1
|
Luo Z, Gong K. Inflammatory signaling in targeted therapy resistance: focus on EGFR-targeted treatment. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0327. [PMID: 39475221 PMCID: PMC11523269 DOI: 10.20892/j.issn.2095-3941.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Zhihong Luo
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Gong
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Crossman BE, Harmon RL, Kostecki KL, McDaniel NK, Iida M, Corday LW, Glitchev CE, Crow MT, Harris MA, Lin CY, Adams JM, Longhurst CA, Nickel KP, Ong IM, Alexandridis RA, Yu M, Yang DT, Hu R, Morris ZS, Hartig GK, Glazer TA, Ramisetty S, Kulkarni P, Salgia R, Kimple RJ, Bruce JY, Harari PM, Wheeler DL. From Bench to Bedside: A Team's Approach to Multidisciplinary Strategies to Combat Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma. J Clin Med 2024; 13:6036. [PMID: 39457986 PMCID: PMC11508784 DOI: 10.3390/jcm13206036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is diagnosed in more than 71,000 patients each year in the United States, with nearly 16,000 associated deaths. One significant hurdle in the treatment of HNSCC is acquired and intrinsic resistance to existing therapeutic agents. Over the past several decades, the University of Wisconsin has formed a multidisciplinary team to move basic scientific discovery along the translational spectrum to impact the lives of HNSCC patients. In this review, we outline key discoveries made throughout the years at the University of Wisconsin to deepen our understanding of therapeutic resistance in HNSCC and how a strong, interdisciplinary team can make significant advances toward improving the lives of these patients by combatting resistance to established therapeutic modalities. We are profoundly grateful to the many scientific teams worldwide whose groundbreaking discoveries, alongside evolving clinical paradigms in head and neck oncology, have been instrumental in making our work possible.
Collapse
Affiliation(s)
- Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Regan L. Harmon
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Nellie K. McDaniel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Luke W. Corday
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Christine E. Glitchev
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Madisen T. Crow
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Madelyn A. Harris
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Candie Y. Lin
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Jillian M. Adams
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Colin A. Longhurst
- Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; (C.A.L.); (I.M.O.); (R.A.A.)
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Irene M. Ong
- Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; (C.A.L.); (I.M.O.); (R.A.A.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53705, USA
| | - Roxana A. Alexandridis
- Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; (C.A.L.); (I.M.O.); (R.A.A.)
| | - Menggang Yu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David T. Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA;
| | - Rong Hu
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA;
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Gregory K. Hartig
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA; (G.K.H.); (T.A.G.)
| | - Tiffany A. Glazer
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA; (G.K.H.); (T.A.G.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.R.); (P.K.); (R.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.R.); (P.K.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.R.); (P.K.); (R.S.)
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
| | - Justine Y. Bruce
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
| |
Collapse
|
3
|
Zhang G, Chen X, Yu C, Cui L, Chen N, Yi G, Wang S, Wei H, Liang Y, Ye S, Zhou Y. FNIP1 suppresses colorectal cancer progression through inhibiting STAT3 phosphorylation and nuclear translocation. iScience 2024; 27:110730. [PMID: 39262790 PMCID: PMC11389550 DOI: 10.1016/j.isci.2024.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Folliculin interacting protein 1 (FNIP1) primarily participates in regulating cellular energy metabolism and is associated with Birt-Hogg-Dubé (BHD) syndrome. Although FNIP1 has been demonstrated to function as both a tumor suppressor and promoter, its role in colorectal cancer (CRC) remains unclear. Our study demonstrated a significant downregulation of FNIP1 in CRC, correlating with shorter overall and disease-specific survival. FNIP1 may potentially serve as an independent prognostic factor in CRC. Moreover, FNIP1 inhibited CRC progression in vitro and in vivo. Mechanistically, FNIP1 bound to phosphorylated signal transducer and activator of transcription-3 (p-STAT3) and downregulated its expression. FNIP1 deletion increased STAT3 phosphorylation and nuclear localization, thereby promoting CRC progression. The use of p-STAT3-specific chemical inhibitors successfully mitigated excessive tumorigenesis resulting from FNIP1 absence. Thus, our results suggest that FNIP1 hinders CRC progression by suppressing STAT3 phosphorylation and nuclear translocation. FNIP1 may be a candidate prognostic indicator and a therapeutic target for intervention in CRC.
