• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4678537)   Today's Articles (11329)
For: Unke OT, Chmiela S, Gastegger M, Schütt KT, Sauceda HE, Müller KR. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nat Commun 2021;12:7273. [PMID: 34907176 PMCID: PMC8671403 DOI: 10.1038/s41467-021-27504-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023]  Open
Number Cited by Other Article(s)
1
Pultar F, Thürlemann M, Gordiy I, Doloszeski E, Riniker S. Neural Network Potential with Multiresolution Approach Enables Accurate Prediction of Reaction Free Energies in Solution. J Am Chem Soc 2025;147:6835-6856. [PMID: 39961342 DOI: 10.1021/jacs.4c17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
2
Simeon G, Mirarchi A, Pelaez RP, Galvelis R, De Fabritiis G. Broadening the Scope of Neural Network Potentials through Direct Inclusion of Additional Molecular Attributes. J Chem Theory Comput 2025;21:1831-1837. [PMID: 39933873 DOI: 10.1021/acs.jctc.4c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
3
Poltavsky I, Puleva M, Charkin-Gorbulin A, Fonseca G, Batatia I, Browning NJ, Chmiela S, Cui M, Frank JT, Heinen S, Huang B, Käser S, Kabylda A, Khan D, Müller C, Price AJA, Riedmiller K, Töpfer K, Ko TW, Meuwly M, Rupp M, Csányi G, Anatole von Lilienfeld O, Margraf JT, Müller KR, Tkatchenko A. Crash testing machine learning force fields for molecules, materials, and interfaces: molecular dynamics in the TEA challenge 2023. Chem Sci 2025;16:3738-3754. [PMID: 39911337 PMCID: PMC11791520 DOI: 10.1039/d4sc06530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]  Open
4
Poltavsky I, Charkin-Gorbulin A, Puleva M, Fonseca G, Batatia I, Browning NJ, Chmiela S, Cui M, Frank JT, Heinen S, Huang B, Käser S, Kabylda A, Khan D, Müller C, Price AJA, Riedmiller K, Töpfer K, Ko TW, Meuwly M, Rupp M, Csányi G, von Lilienfeld OA, Margraf JT, Müller KR, Tkatchenko A. Crash testing machine learning force fields for molecules, materials, and interfaces: model analysis in the TEA Challenge 2023. Chem Sci 2025;16:3720-3737. [PMID: 39935506 PMCID: PMC11809572 DOI: 10.1039/d4sc06529h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/25/2024] [Indexed: 02/13/2025]  Open
5
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025;27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
6
Kang S. How graph neural network interatomic potentials extrapolate: Role of the message-passing algorithm. J Chem Phys 2024;161:244102. [PMID: 39713997 DOI: 10.1063/5.0234287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]  Open
7
Maennel H, Unke OT, Müller KR. Complete and Efficient Covariants for Three-Dimensional Point Configurations with Application to Learning Molecular Quantum Properties. J Phys Chem Lett 2024;15:12513-12519. [PMID: 39670428 DOI: 10.1021/acs.jpclett.4c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
8
Wu Y, Xia J, Zhang Y, Jiang B. Simple and Efficient Equivariant Message-Passing Neural Network Model for Non-local Potential Energy Surfaces. J Phys Chem A 2024;128:11061-11067. [PMID: 39665419 DOI: 10.1021/acs.jpca.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
9
Kulichenko M, Nebgen B, Lubbers N, Smith JS, Barros K, Allen AEA, Habib A, Shinkle E, Fedik N, Li YW, Messerly RA, Tretiak S. Data Generation for Machine Learning Interatomic Potentials and Beyond. Chem Rev 2024;124:13681-13714. [PMID: 39572011 DOI: 10.1021/acs.chemrev.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
10
Röcken S, Burnet AF, Zavadlav J. Predicting solvation free energies with an implicit solvent machine learning potential. J Chem Phys 2024;161:234101. [PMID: 39679504 DOI: 10.1063/5.0235189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]  Open
11
Hölzer C, Oerder R, Grimme S, Hamaekers J. ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training. J Chem Inf Model 2024;64:8909-8925. [PMID: 39565928 DOI: 10.1021/acs.jcim.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
12
Sharma P, Chowdhury PR, Jain A, Patwari GN. Machine Learned Potential Enables Molecular Dynamics Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds. J Phys Chem A 2024;128:10137-10142. [PMID: 39550764 DOI: 10.1021/acs.jpca.4c04703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
13
Cheng X, Wu C, Xu J, Han Y, Xie W, Hu P. Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis. PRECISION CHEMISTRY 2024;2:570-586. [PMID: 39611023 PMCID: PMC11600352 DOI: 10.1021/prechem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/30/2024]
14
Chen Y, Yan W, Wang Z, Wu J, Xu X. Constructing Accurate and Efficient General-Purpose Atomistic Machine Learning Model with Transferable Accuracy for Quantum Chemistry. J Chem Theory Comput 2024;20:9500-9511. [PMID: 39480759 DOI: 10.1021/acs.jctc.4c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
15
