM
| | - Rebecca G. Clarke
- Newcastle University School of natural and environmental sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE1 7RU Newcastle upon Tyne UNITED KINGDOM
| | - Thomas J. Penfold
- Newcastle University School of natural and environmental sciences (Chemistry) UNITED KINGDOM
| | - Paul G. Waddell
- Newcastle University School of natural and environmental sciences (Chemistry) UNITED KINGDOM
| | - Michael R. Probert
- Newcastle University School of natural and environmental sciences (Chemistry) UNITED KINGDOM
| | - Roy Aerts
- University of Antwerp: Universiteit Antwerpen department of chemistry Groenenborgerlaan 171, 2020 Antwerp BELGIUM
| | - Wouter Herrebout
- Universiteit Antwerpen Department of chemistry Groenenborgerlaan 171, 2020 Antwerp BELGIUM
| | - Patrycja Stachelek
- Durham University Department of chemistry South Road DH1 3LE Durham UNITED KINGDOM
| | - Robert Pal
- Durham University Department of chemistry UNITED KINGDOM
| | - Michael J. Hall
- Newcastle University School of natural and environmental sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE17RU Newcastle upon Tyne UNITED KINGDOM
| | - Julian Knight
- Newcastle University School of Natural and Environmental Sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE17RU Newcastle upon Tyne UNITED KINGDOM
| |
Collapse
|
30
|
Cheng Q, Hao A, Xing P. Eutectogels as Matrices to Manipulate Supramolecular Chirality and Circularly Polarized Luminescence. ACS NANO 2022; 16:6825-6834. [PMID: 35349257 DOI: 10.1021/acsnano.2c01731] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Solvent is regarded as a factor in tuning the supramolecular chirality of self-assemblies. Deep eutectic solvents (DESs) show diverse properties in contrast to other common solvents, which are emerging in fabricating functional aggregates and nanoarchitectures. Nevertheless, the emergence and manipulation of supramolecular chirality in DES still remain mysterious. Exploring supramolecular chirality in DES would produce tunable chiroptical materials considering their feasible preparation process and abundant hydrogen bonding sites. In this work, we explored the occurrence and manipulation of supramolecular chirality in DES. Transfer from inherent chiral DES to solutes in either aggregated or monomeric building units is blocked. However, the chiral assembly of π-conjugated amino acids was realized. Compared to aqueous media, self-assembly in DES hinders the spontaneous structural and chirality evolution that benefit from efficient solvation, where the π-conjugated amino acids were involved as hydrogen bonding donors. DES performs as a dye-friendly matrix to afford chiroptical eutectogels with tunable circularly polarized luminescence, whereby a large dissymmetry g-factor of up to 0.015 was realized. DES behaves as feasible and flexible solvents to fabricate and stabilize functional soft chiral self-assemblies with controllable chiroptical properties.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
31
|
Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co‐assembly Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongxing Geng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Wang Y, Niu D, Ouyang G, Liu M. Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence. Nat Commun 2022; 13:1710. [PMID: 35361805 PMCID: PMC8971395 DOI: 10.1038/s41467-022-29396-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 01/15/2023] Open
Abstract
The canonical double helical π-stacked array of base pairs within DNA interior has inspired the interest in supramolecular double helical architectures with advanced electronic, magnetic and optical functions. Here, we report a selective-recognized and chirality-matched co-assembly strategy for the fabrication of fluorescent π-amino acids into double helical π-aggregates, which show exceptional strong circularly polarized luminescence (CPL). The single crystal structure of the optimal combination of co-assemblies shows that the double-stranded helical organization of these π-amino acids is cooperatively assisted by both CH-π and hydrogen-bond arrays with chirality match. The well-defined spatial arrangement of the π-chromophores could effectively suppress the non-radiative decay pathways and facilitate chiral exciton couplings, leading to superior CPL with a strong figure of merit (glum = 0.14 and QY = 0.76). Our findings might open a new door for developing DNA-inspired chiroptical materials with prominent properties by enantioselective co-assembly initiated double helical π-aggregation.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Dian Niu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
33
|
Zhang C, Li ZS, Dong XY, Niu YY, Zang SQ. Multiple Responsive CPL Switches in an Enantiomeric Pair of Perovskite Confined in Lanthanide MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109496. [PMID: 35020258 DOI: 10.1002/adma.202109496] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Circularly polarized luminescence (CPL) switches have attracted widespread attention due to their potential applications in advanced information technologies. However, the design and fabrication of solid-state multiple-responsive CPL switches remain challenging. Here, through self-assembly of chiral metal-organic frameworks (MOFs) and perovskite nanocrystals (NCs), a pair of crystalline enantiomeric (P)-(+)/(M)-(-)-EuMOF⊃MAPbX3 (MA = CH3 NH3 + , X = Cl- , Br- , I- ) adducts is prepared, where the achiral MAPbBr3 perovskite NCs embedded into chiral MOFs inherit the chirality of host MOFs by host-guest EuBr and PbO coordination bonds, which is demonstrated by synchrotron-radiation-based X-ray absorption spectroscopy. The chiral adducts show enhanced photoluminescence quantum yield (PLQY), good thermal stability of CPL in air, and photoswitchable CPL properties upon altering different UV irradiation. Based on two chiral emission centers and their different characteristics, reversible CPL switches are realized upon a diversity of external stimuli, for example, chemicals (water /CH3 NH3 Br solution) or temperatures (room temperature/high temperature). Benefiting from the extraordinary stimuli-responsive and highly reversible switchable CPL, multiple information encryptions and decryptions integrated with CPL, together with a chiroptical logic gate are successfully designed. This work opens a new avenue to generally fabricate solid-state CPL composite materials and develops new applications based on switchable CPL.
Collapse
Affiliation(s)
- Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhong-Shan Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yun-Yin Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|