Collapse
Affiliation(s)
- Guixia Zhang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xintian Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lijiao Cui
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ningning Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Guanrong Yi
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shan Wang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Haiyun Wei
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Youxin Liang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
4
|
Ma J, Ding L, Zang X, Wei R, Yang Y, Zhang W, Su H, Li X, Li M, Sun J, Zhang Z, Wang Z, Zhao D, Li X, Zhao L, Tong X. Licoricesaponin G2 ameliorates bleomycin-induced pulmonary fibrosis via targeting TNF-α signaling pathway and inhibiting the epithelial-mesenchymal transition. Front Pharmacol 2024; 15:1437231. [PMID: 39301567 PMCID: PMC11412005 DOI: 10.3389/fphar.2024.1437231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Background Pulmonary fibrosis (PF) emerges as a significant pulmonary sequelae in the convalescent phase of coronavirus disease 2019 (COVID-19), with current strategies neither specifically preventive nor therapeutic. Licoricesaponin G2 (LG2) displays a spectrum of natural activities, including antibacterial, anti-inflammatory, and antioxidant properties, and has been effectively used in treating various respiratory conditions. However, the potential protective effects of LG2 against PF remain underexplored. Methods Network analysis and molecular docking were conducted in combination to identify the core targets and pathways through which LG2 acts against PF. In the model of bleomycin (BLM)-induced C57 mice and transforming growth factor-β1 (TGF-β1)-induced A549 and MRC5 cells, techniques such as western blot (WB), quantitative Real-Time PCR (qPCR), Immunohistochemistry (IHC), Immunofluorescence (IF), and Transwell migration assays were utilized to analyze the expression of Epithelial-mesenchymal transition (EMT) and inflammation proteins. Based on the analysis above, we identified targets and potential mechanisms underlying LG2's effects against PF. Results Network analysis has suggested that the mechanism by which LG2 combats PF may involve the TNF-α pathway. Molecular docking studies have demonstrated a high binding affinity of LG2 to TNF-α and MMP9. Observations from the study indicated that LG2 may mitigate PF by modulating EMT and extracellular matrix (ECM) remodeling. It is proposed that the therapeutic effect is likely arises from the inhibition of inflammatory expression through regulation of the TNF-α pathway. Conclusion LG2 mitigates PF by suppressing TNF-α signaling pathway activation, modulating EMT, and remodeling the ECM. These results provide compelling evidence supporting the use of LG2 as a potential natural therapeutic agent for PF in clinical trials.
Collapse
Affiliation(s)
- Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ruonan Wei
- Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Yingying Yang
- China-Japan Friendship Hospital, National Center for Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Zhang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jun Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Zhou Y, Takahashi JI, Sakurai H. New Directions for Advanced Targeting Strategies of EGFR Signaling in Cancer. Biol Pharm Bull 2024; 47:895-903. [PMID: 38692865 DOI: 10.1248/bpb.b23-00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Epidermal growth factor (EGF)-EGF receptor (EGFR) signaling studies paved the way for a basic understanding of growth factor and oncogene signaling pathways and the development of tyrosine kinase inhibitors (TKIs). Due to resistance mutations and the activation of alternative pathways when cancer cells escape TKIs, highly diverse cell populations form in recurrent tumors through mechanisms that have not yet been fully elucidated. In this review, we summarize recent advances in EGFR basic research on signaling networks and intracellular trafficking that may clarify the novel mechanisms of inhibitor resistance, discuss recent clinical developments in EGFR-targeted cancer therapy, and offer novel strategies for cancer drug development.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Jun-Ichiro Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
6
|
Encarnación-Rosado J, Sohn ASW, Biancur DE, Lin EY, Osorio-Vasquez V, Rodrick T, González-Baerga D, Zhao E, Yokoyama Y, Simeone DM, Jones DR, Parker SJ, Wild R, Kimmelman AC. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. NATURE CANCER 2024; 5:85-99. [PMID: 37814010 PMCID: PMC10824664 DOI: 10.1038/s43018-023-00647-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.
Collapse
Affiliation(s)
- Joel Encarnación-Rosado
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas E Biancur
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victoria Osorio-Vasquez
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tori Rodrick
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Diana González-Baerga
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Diane M Simeone
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, CA, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
8
|
Xu J, Zeng Y, Yu C, Xu S, Tang L, Zeng X, Huang Y, Sun Z, Xu B, Yu T. Visualization of the relationship between fungi and cancer from the perspective of bibliometric analysis. Heliyon 2023; 9:e18592. [PMID: 37529342 PMCID: PMC10388209 DOI: 10.1016/j.heliyon.2023.e18592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
The relationship between cancer and microorganisms has been extensively studied, with bacteria receiving more attention than fungi. However, fungi have been shown to play a significant role in cancer development and progression. Understanding the underlying mechanisms is crucial for identifying new avenues in prevention and treatment. To evaluate the current state of research on fungi and cancer, we conducted a comprehensive bibliometric analysis. Using the Web of Science Core Collection database, we searched for English-language articles published between 1998 and 2022. Analyzing the resulting publication data, we identified trends, patterns, and research gaps. Our analysis encompassed co-authorship networks, citation analysis, and keyword co-occurrence analysis. With 8283 publications identified, averaging 331.32 publications per year, our findings highlight China, the United States, India, Japan, and Germany as the top contributing countries. The Chinese Academy of Sciences, Sun Yat-Sen University, and University of São Paulo emerged as the most productive institutions. Key themes in the literature included "cancer," "cytotoxicity," "apoptosis," "metabolites," and "fungus." Recent trends indicate increased interest in keywords such as "green synthesis," "molecular docking," "anticancer activity," "antibacterial," "anticancer," and "silver nanoparticles." Our study provides a comprehensive assessment of the current research landscape in the field of fungi and cancer, offering insights into collaborative networks, research directions, and emerging hotspots. The growing publication rate demonstrates the rising interest in the topic, while identifying leading countries, institutions, and research themes serves as a valuable resource for researchers, policymakers, and funders interested in supporting investigations on fungi-derived compounds as potential anti-cancer agents.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Ying Zeng
- Affiliated People Hospital of Nanchang University, Nanchang 330000, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| |
Collapse
|
9
|
Jing Z, Li Y, Ma Y, Zhang X, Liang X, Zhang X. Leverage biomaterials to modulate immunity for type 1 diabetes. Front Immunol 2022; 13:997287. [PMID: 36405706 PMCID: PMC9667795 DOI: 10.3389/fimmu.2022.997287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2024] Open
Abstract
The pathogeny of type 1 diabetes (T1D) is mainly provoked by the β-cell loss due to the autoimmune attack. Critically, autoreactive T cells firsthand attack β-cell in islet, that results in the deficiency of insulin in bloodstream and ultimately leads to hyperglycemia. Hence, modulating immunity to conserve residual β-cell is a desirable way to treat new-onset T1D. However, systemic immunosuppression makes patients at risk of organ damage, infection, even cancers. Biomaterials can be leveraged to achieve targeted immunomodulation, which can reduce the toxic side effects of immunosuppressants. In this review, we discuss the recent advances in harness of biomaterials to immunomodulate immunity for T1D. We investigate nanotechnology in targeting delivery of immunosuppressant, biological macromolecule for β-cell specific autoreactive T cell regulation. We also explore the biomaterials for developing vaccines and facilitate immunosuppressive cells to restore immune tolerance in pancreas.
Collapse
Affiliation(s)
- Zhangyan Jing
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozhou Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Guo G, Gong K, Beckley N, Zhang Y, Yang X, Chkheidze R, Hatanpaa KJ, Garzon-Muvdi T, Koduru P, Nayab A, Jenks J, Sathe AA, Liu Y, Xing C, Wu SY, Chiang CM, Mukherjee B, Burma S, Wohlfeld B, Patel T, Mickey B, Abdullah K, Youssef M, Pan E, Gerber DE, Tian S, Sarkaria JN, McBrayer SK, Zhao D, Habib AA. EGFR ligand shifts the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastoma by suppressing invasion through BIN3 upregulation. Nat Cell Biol 2022; 24:1291-1305. [PMID: 35915159 PMCID: PMC9389625 DOI: 10.1038/s41556-022-00962-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/14/2022] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models. Ligand-activated EGFR promotes proliferation and surprisingly suppresses invasion by upregulating BIN3, which inhibits a DOCK7-regulated Rho GTPase pathway, resulting in small hyperproliferating non-invasive tumours and improved survival. Data from The Cancer Genome Atlas reveal that in EGFR-amplified glioblastomas, a low level of EGFR ligands confers a worse prognosis, whereas a high level of EGFR ligands confers an improved prognosis. Thus, increased EGFR ligand levels shift the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastomas by suppressing invasion. The tumour-suppressive function of EGFR can be activated therapeutically using tofacitinib, which suppresses invasion by increasing EGFR ligand levels and upregulating BIN3.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Basic Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arifa Nayab
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer Jenks
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bryan Wohlfeld
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Toral Patel
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Mickey
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kalil Abdullah
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Youssef
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Pan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shulan Tian
- Department of Quantitative Heath Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samuel K McBrayer
- Department of Pediatrics and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|