Tang Z, Li H, Lin P, Gong X, Jin G, He L, Jiang H, Ren X, Duan W, Xu Y. A deep equivariant neural network approach for efficient hybrid density functional calculations. Nat Commun 2024;15:8815. [PMID: 39394190 PMCID: PMC11470148 DOI: 10.1038/s41467-024-53028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]  Open
16
Eastman P, Pritchard BP, Chodera JD, Markland TE. Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning. J Chem Theory Comput 2024;20:8583-8593. [PMID: 39318326 PMCID: PMC11753618 DOI: 10.1021/acs.jctc.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
17
Zaporozhets I, Musil F, Kapil V, Clementi C. Accurate nuclear quantum statistics on machine-learned classical effective potentials. J Chem Phys 2024;161:134102. [PMID: 39352405 DOI: 10.1063/5.0226764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]  Open
18
Kubečka J, Ayoubi D, Tang Z, Knattrup Y, Engsvang M, Wu H, Elm J. Accurate modeling of the potential energy surface of atmospheric molecular clusters boosted by neural networks. ENVIRONMENTAL SCIENCE. ADVANCES 2024;3:1438-1451. [PMID: 39176037 PMCID: PMC11334116 DOI: 10.1039/d4va00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
19
Zhu Y, Peng J, Xu C, Lan Z. Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2024;15:9601-9619. [PMID: 39270134 DOI: 10.1021/acs.jpclett.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
20
Joll K, Schienbein P, Rosso KM, Blumberger J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Nat Commun 2024;15:8192. [PMID: 39294144 PMCID: PMC11411082 DOI: 10.1038/s41467-024-52491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]  Open
21
Yang Z, Zhao YM, Wang X, Liu X, Zhang X, Li Y, Lv Q, Chen CYC, Shen L. Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification. Nat Commun 2024;15:8148. [PMID: 39289379 PMCID: PMC11408520 DOI: 10.1038/s41467-024-52378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]  Open
22
Hou P, Tian Y, Meng X. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials. Chemistry 2024;30:e202401373. [PMID: 38877181 DOI: 10.1002/chem.202401373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
23
Glick ZL, Metcalf DP, Glick CS, Spronk SA, Koutsoukas A, Cheney DL, Sherrill CD. A physics-aware neural network for protein-ligand interactions with quantum chemical accuracy. Chem Sci 2024;15:13313-13324. [PMID: 39183910 PMCID: PMC11339967 DOI: 10.1039/d4sc01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024]  Open
24
van Gerwen P, Briling KR, Bunne C, Somnath VR, Laplaza R, Krause A, Corminboeuf C. 3DReact: Geometric Deep Learning for Chemical Reactions. J Chem Inf Model 2024;64:5771-5785. [PMID: 39007724 PMCID: PMC11323278 DOI: 10.1021/acs.jcim.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
25
Frank JT, Unke OT, Müller KR, Chmiela S. A Euclidean transformer for fast and stable machine learned force fields. Nat Commun 2024;15:6539. [PMID: 39107296 PMCID: PMC11303804 DOI: 10.1038/s41467-024-50620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/10/2024] [Indexed: 08/10/2024]  Open
26
Plé T, Adjoua O, Lagardère L, Piquemal JP. FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials. J Chem Phys 2024;161:042502. [PMID: 39051830 DOI: 10.1063/5.0217688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]  Open
27
Biriukov D, Vácha R. Pathways to a Shiny Future: Building the Foundation for Computational Physical Chemistry and Biophysics in 2050. ACS PHYSICAL CHEMISTRY AU 2024;4:302-313. [PMID: 39069976 PMCID: PMC11274290 DOI: 10.1021/acsphyschemau.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/30/2024]
28
Slootman E, Poltavsky I, Shinde R, Cocomello J, Moroni S, Tkatchenko A, Filippi C. Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark. J Chem Theory Comput 2024;20:6020-6027. [PMID: 39003522 PMCID: PMC11270822 DOI: 10.1021/acs.jctc.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/15/2024]
29
Fallani A, Medrano Sandonas L, Tkatchenko A. Inverse mapping of quantum properties to structures for chemical space of small organic molecules. Nat Commun 2024;15:6061. [PMID: 39025883 PMCID: PMC11258234 DOI: 10.1038/s41467-024-50401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/01/2024] [Indexed: 07/20/2024]  Open
30
Atz K, Nippa DF, Müller AT, Jost V, Anelli A, Reutlinger M, Kramer C, Martin RE, Grether U, Schneider G, Wuitschik G. Geometric deep learning-guided Suzuki reaction conditions assessment for applications in medicinal chemistry. RSC Med Chem 2024;15:2310-2321. [PMID: 39026644 PMCID: PMC11253849 DOI: 10.1039/d4md00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/25/2024] [Indexed: 07/20/2024]  Open
31
Medrano Sandonas L, Van Rompaey D, Fallani A, Hilfiker M, Hahn D, Perez-Benito L, Verhoeven J, Tresadern G, Kurt Wegner J, Ceulemans H, Tkatchenko A. Dataset for quantum-mechanical exploration of conformers and solvent effects in large drug-like molecules. Sci Data 2024;11:742. [PMID: 38972891 PMCID: PMC11228031 DOI: 10.1038/s41597-024-03521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]  Open
32
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
33
Yang Y, Zhang S, Ranasinghe KD, Isayev O, Roitberg AE. Machine Learning of Reactive Potentials. Annu Rev Phys Chem 2024;75:371-395. [PMID: 38941524 DOI: 10.1146/annurev-physchem-062123-024417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
34
Pelaez RP, Simeon G, Galvelis R, Mirarchi A, Eastman P, Doerr S, Thölke P, Markland TE, De Fabritiis G. TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations. J Chem Theory Comput 2024;20:4076-4087. [PMID: 38743033 DOI: 10.1021/acs.jctc.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
35
Pelaez RP, Simeon G, Galvelis R, Mirarchi A, Eastman P, Doerr S, Thölke P, Markland TE, De Fabritiis G. TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations. ARXIV 2024:arXiv:2402.17660v3. [PMID: 38463504 PMCID: PMC10925388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
36
Que ZX, Li SZ, Huang B, Yang ZX, Zhang WB. Ultra-flat bands at large twist angles in group-V twisted bilayer materials. J Chem Phys 2024;160:194710. [PMID: 38767261 DOI: 10.1063/5.0197757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]  Open
37
Wang G, Wang C, Zhang X, Li Z, Zhou J, Sun Z. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations. iScience 2024;27:109673. [PMID: 38646181 PMCID: PMC11033164 DOI: 10.1016/j.isci.2024.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]  Open
38
Dombrowski AK, Gerken JE, Muller KR, Kessel P. Diffeomorphic Counterfactuals With Generative Models. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024;46:3257-3274. [PMID: 38055368 DOI: 10.1109/tpami.2023.3339980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
39
Zhang S, Makoś MZ, Jadrich RB, Kraka E, Barros K, Nebgen BT, Tretiak S, Isayev O, Lubbers N, Messerly RA, Smith JS. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat Chem 2024;16:727-734. [PMID: 38454071 PMCID: PMC11087274 DOI: 10.1038/s41557-023-01427-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024]
40
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
41
Chen M, Jiang X, Zhang L, Chen X, Wen Y, Gu Z, Li X, Zheng M. The emergence of machine learning force fields in drug design. Med Res Rev 2024;44:1147-1182. [PMID: 38173298 DOI: 10.1002/med.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
42
Jin H, Merz KM. Modeling Zinc Complexes Using Neural Networks. J Chem Inf Model 2024;64:3140-3148. [PMID: 38587510 PMCID: PMC11040731 DOI: 10.1021/acs.jcim.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
43
Zills F, Schäfer MR, Segreto N, Kästner J, Holm C, Tovey S. Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly. J Phys Chem B 2024;128:3662-3676. [PMID: 38568231 DOI: 10.1021/acs.jpcb.3c07187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
44
Unke OT, Stöhr M, Ganscha S, Unterthiner T, Maennel H, Kashubin S, Ahlin D, Gastegger M, Medrano Sandonas L, Berryman JT, Tkatchenko A, Müller KR. Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments. SCIENCE ADVANCES 2024;10:eadn4397. [PMID: 38579003 PMCID: PMC11809612 DOI: 10.1126/sciadv.adn4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
45
Jin H, Merz KM. Modeling Fe(II) Complexes Using Neural Networks. J Chem Theory Comput 2024;20:2551-2558. [PMID: 38439716 PMCID: PMC10976644 DOI: 10.1021/acs.jctc.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
46
Käser S, Meuwly M. Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces. J Phys Chem Lett 2024:3419-3424. [PMID: 38506827 DOI: 10.1021/acs.jpclett.3c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
47
Li H, Tang Z, Fu J, Dong WH, Zou N, Gong X, Duan W, Xu Y. Deep-Learning Density Functional Perturbation Theory. PHYSICAL REVIEW LETTERS 2024;132:096401. [PMID: 38489617 DOI: 10.1103/physrevlett.132.096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
48
Célerse F, Wodrich MD, Vela S, Gallarati S, Fabregat R, Juraskova V, Corminboeuf C. From Organic Fragments to Photoswitchable Catalysts: The OFF-ON Structural Repository for Transferable Kernel-Based Potentials. J Chem Inf Model 2024;64:1201-1212. [PMID: 38319296 PMCID: PMC10900300 DOI: 10.1021/acs.jcim.3c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
49
Sidorov P, Tsuji N. A Primer on 2D Descriptors in Selectivity Modeling for Asymmetric Catalysis. Chemistry 2024;30:e202302837. [PMID: 38010242 DOI: 10.1002/chem.202302837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
50
Witman MD, Bartelt NC, Ling S, Guan PW, Way L, Allendorf MD, Stavila V. Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data. J Phys Chem Lett 2024;15:1500-1506. [PMID: 38299540 DOI: 10.1021/acs.jpclett.3c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
PrevPage 1 of 3 123Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA