1
|
Zhu M, Jiang S, Li X, Zhong W, Cao W, Luo Q, Wu A, Wu G, Zhang Q. TP8, A Novel Chondroinductive Peptide, Significantly Promoted Neo-Cartilage Repair without Activating Bone Formation. Adv Healthc Mater 2024:e2401752. [PMID: 39690790 DOI: 10.1002/adhm.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/16/2024] [Indexed: 12/19/2024]
Abstract
The repair of large cartilage defects remains highly challenging in the fields of orthopedics and oral and maxillofacial surgery. A chondroinductive agent is promising to activate endogenous mesenchymal stem cells (MSCs) so as to facilitate cartilage regeneration. In this study, we analyze the crystallographic data of the critical binding domain of transforming growth factor β3 (TGF-β3) with its type II receptor and successfully develop a novel chondroinductive peptide - TGF-β3-derived peptide No. 8 (TP8) that can induce an ectopic cartilage formation without obvious bone formation. TP8 shows a comparable capacity as TGF-β3 in enhancing glycosaminoglycans (GAGs) and proteoglycans (PGs) secretion in the micromass of bone marrow MSCs (BMSCs) and promoting the expression of chondrogenic markers in comparison with the Control group. TP8 induces a significantly higher expression of the SRY-box transcription factor 9 (Sox9) gene than TGF-β3. Moreover, TP8 significantly upregulates the phosphorylation of Smad1/5 but not MAPK/JNK or Smad 2/3. The knockdown of low-density lipoprotein receptor (LDLR) -related protein-1 (Lrp1), a transmembrane endocytosis receptor, nullifies the TP8-induced Sox9 expression. In the critical-size cartilage defects in rabbit medial femoral condyles, TP8 can induce neo-cartilage formation with a significantly thicker deep zone in comparison with the TGF-β3 and Control. These findings suggest a promising application potential of TP8 in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, the Netherlands
| | - Siqing Jiang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
| | - Xingyang Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
| | - Wenchao Zhong
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HZ, Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, 1081 HV, Netherlands
| | - Wei Cao
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
| | - Qianting Luo
- Department of maxillofacial surgery, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Antong Wu
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
| | - Gang Wu
- Savid School of Stomatology, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510180, China
| |
Collapse
|
2
|
Lovisa S, Vetrano S. TWISTed fibroblasts: New drivers of intestinal fibrosis in Crohn's disease. Heliyon 2024; 10:e40604. [PMID: 39654763 PMCID: PMC11626011 DOI: 10.1016/j.heliyon.2024.e40604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Fibrosis is the pathological consequence of chronic inflammation. In Crohn's disease (CD), fibrostenotic complications occur with 50-70 % frequency as a failure to properly repair the tissue damage. Intestinal stenosis requires surgical intervention and relapses in most patients. Mesenchymal cells encompassed of heterogeneous cell subsets orchestrate this complex process. The lack of a full characterization of the stromal diversity and function in CD has consequently slowed the development of anti-fibrotic targets. Two recent studies align together demonstrating FAP+TWIST1+ fibroblasts as the primary mesenchymal population driving intestinal fibrosis in CD. Genetic and pharmacological targeting of Twist1 in mouse models proved the functional role of Fap+Twist1+ fibroblasts and indicate the use of the Twist1 inhibitor harmine as a potential therapeutic strategy to revert fibrosis.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Vetrano
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
3
|
Perpelek M, Tamburaci S, Karakasli A, Tihminlioglu F. Fabrication of Bioactive Helix aspersa Extract-Loaded Chitosan-Based Bilayer Wound Dressings for Skin Tissue Regeneration. ACS OMEGA 2024; 9:48070-48088. [PMID: 39676965 PMCID: PMC11635475 DOI: 10.1021/acsomega.4c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, there has been a notable shift toward exploring plant and animal extracts for the fabrication of tissue engineering structures that seamlessly integrate with the human body, providing both biological compatibility and physical reinforcement. In this particular investigation, we synthesized bilayer wound dressings by incorporating snail (Helix aspersa) secretions, comprising mucus and slime, into chitosan matrices via lyophilization and electrospinning methodologies. A nanofiber layer was integrated on top of the porous structure to mimic the epidermal layer for keratinocyte activity as well as acting as an antibacterial barrier against possible infection, whereas a porous structure was designed to mimic the dermal microenvironment for fibroblast activity. Comprehensive assessments encompassing physical characterization, antimicrobial efficacy, in vitro bioactivity, and wound healing potential were conducted on these bilayer dressings. Our findings revealed that the mucus and slime extract loading significantly altered the morphology in terms of nanofiber diameter and average pore size. Snail extracts loaded on a nanofiber layer of bilayer dressings showed slight antimicrobial activity against Staphylococcus epidermidis and Escherichia coli. An in vitro release study of slime extract loaded in the nanofiber layer indicated that both groups 1 and 2 showed a burst release up to 6 h, and a sustained release was observed up to 96 h for group 1, whereas slime extract release from group 2 continued up to 72 h. In vitro bioactivity assays unveiled the favorable impact of mucus and slime extracts on NIH/3T3 fibroblast and HS2 keratinocyte cell attachment, proliferation, and glycosaminoglycan synthesis. Furthermore, our investigations utilizing the in vitro scratch assay showcased the proliferative and migratory effects of mucus and slime extracts on skin cells. Collectively, our results underscore the promising prospects of bioactive snail secretion-loaded chitosan constructs for facilitating skin regeneration and advancing wound healing therapies.
Collapse
Affiliation(s)
- Merve Perpelek
- Department
of Biomechanics, Dokuz Eylul University, Balcova, İzmir 35330, Turkey
| | - Sedef Tamburaci
- Department
of Chemical Engineering, İzmir Institute
of Technology, Urla, İzmir 35430, Turkey
| | - Ahmet Karakasli
- Department
of Orthopedics and Traumatology, Dokuz Eylul
University, Balcova, İzmir 35330, Turkey
| | - Funda Tihminlioglu
- Department
of Chemical Engineering, İzmir Institute
of Technology, Urla, İzmir 35430, Turkey
| |
Collapse
|
4
|
White M, Arif-Pardy J, Bloise E, Connor KL. Identification of novel nutrient sensitive human yolk sac functions required for embryogenesis. Sci Rep 2024; 14:29734. [PMID: 39613845 DOI: 10.1038/s41598-024-81061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
The human yolk sac (hYS) is essential for embryo nutrient biosynthesis/transport and development. However, there lacks a comprehensive study of hYS nutrient-gene interactions. Here we performed a secondary analysis of hYS transcript profiles (n = 9 samples) to identify nutrient-sensitive hYS genes and regulatory networks, including those that associate with adverse perinatal phenotypes with embryonic origins. Overall, 14.8% highly expressed hYS genes are nutrient-sensitive; the most common nutrient cofactors for hYS genes are metals and B vitamins. Functional analysis of highly expressed hYS genes reveals that nutrient-sensitive hYS genes are more likely to be involved in metabolic functions than hYS genes that are not nutrient-sensitive. Through nutrient-sensitive gene network analysis, we find that four nutrient-sensitive transcription regulators in the hYS (with zinc and/or magnesium cofactors) are predicted to collectively regulate 30.9% of highly expressed hYS genes. Lastly, we identify 117 nutrient-sensitive hYS genes that associate with an adverse perinatal outcome with embryonic origins. Among these, the greatest number of nutrient-sensitive hYS genes are linked to congenital heart defects (n = 54 genes), followed by microcephaly (n = 37). Collectively, our study characterises nutrient-sensitive hYS functions and improves understanding of the ways in which nutrient-gene interactions in the hYS may influence both typical and pathological development.
Collapse
Affiliation(s)
- Marina White
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Jayden Arif-Pardy
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Enrrico Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Li JY, Dai SS, Li ZY, Guo QY, Liu F. Osteogenic mechanism of deciduous teeth periodontal ligament stem cells in inflammatory environment. Braz J Med Biol Res 2024; 57:e13606. [PMID: 39383381 PMCID: PMC11463910 DOI: 10.1590/1414-431x2024e13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
This study aimed to illustrate the biological behavior and changes in cell function during the progression of apical periodontitis in deciduous teeth and to explore the underlying molecular mechanism. Deciduous teeth periodontal ligament stem cells (DePDLSCs) were derived and their identity was confirmed. The viability, inflammation, and osteogenic ability of cells were tested by exposing them to various concentrations of lipopolysaccharide (LPS) (0-100 μg/mL) using the cell counting kit-8 (CCK-8) assay, reverse transcription polymerase chain reaction (real-time PCR), alkaline phosphatase (ALP) staining, and ALP activity assay. In addition, osteogenic-induced cells with and without 10 μg/mL LPS were harvested for high-throughput sequencing. Based on sequencing data, proinflammatory factors and ALP expression were measured after interference with the PI3K-AKT signaling pathway activator, 740Y-P. LPS biphasically affected the proliferation and osteogenesis of DePDLSCs. Low concentrations of LPS showed stimulatory effects, whereas inhibitory effects were observed at high concentrations. Sequencing analysis showed that the PI3K-AKT signaling pathway was significantly downregulated when DePDLSCs were treated with 10 μg/mL LPS. The LPS-induced inflammation and osteogenesis inhibition of DePDLSCs were partially rescued by 740Y-P treatment. In conclusion, LPS affected DePDLSCs proliferation and osteogenesis in a biphasic manner. Moderate activation of PI3K-AKT signaling pathway was beneficial for osteogenic differentiation and anti-inflammatory effect in DePDLSCs. This research may provide etiological probes for apical periodontitis and its treatment.
Collapse
Affiliation(s)
- Jin-yi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shan-shan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zheng-yang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qing-yu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Dadashi Ouranj Z, Hosseini S, Alipour A, Homaeigohar S, Azari S, Ghazizadeh L, Shokrgozar M, Thomas S, Irian S, Shahsavarani H. The potent osteo-inductive capacity of bioinspired brown seaweed-derived carbohydrate nanofibrous three-dimensional scaffolds. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:515-534. [PMID: 39219680 PMCID: PMC11358581 DOI: 10.1007/s42995-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zahra Dadashi Ouranj
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Leila Ghazizadeh
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Mohammadali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala India
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 19839-69411 Iran
- Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, 1533734716 Iran
| |
Collapse
|
7
|
Liang J, Wang J, Sui B, Tong Y, Chai J, Zhou Q, Zheng C, Wang H, Kong L, Zhang H, Bai Y. Ptip safeguards the epigenetic control of skeletal stem cell quiescence and potency in skeletogenesis. Sci Bull (Beijing) 2024; 69:2099-2113. [PMID: 38493069 DOI: 10.1016/j.scib.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Stem cells remain in a quiescent state for long-term maintenance and preservation of potency; this process requires fine-tuning regulatory mechanisms. In this study, we identified the epigenetic landscape along the developmental trajectory of skeletal stem cells (SSCs) in skeletogenesis governed by a key regulator, Ptip (also known as Paxip1, Pax interaction with transcription-activation domain protein-1). Our results showed that Ptip is required for maintaining the quiescence and potency of SSCs, and loss of Ptip in type II collagen (Col2)+ progenitors causes abnormal activation and differentiation of SSCs, impaired growth plate morphogenesis, and long bone dysplasia. We also found that Ptip suppressed the glycolysis of SSCs through downregulation of phosphoglycerate kinase 1 (Pgk1) by repressing histone H3 lysine 27 acetylation (H3K27ac) at the promoter region. Notably, inhibition of glycolysis improved the function of SSCs despite Ptip deficiency. To the best of our knowledge, this is the first study to establish an epigenetic framework based on Ptip, which safeguards skeletal stem cell quiescence and potency through metabolic control. This framework is expected to improve SSC-based treatments of bone developmental disorders.
Collapse
Affiliation(s)
- Jianfei Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yibo Tong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Haojian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430079, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
8
|
Li J, Fu L, Li Y, Sun W, Yi Y, Jia W, Li H, Liu H, Guo P, Wang Y, Shen Y, Zhang X, Lv Y, Qin B, Li W, Liu C, Liu L, Mazid MA, Lai Y, Esteban MA, Jiang Y, Wu L. A single-cell chromatin accessibility dataset of human primed and naïve pluripotent stem cell-derived teratoma. Sci Data 2024; 11:725. [PMID: 38956385 PMCID: PMC11220047 DOI: 10.1038/s41597-024-03558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.
Collapse
Affiliation(s)
- Jinxiu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Lixin Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Sun
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yao Yi
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Wenqi Jia
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Haiwei Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Pengcheng Guo
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Hangzhou, 310030, China
| | - Yue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuan Lv
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Baoming Qin
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yiwei Lai
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- 3DCStar lab, BGI, Shenzhen, 518083, China
| | - Miguel A Esteban
- BGI Research, Shenzhen, 518083, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- 3DCStar lab, BGI, Shenzhen, 518083, China
| | - Yu Jiang
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
9
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Venkatasubramanian D, Senevirathne G, Capellini TD, Craft AM. Leveraging single cell multiomic analyses to identify factors that drive human chondrocyte cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598666. [PMID: 38915712 PMCID: PMC11195167 DOI: 10.1101/2024.06.12.598666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cartilage plays a crucial role in skeletal development and function, and abnormal development contributes to genetic and age-related skeletal disease. To better understand how human cartilage develops in vivo , we jointly profiled the transcriptome and open chromatin regions in individual nuclei recovered from distal femurs at 2 fetal timepoints. We used these multiomic data to identify transcription factors expressed in distinct chondrocyte subtypes, link accessible regulatory elements with gene expression, and predict transcription factor-based regulatory networks that are important for growth plate or epiphyseal chondrocyte differentiation. We developed a human pluripotent stem cell platform for interrogating the function of predicted transcription factors during chondrocyte differentiation and used it to test NFATC2 . We expect new regulatory networks we uncovered using multiomic data to be important for promoting cartilage health and treating disease, and our platform to be a useful tool for studying cartilage development in vitro . Statement of Significance The identity and integrity of the articular cartilage lining our joints are crucial to pain-free activities of daily living. Here we identified a gene regulatory landscape of human chondrogenesis at single cell resolution, which is expected to open new avenues of research aimed at mitigating cartilage diseases that affect hundreds of millions of individuals world-wide.
Collapse
|
11
|
Zhang D, Xu D, Huang X, Wei Y, Tang F, Qin X, Liang W, Liang Z, Jin L, Wang H, Wang H. Puerarin-Loaded Electrospun Patches with Anti-Inflammatory and Pro-Collagen Synthesis Properties for Pelvic Floor Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308590. [PMID: 38509840 DOI: 10.1002/advs.202308590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/02/2024] [Indexed: 03/22/2024]
Abstract
Pelvic organ prolapse (POP) is one of the most common pelvic floor dysfunction disorders worldwide. The weakening of pelvic connective tissues initiated by excessive collagen degradation is a leading cause of POP. However, the patches currently used in the clinic trigger an unfavorable inflammatory response, which often leads to implantation failure and the inability to simultaneously reverse progressive collagen degradation. Therefore, to overcome the present challenges, a new strategy is applied by introducing puerarin (Pue) into poly(l-lactic acid) (PLLA) using electrospinning technology. PLLA improves the mechanical properties of the patch, while Pue offers intrinsic anti-inflammatory and pro-collagen synthesis effects. The results show that Pue is released from PLLA@Pue in a sustained manner for more than 20 days, with a total release rate exceeding 80%. The PLLA@Pue electrospun patches also show good biocompatibility and low cytotoxicity. The excellent anti-inflammatory and pro-collagen synthesis properties of the PLLA@Pue patch are demonstrated both in vitro in H2O2-stimulated mouse fibroblasts and in vivo in rat abdominal wall muscle defects. Therefore, it is believed that this multifunctional electrospun patch integrating anti-inflammatory and pro-collagen synthesis properties can overcome the limitations of traditional patches and has great prospects for efficient pelvic floor reconstruction.
Collapse
Affiliation(s)
- Di Zhang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Dong Xu
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaobo Huang
- Department of Ophthalmology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yingqi Wei
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fuxin Tang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiusen Qin
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Weiwen Liang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhongping Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| |
Collapse
|
12
|
Huang M, Zheng M, Song Q, Ma X, Zhang Q, Chen H, Jiang G, Zhou S, Chen H, Wang G, Dai C, Li S, Li P, Wang H, Zhang A, Huang Y, Chen J, Gao X. Comparative Proteomics Inspired Self-Stimulated Release Hydrogel Reinforces the Therapeutic Effects of MSC-EVs on Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311420. [PMID: 38157492 DOI: 10.1002/adma.202311420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/03/2024]
Abstract
The clinical application of extracellular vesicles (EVs)-based therapeutics continues to be challenging due to their rapid clearance, restricted retention, and low yields. Although hydrogel possesses the ability to impede physiological clearance and increase regional retention, it typically fails to effectively release the incorporated EVs, resulting in reduced accessibility and bioavailability. Here an intelligent hydrogel in which the release of EVs is regulated by the proteins on the EVs membrane is proposed. By utilizing the EVs membrane enzyme to facilitate hydrogel degradation, sustained retention and self-stimulated EVs release can be achieved at the administration site. To achieve this goal, the membrane proteins with matrix degrading activity in the mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are identified using comparative proteomics. After that, a hydrogel comprised of self-assembled peptides that are susceptible to degradation by the membrane enzymes present in MSC-EVs is designed and synthesized. After intranasal administration, this peptide hydrogel facilitates sustained and thermo-sensitive release of MSC-EVs, thereby extending the retention of the MSC-EVs and substantially enhancing their potential for treating Alzheimer's disease. This research presents a comparative proteomics-driven approach to intelligent hydrogel design, which holds the capacity to significantly enhance the applicability of EVs in clinical settings.
Collapse
Affiliation(s)
- Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyi Ma
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Songlei Zhou
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengxiang Dai
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 102600, China
| | - Suke Li
- Cellular Biomedicine Group Inc, Shanghai, 201210, China
| | - Ping Li
- Cellular Biomedicine Group Inc, Shanghai, 201210, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ao Zhang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Chen
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
13
|
Li YX, Liang XL, Liu J, Ma YJ. Assessment of Osteoporosis at the Lumbar Spine Using Ultrashort Echo Time Magnetization Transfer (UTE-MT) MRI. J Magn Reson Imaging 2024; 59:1285-1298. [PMID: 37470693 PMCID: PMC10799192 DOI: 10.1002/jmri.28910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Bone collagen-matrix contributes to the mechanical properties of bone by imparting tensile strength and elasticity, which can be indirectly quantified by ultrashort echo time magnetization transfer ratio (UTE-MTR) to assess osteoporosis. PURPOSE To evaluate osteoporosis at the human lumbar spine using UTE-MTR. STUDY TYPE Prospective. POPULATION One hundred forty-eight-volunteers (age-range, 50-85; females, N = 90), including 81-normal bone density, 35-osteopenic, and 32-osteoporotic subjects. Ten additional healthy volunteers were recruited to study the intrasession reproducibility of the UTE-MT. FIELD STRENGTH/SEQUENCE 3T/UTE-MT, short repetition-time adiabatic inversion recovery prepared UTE (STAIR-UTE), and iterative decomposition of water-and-fat with echo-asymmetry and least-squares estimation (IDEAL-IQ). ASSESSMENT Fracture risk was calculated using Fracture-Risk-Assessment-Tool (FRAX). Region-of-interests (ROIs) were delineated on the trabecular area in the maps of bone-mineral-density, UTE-MTR, collagen-bound water proton-fraction (CBWPF), and bone-marrow fat fraction (BMFF). STATISTICAL TESTS Linear-regression and Bland-Altman analysis were performed to assess the reproducibility of UTE-MTR measurements in the different scans. UTE-MTR and BMFF were correlated with bone-mineral-density using Pearson's regression and with FRAX scores using nonlinear regression. The abilities of UTE-MTR, CBWPF, and BMFF to discriminate between the three patient subgroups were evaluated using receiver-operator-characteristic (ROC) analysis and area-under-the-curve (AUC). Decision-curve-analysis (DCA) and clinical-impact curves were used to evaluate the value of UTE-MTR in clinical diagnosis. The DeLong test was used to compare the ROC curves. P-value <0.05 was considered statistically significant. RESULTS Excellent reproducibility was obtained for the UTE-MT measurements. UTE-MTR strongly correlated with bone-mineral-density (r = 0.76) and FRAX scores (r = -0.77). UTE-MTR exhibited higher AUCs (≥0.723) than BMFF, indicating its superior ability to distinguish between the three patient subgroups. The DCA and clinical-impact curves confirmed the diagnostic value of UTE-MTR. UTE-MTR and CBWPF showed similar performance in correlation with bone-mineral-density and cohort classification. DATA CONCLUSION UTE-MTR strongly correlates with bone-mineral-density and FRAX and shows great potential in distinguishing between normal, osteopenic, and osteoporotic subjects. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yu-Xuan Li
- Shanxi Medical University, Taiyuan, China
| | - Xiao-Ling Liang
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - Jin Liu
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Zhu Y, Xiang W, He S, San Z, Liu W, Wu J, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Collagen I protects human keratinocytes HaCaT against UVB injury via restoring PINK1/parkin-mediated mitophagy. Arch Biochem Biophys 2024; 753:109905. [PMID: 38281543 DOI: 10.1016/j.abb.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Collagen I is a major component of extracellular matrix in human skin, and is also widely used in a variety of skin-care products. In this study, we investigated the modulatory roles of collagen I on human immortalized keratinocytes HaCaT, especially when cells were irradiated with UVB. Interestingly, the cells grown on plates coated by molecular collagen I, but not fibrillar collagen I, acquired certain resistance against UVB damages, as shown by increased survival and reduced apoptosis. The accumulation of dysfunctional mitochondria in UVB-treated cells was attenuated by molecular collagen I-coating. Interestingly, molecular collagen I rescued the loss of mitochondrial biogenesis in cells treated with UVB. Loss of PINK1/parkin-mediated mitophagy was dominant for the accumulation of dysfunctional mitochondria after UVB irradiation. Of note, cells cultured on molecular collagen I-precoated plates exhibited reserved mitophagy after UVB irradiation, as reflected by the enhanced protein level of PINK1/parkin, increased mitochondrial ubiquitin and the co-localization of lysosomes and mitochondria. Moreover, in UVB-treated cells, inhibiting mitophagy by Cyclosporin A, or by silencing PINK1 or parkin, disturbed the resolution of mitochondrial stress and reduced the protective effect of molecular collagen I, indicating that mitophagy is pivotal for the protection of collagen I against UVB damage in keratinocytes HaCaT. Collectively, this study reveals an unexpected protective role of collagen I, which facilitates mitophagy to rescue cells under UVB irradiation, providing a new direction for clinical application of collagen products.
Collapse
Affiliation(s)
- Yuying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wendie Xiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Sijun He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Zhao San
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jin Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
15
|
Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, Tan Z, Jie X. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1273541. [PMID: 38440328 PMCID: PMC10910430 DOI: 10.3389/fbioe.2024.1273541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: Bone defects remain a thorny challenge that clinicians have to face. At present, scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. Polylactic acid (PLA) has good thermoplasticity, processability, biocompatibility, and biodegradability, but the PLA is brittle and has poor osteogenic performance. Beta-tricalcium phosphate (β-TCP) has good mechanical properties and osteogenic induction properties, which can make up for the drawbacks of PLA. Methods: In this study, photocurable biodegradable polylactic acid (bio-PLA) was utilized as the raw material to prepare PLA/β-TCP slurries with varying β-TCP contents (β-TCP dosage at 0%, 10%, 20%, 30%, 35% of the PLA dosage, respectively). The PLA/β-TCP scaffolds were fabricated using liquid crystal display (LCD) light-curing 3D printing technology. The characterization of the scaffolds was assessed, and the biological activity of the scaffold with the optimal compressive strength was evaluated. The biocompatibility of the scaffold was assessed through CCK-8 assays, hemocompatibility assay and live-dead staining experiments. The osteogenic differentiation capacity of the scaffold on MC3T3-E1 cells was evaluated through alizarin red staining, alkaline phosphatase (ALP) detection, immunofluorescence experiments, and RT-qPCR assays. Results: The prepared scaffold possesses a three-dimensional network structure, and with an increase in the quantity of β-TCP, more β-TCP particles adhere to the scaffold surface. The compressive strength of PLA/β-TCP scaffolds exhibits a trend of initial increase followed by decrease with an increasing amount of β-TCP, reaching a maximum value of 52.1 MPa at a 10% β-TCP content. Degradation rate curve results indicate that with the passage of time, the degradation rate of the scaffold gradually increases, and the pH of the scaffold during degradation shows an alkaline tendency. Additionally, Live/dead staining and blood compatibility experiments suggest that the prepared PLA/β-TCP scaffold demonstrates excellent biocompatibility. CCK-8 experiments indicate that the PLA/β-TCP group promotes cell proliferation, and the prepared PLA/β-TCP scaffold exhibits a significant ability to enhance the osteogenic differentiation of MC3T3-E1 cells in vitro. Discussion: 3D printed LCD photocuring PLA/β-TCP scaffolds could improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy for developing bioactive implants in orthopedic applications.
Collapse
Affiliation(s)
- Boqun Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
- School of Intelligent Manufacturing, Dongguan Polytechnic, Dongguan, Guangdong, China
| | - Xiangling Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yongqiang Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Cansen Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhichao Tan
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Xiaohua Jie
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Yang X, Wu L, Li C, Li S, Hou W, Hao Y, Lu Y, Li L. Synergistic Amelioration of Osseointegration and Osteoimmunomodulation with a Microarc Oxidation-Treated Three-Dimensionally Printed Ti-24Nb-4Zr-8Sn Scaffold via Surface Activity and Low Elastic Modulus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3171-3186. [PMID: 38205810 DOI: 10.1021/acsami.3c16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomaterial scaffolds, including bone substitutes, have evolved from being primarily a biologically passive structural element to one in which material properties such as surface topography and chemistry actively direct bone regeneration by influencing stem cells and the immune microenvironment. Ti-6Al-4V(Ti6Al4V) implants, with a significantly higher elastic modulus than human bone, may lead to stress shielding, necessitating improved stability at the bone-titanium alloy implant interface. Ti-24Nb-4Zr-8Sn (Ti2448), a low elastic modulus β-type titanium alloy devoid of potentially toxic elements, was utilized in this study. We employed 3D printing technology to fabricate a porous scaffold structure to further decrease the structural stiffness of the implant to approximate that of cancellous bone. Microarc oxidation (MAO) surface modification technology is then employed to create a microporous structure and a hydrophilic oxide ceramic layer on the surface and interior of the scaffold. In vitro studies demonstrated that MAO treatment enhances the proliferation, adhesion, and osteogenesis capabilities on the scaffold surface. The chemical composition of the MAO-Ti2448 oxide layer is found to enhance the transcription and expression of osteogenic genes in bone mesenchymal stem cells (BMSCs), potentially related to the enrichment of Nb2O5 and SnO2 in the oxide layer. The MAO-Ti2448 scaffold, with its synergistic surface activity and low stiffness, significantly activates the anti-inflammatory macrophage phenotype, creating an immune microenvironment that promotes the osteogenic differentiation of BMSCs. In vivo experiments in a rabbit model demonstrated a significant improvement in the quantity and quality of the newly formed bone trabeculae within the scaffold under the contact osteogenesis pattern with a matched elastic modulus. These trabeculae exhibit robust connections to the external structure of the scaffold, accelerating the formation of an interlocking structure between the bone and implant and providing higher implantation stability. These findings suggest that the MAO-Ti2448 scaffold has significant potential as a bone defect repair material by regulating osteoimmunomodulation and osteogenesis to enhance osseointegration. This study demonstrates an optional strategy that combines the mechanism of reducing the elastic modulus with surface modification treatment, thereby extending the application scope of β-type titanium alloy.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| | - Lijun Wu
- Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Cheng Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Yiping Lu
- Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| |
Collapse
|
17
|
Zhou T, Zhou H, Wang F, Zhang P, Shang J, Shi L. An injectable carboxymethyl chitosan hydrogel scaffold formed via coordination bond for antibacterial and osteogenesis in osteomyelitis. Carbohydr Polym 2024; 324:121466. [PMID: 37985077 DOI: 10.1016/j.carbpol.2023.121466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023]
Abstract
The intricate, hostile, and diverse nature of osteomyelitis (OM) poses a challenge for complete bacterial eradication and osteogenesis promotion via conventional treatment. Recently, functional hydrogels exhibiting antibacterial and osteogenic properties emerge as a promising avenue for OM wound healing in clinical practice. However, the preparation procedures and associated costs on cytokine and cell therapies for certain functional hydrogels can be complex and prohibitively expensive. In our research, a hybrid hydrogel dressing has been formulated utilizing carboxymethyl chitosan (CMCS) as the base material, and designed with inherent antibacterial, adhesion, proliferation, and differentiation characteristics, showing promise as a candidate for eradicating infection and promoting bone regeneration. The hybrid hydrogel is composed of interconnected networks of Fe3+-induced self-assembled CMCS and the antibacterial drug ciprofloxacin (CIP), resulting in excellent injectability and moldability. Notably, the CMCS/Fe3+/CIP hybrid hydrogel is capable of regulating antibacterial responses and stimulating osteogenesis in infected microenvironments without additional additives. This injectable antibacterial and osteogenic-promoting hydrogel establish a high-potential platform for low-cost, safe and effective treatment of OM by expediting the initial stages of infected bone wound repair.
Collapse
Affiliation(s)
- Tianyi Zhou
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Shenzhen University General Hospital, Shenzhen 518055, China
| | - Haiyan Zhou
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Fei Wang
- Shenzhen University General Hospital, Shenzhen 518055, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China.
| | - Jian Shang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Shenzhen University General Hospital, Shenzhen 518055, China.
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Lin X, Hu J, Zhou B, Zhang Q, Jiang Y, Wang O, Xia W, Xing X, Li M. Genotype-phenotype relationship and comparison between eastern and western patients with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:67-77. [PMID: 37270749 PMCID: PMC10776744 DOI: 10.1007/s40618-023-02123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE To evaluate the genotypic and phenotypic relationship in a large cohort of OI patients and to compare the differences between eastern and western OI cohorts. METHODS A total of 671 OI patients were included. Pathogenic mutations were identified, phenotypic information was collected, and relationships between genotypes and phenotypes were analyzed. Literature about western OI cohorts was searched, and differences were compared between eastern and western OI cohorts. RESULTS A total of 560 OI patients were identified as carrying OI pathogenic mutations, and the positive detection rate of disease-causing gene mutations was 83.5%. Mutations in 15 OI candidate genes were identified, with COL1A1 (n = 308, 55%) and COL1A2 (n = 164, 29%) being the most common mutations, and SERPINF1 and WNT1 being the most common biallelic variants. Of the 414 probands, 48.8, 16.9, 29.2 and 5.1% had OI types I, III, IV and V, respectively. Peripheral fracture was the most common phenotype (96.6%), and femurs (34.7%) were most commonly affected. Vertebral compression fracture was observed in 43.5% of OI patients. Biallelic or COL1A2 mutation led to more bone deformities and poorer mobility than COL1A1 mutation (all P < 0.05). Glycine substitution of COL1A1 or COL1A2 or biallelic variants led to more severe phenotypes than haploinsufficiency of collagen type I α chains, which induced the mildest phenotypes. Although the gene mutation spectrum varied among countries, the fracture incidence was similar between eastern and western OI cohorts. CONCLUSION The findings are valuable for accurate diagnosis and treatment of OI, mechanism exploration and prognosis judgment. Genetic profiles of OI may vary among races, but the mechanism needs to be explored.
Collapse
Affiliation(s)
- X Lin
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - J Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - B Zhou
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Q Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - X Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
Alshamsi MAH, Mosa KA, Khan AA, Mousa M, Ali MA, Soliman SSM, Semreen MH. Biosynthesized Silver Nanoparticles from Cyperus conglomeratus Root Extract Inhibit Osteogenic Differentiation of Immortalized Mesenchymal Stromal Cells. Curr Pharm Biotechnol 2024; 25:1333-1347. [PMID: 37612859 DOI: 10.2174/1389201024666230823094412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated. OBJECTIVES The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells. METHODS AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GCMS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription- quantitative polymerase chain reaction (RT-qPCR). RESULTS The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis. CONCLUSION C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.
Collapse
Affiliation(s)
- Mohamed A H Alshamsi
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates
| | - Muna A Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
20
|
Sung HH, Spresser WJ, Hoffmann JP, Dai Z, Van der Kraan PM, Caird MS, Davidson EB, Kozloff KM. Collagen mutation and age contribute to differential craniofacial phenotypes in mouse models of osteogenesis imperfecta. JBMR Plus 2024; 8:ziad004. [PMID: 38690127 PMCID: PMC11059998 DOI: 10.1093/jbmrpl/ziad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 05/02/2024] Open
Abstract
Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Wyatt J Spresser
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joseph P Hoffmann
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Esmeralda Blaney Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
21
|
Bharathi R, Harini G, Sankaranarayanan A, Shanmugavadivu A, Vairamani M, Selvamurugan N. Nuciferine-loaded chitosan hydrogel-integrated 3D-printed polylactic acid scaffolds for bone tissue engineering: A combinatorial approach. Int J Biol Macromol 2023; 253:127492. [PMID: 37858655 DOI: 10.1016/j.ijbiomac.2023.127492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Critical-sized bone defects resulting from severe trauma and open fractures cannot spontaneously heal and require surgical intervention. Limitations of traditional bone grafting include immune rejection and demand-over-supply issues leading to the development of novel tissue-engineered scaffolds. Nuciferine (NF), a plant-derived alkaloid, has excellent therapeutic properties, but its osteogenic potential is yet to be reported. Furthermore, the bioavailability of NF is obstructed due to its hydrophobicity, requiring an efficient drug delivery system, such as chitosan (CS) hydrogel. We designed and fabricated polylactic acid (PLA) scaffolds via 3D printing and integrated them with NF-containing CS hydrogel to obtain the porous biocomposite scaffolds (PLA/CS-NF). The fabricated scaffolds were subjected to in vitro physicochemical characterization, cytotoxicity assays, and osteogenic evaluation studies. Scanning electron microscopic studies revealed uniform pore size distribution on PLA/CS-NF scaffolds. An in vitro drug release study showed a sustained and prolonged release of NF. The cyto-friendly nature of NF in PLA/CS-NF scaffolds towards mouse mesenchymal stem cells (mMSCs) was observed. Also, cellular and molecular level studies signified the osteogenic potential of NF in PLA/CS-NF scaffolds on mMSCs. These results indicate that the PLA/CS-NF scaffolds could promote new bone formation and have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ramanathan Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ganesh Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aravind Sankaranarayanan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariappanadar Vairamani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India..
| |
Collapse
|
22
|
Qiao Y, Yu L, Yang P, Chen M, Sun H, Wang L, Wu B, Oh C, Yang H, Bai J, Geng D. Spatiotemporal Immunomodulation and Biphasic Osteo-Vascular Aligned Electrospun Membrane for Diabetic Periosteum Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302874. [PMID: 37973554 PMCID: PMC10754081 DOI: 10.1002/advs.202302874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Indexed: 11/19/2023]
Abstract
Under diabetic conditions, blood glucose fluctuations and exacerbated immunopathological inflammatory environments pose significant challenges to periosteal regenerative repair strategies. Responsive immune regulation in damaged tissues is critical for the immune microenvironment, osteogenesis, and angiogenesis stabilization. Considering the high-glucose microenvironment of such acute injury sites, a functional glucose-responsive immunomodulation-assisted periosteal regeneration composite material-PLA(Polylactic Acid)/COLI(Collagen I)/Lipo(Liposome)-APY29 (PCLA)-is constructed. Aside from stimulating osteogenic differentiation, owing to the presence of surface self-assembled type I collagen in the scaffolds, PCLA can directly respond to focal area high-glucose microenvironments. The PCLA scaffolds trigger the release of APY29-loaded liposomes, shifting the macrophages toward the M2 phenotype, inhibiting the release of inflammatory cytokines, improving the bone immune microenvironment, and promoting osteogenic differentiation and angiogenesis. Bioinformatics analyses show that PCLA enhances bone repair by inhibiting the inflammatory signal pathway regulating the polarization direction and promoting osteogenic and angiogenic gene expression. In the calvarial periosteal defect model of diabetic rats, PCLA scaffolds induce M2 macrophage polarization and improve the inflammatory microenvironment, significantly accelerating periosteal repair. Overall, the PCLA scaffold material regulates immunity in fluctuating high-glucose inflammatory microenvironments, achieves relatively stable and favorable osteogenic microenvironments, and facilitates the effective design of functionalized biomaterials for bone regeneration therapy in patients with diabetes.
Collapse
Affiliation(s)
- Yusen Qiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIL60612USA
| | - Lei Yu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Miao Chen
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Haifu Sun
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Lingjie Wang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Bangzhao Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Chun‐do Oh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIL60612USA
| | - Huilin Yang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghaiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| |
Collapse
|
23
|
Mai Q, Han R, Chen Y, Shen K, Wang S, Zheng Q. Case Report: A novel de novo variant of COL1A1 in fetal genetic osteogenesis imperfecta. Front Endocrinol (Lausanne) 2023; 14:1267252. [PMID: 38027129 PMCID: PMC10653333 DOI: 10.3389/fendo.2023.1267252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Osteogenesis imperfecta (OI) is a rare genetic disorder. Clinical severity is heterogeneous. The purpose of this study was to investigate the genetic characteristics of a fetus with OI by whole exome sequencing (WES) and identify the cause of the disease. Methods In this study, a fetus with osteogenic dysplasia was referred to our hospital. DNA was extracted from the aborted fetal tissue and peripheral blood of the parents. To identify the pathogenic genes, we conducted the trio-WES using DNA. A de novo variant in the COL1A1 gene is suspected to be the cause of the OI phenotype. We used Sanger sequencing for validation and various bioinformatics methods (such as SIFT, PolyPhen2, Mutation Taster, conservative analysis, SWISS Model, glycosylation site prediction, and I-Mutant 2.0) for analysis. Results Both WES and Sanger sequencing identified a novel de novo variant of COL1A1 (c. 1309G>A, p. Gly437Ser) in a fetus with OI. Bioinformatic analysis showed that the affected residue, p. Gly437, was highly conserved in multiple species and predicted that the variant was deleterious and may have an impact on protein function. This variant is present in highly conserved glycine residues of Gly-X-Y sequence repeats of the triple helical region of the collagen type I α chain, which may be the cause of OI. Conclusion This study revealed that the c.1309G>A (p. Gly437Ser) variant in the COL1A1 gene may be the genetic cause of fetal OI in this case. The discovery of this variant enriched the variation spectrum of OI. WES improves the accurate diagnosis of fetal OI, and doctors can provide patients with appropriate genetic counseling.
Collapse
Affiliation(s)
- Qiuyan Mai
- Prenatal Diagnosis Center of the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ruining Han
- Obstetrical Department of the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yinlong Chen
- Prenatal Diagnosis Center of the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ke Shen
- Prenatal Diagnosis Center of the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shimin Wang
- Prenatal Diagnosis Center of the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingliang Zheng
- Prenatal Diagnosis Center of the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Fu F, Luo H, Du Y, Chen Y, Tian K, Pan J, Li J, Wang N, Bao R, Jin H, Tong P, Ruan H, Wu C. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med 2023; 27:3601-3613. [PMID: 37621124 PMCID: PMC10660633 DOI: 10.1111/jcmm.17928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1β. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Du
- The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuying Chen
- The Fourth Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kun Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jin Pan
- Department of Architecture, School of ArchitectureChina Academy of ArtHangzhouChina
| | - Jian Li
- Department of OrthopaedicsHangzhou Ninth People's HospitalHangzhouChina
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouChina
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
25
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Hatt LP, van der Heide D, Armiento AR, Stoddart MJ. β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells. Front Cell Dev Biol 2023; 11:1258161. [PMID: 37965582 PMCID: PMC10641282 DOI: 10.3389/fcell.2023.1258161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)-based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of β-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis. Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and β-tricalcium phosphate (β-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed. Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining. Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose β-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.
Collapse
Affiliation(s)
- Luan P. Hatt
- AO Research Institute Davos, Davos, Switzerland
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Daphne van der Heide
- AO Research Institute Davos, Davos, Switzerland
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
27
|
Lee SH, Lim TJ, Yun EJ, Kim KH, Lim S. Anti-Menopausal Effect of Soybean Germ Extract and Lactobacillus gasseri in the Ovariectomized Rat Model. Nutrients 2023; 15:4485. [PMID: 37892560 PMCID: PMC10609938 DOI: 10.3390/nu15204485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Menopause is a significant phase in a woman's life. Menopausal symptoms can affect overall well-being and quality of life. Conventionally, hormone replacement therapy (HRT) is used to alleviate menopausal symptoms; however, depending on the conditions, HRT may lead to side effects, necessitating the exploration of alternative therapies with fewer side effects. In this study, we investigated the effects of a combination of soybean germ extract (S30) containing 30% (w/w) isoflavone and a probiotic, Lactobacillus gasseri (LGA1), on menopausal conditions in an ovariectomized (OVX) rat model. We evaluated the impact of S30+LGA on body weight, estrogen markers, uterine and bone health, vascular markers, and neurotransmitter levels. The results revealed that treatment with S30+LGA1 significantly improved body weight and uterine and bone health. Moreover, S30+LGA1 demonstrated promising effects on lipid profile, liver function, and vascular markers and positively impacted serotonin and norepinephrine levels, indicating potential mood-enhancing effects. In conclusion, S30+LGA1, possessing anti-menopausal effects in vitro and in vivo, can be recommended as a soy-based diet, which offers various health benefits, especially for menopausal women.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Joong Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea;
| | - Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea;
| |
Collapse
|
28
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
29
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
30
|
Redmond D, Rafii S. The epicentre of haematopoiesis and osteogenesis. Nat Cell Biol 2023; 25:1406-1407. [PMID: 37798544 DOI: 10.1038/s41556-023-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Affiliation(s)
- David Redmond
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Liu H, Li T, Ma B, Wang Y, Sun J. Hyaluronan and Proteoglycan Link Protein 1 Activates the BMP4/Smad1/5/8 Signaling Pathway to Promote Osteogenic Differentiation: an Implication in Fracture Healing. Mol Biotechnol 2023; 65:1653-1663. [PMID: 36737556 DOI: 10.1007/s12033-023-00677-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Osteoblast regeneration, characterized by osteoblast differentiation, is the basis of fracture healing and accelerates fracture repair. It has been reported that hyaluronan and proteoglycan link protein 1 (HAPLN1) is overexpressed during osteoblast differentiation and regulates cartilage regeneration, but its function in fracture healing remains unclear. To elucidate this issue, we collected clinical blood samples of fracture healing, established a femoral fracture rat model, and induced an osteoblast differentiation cell model. We found that HAPLN1 was overexpressed in the serum of patients with fracture healing and the bone tissues of rats with fracture healing. Furthermore, the expression of HAPLN1 was increased time dependently during the osteogenic differentiation of MC3T3-E1 cells. HAPLN1 silencing prevented osteoblast differentiation and mineralization in MC3T3-E1 cells as evidenced by decreased osteoblast differentiation-related factors, suppressed alkaline phosphatase activities, and reduced alizarin red positive staining. Mechanically, the bone morphogenic protein 4 (BMP4)/Smad1/5/8 pathway, a facilitator of osteoblastic differentiation, was found to be inhibited by HAPLN1 knockdown, and inhibition of BMP4/Smad1/5/8 signaling enhanced the effects caused by HAPLN1 silencing. These findings demonstrated that HAPLN1 might promote fracture healing by facilitating osteogenic differentiation through the BMP4/Smad1/5/8 pathway, indicating that targeting HAPLN1 may be a feasible therapeutic candidate for fracture repair.
Collapse
Affiliation(s)
- Hu Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ben Ma
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Sun
- Department of Pediatric Orthopedics, Anhui Province Children's Hospital Affiliated to Anhui Medical University, No. 39, Wangjiang East Road, Hefei, Anhui, China.
| |
Collapse
|
32
|
Su H, Karin M. Collagen architecture and signaling orchestrate cancer development. Trends Cancer 2023; 9:764-773. [PMID: 37400314 DOI: 10.1016/j.trecan.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The tumor microenvironment (TME) controls tumor progression and maintenance. Accordingly, tumor-centric cancer treatment must adjust to being more holistic and TME-centric. Collagens are the most abundant TME proteins, and their dynamic remodeling profoundly affects both TME architecture and tumor development. Recent evidence shows that in addition to being structural elements, collagens are an important source of nutrients and decisive growth controlling and immunoregulatory signals. This review focuses on macropinocytosis-dependent collagen support of cancer cell metabolism and the role of collagen fiber remodeling and trimer heterogeneity in control of tumor bioenergetics, growth, progression, and response to therapy. If properly translated, these basic advances may alter the future of cancer treatment.
Collapse
Affiliation(s)
- Hua Su
- Institutes of Biomedical Sciences, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Davan I, Fakurazi S, Alias E, Ibrahim N'I, Hwei NM, Hassan H. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review. Antioxidants (Basel) 2023; 12:1480. [PMID: 37508018 PMCID: PMC10376010 DOI: 10.3390/antiox12071480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
Collapse
Affiliation(s)
- Iswari Davan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
34
|
Wang J, Li X, Wang S, Cui J, Ren X, Su J. Bone-Targeted Exosomes: Strategies and Applications. Adv Healthc Mater 2023; 12:e2203361. [PMID: 36881547 DOI: 10.1002/adhm.202203361] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 03/08/2023]
Abstract
As the global population ages, bone-related diseases have increasingly become a major social problem threatening human health. Exosomes, as natural cell products, have been used to treat bone-related diseases due to their superior biocompatibility, biological barrier penetration, and therapeutic effects. Moreover, the modified exosomes exhibit strong bone-targeting capabilities that may improve efficacy and avoid systemic side effects, demonstrating promising translational potential. However, a review of bone-targeted exosomes is still lacking. Thus, the recently developed exosomes for bone-targeting applications in this review are focused. The biogenesis and bone-targeting regulatory functions of exosomes, the constructive strategies of modified exosomes to improve bone-targeting, and their therapeutic effects for bone-related diseases are introduced. By summarizing developments and challenges in bone-targeted exosomes, It is striven to shed light on the selection of exosome constructive strategies for different bone diseases and highlight their translational potential for future clinical orthopedics.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoqun Li
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
35
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
36
|
Cheng S, Brenière-Letuffe D, Ahola V, Wong AO, Keung HY, Gurung B, Zheng Z, Costa KD, Lieu DK, Keung W, Li RA. Single-cell RNA sequencing reveals maturation trajectory in human pluripotent stem cell-derived cardiomyocytes in engineered tissues. iScience 2023; 26:106302. [PMID: 36950112 PMCID: PMC10025988 DOI: 10.1016/j.isci.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Cardiac in vitro models have become increasingly obtainable and affordable with the optimization of human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) differentiation. However, these CMs are immature compared to their in vivo counterparts. Here we study the cellular phenotype of hPSC-CMs by comparing their single-cell gene expression and functional profiles in three engineered cardiac tissue configurations: human ventricular (hv) cardiac anisotropic sheet, cardiac tissue strip, and cardiac organoid chamber (hvCOC), with spontaneously aggregated 3D cardiac spheroids (CS) as control. The CM maturity was found to increase with increasing levels of complexity of the engineered tissues from CS to hvCOC. The contractile components are the first function to mature, followed by electrophysiology and oxidative metabolism. Notably, the 2D tissue constructs show a higher cellular organization whereas metabolic maturity preferentially increases in the 3D constructs. We conclude that the tissue engineering models resembling configurations of native tissues may be reliable for drug screening or disease modeling.
Collapse
Affiliation(s)
- Shangli Cheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - David Brenière-Letuffe
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
- Department of Clinical Sciences, Intervention and Technology, CLINTEC, Karolinska Institutet, 141 52 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 141 86 Stockholm, Sweden
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | | | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - Bimal Gurung
- Novoheart, Irvine, CA 92617, USA
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - Kevin D. Costa
- Novoheart, Irvine, CA 92617, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah K. Lieu
- Novoheart, Irvine, CA 92617, USA
- Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Wendy Keung
- Novoheart, Irvine, CA 92617, USA
- Dr. Li Dak Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
37
|
Yang D, Moniruzzaman R, Wang H, Wang H, Chen Y. Cross-Dataset Single-Cell Analysis Identifies Temporal Alterations in Cell Populations of Primary Pancreatic Tumor and Liver Metastasis. Cancers (Basel) 2023; 15:2396. [PMID: 37190324 PMCID: PMC10137114 DOI: 10.3390/cancers15082396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a unique tumor microenvironment composed of various cell populations such as cancer cells, cancer-associated fibroblasts (CAFs), immune cells, and endothelial cells. Recently, single-cell RNA-sequencing analysis (scRNA-seq) has systemically revealed the genomic profiles of these cell populations in PDAC. However, the direct comparison of cell population composition and genomic profile between primary tumors (at both early- and late-stage) and metastatic tumors of PDAC is still lacking. In this study, we combined and analyzed recent scRNA-seq datasets of transgenic KPC mouse models with autochthonous PDAC and matched liver metastasis, revealing the unique tumor ecosystem and cell composition of liver metastasis in contrast to primary PDAC. Metastatic PDAC tumors harbor distinct cancer cell subpopulations from primary tumors. Several unique markers, including HMGA1, were identified for metastasis-enriched cancer cell subpopulations. Furthermore, metastatic tumors reveal significantly enriched granulocytic myeloid-derived suppressor cells (G-MDSCs), mature neutrophils, and granulocyte-myeloid progenitors (GMPs). A common GMP population across primary tumors, liver metastases, and healthy bone marrow was identified as the putative cell origin of tumor-associated neutrophils/granulocytes.
Collapse
Affiliation(s)
- Daowei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rohan Moniruzzaman
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Wang
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Huang Q, Man Y, Li W, Zhou Q, Yuan S, Yap YT, Nayak N, Zhang L, Song S, Dunbar J, Leff T, Yang X, Zhang Z. Inactivation of Cops5 in Smooth Muscle Cells Causes Abnormal Reproductive Hormone Homeostasis and Development in Mice. Endocrinology 2023; 164:bqad062. [PMID: 37067025 PMCID: PMC10164660 DOI: 10.1210/endocr/bqad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
COP9 constitutive photomorphogenic homolog subunit 5 (COPS5), also known as Jab1 or CSN5, has been implicated in a wide variety of cellular and developmental processes. By analyzing male germ cell-specific COPS5-deficient mice, we have demonstrated previously that COPS5 is essential to maintain male germ survival and acrosome biogenesis. To further determine the role of Cops5 in peritubular myoid cells, a smooth muscle lineage surrounding seminiferous tubules, we herein derived mice conditionally deficient for the Cops5 gene in smooth muscle cells using transgenic Myh11-Cre mice. Although these conditional Cops5-deficient mice were born at the expected Mendelian ratio and appeared to be normal within the first week after birth, the homozygous mice started to show growth retardation after 1 week. These mice also exhibited a variety of developmental and reproductive disorders, including failure of development of reproductive organs in both males and females, spermatogenesis defects, and impaired skeletal development and immune functions. Furthermore, conditional Cops5-deficient mice revealed dramatic impairment of the endocrine system associated with testicular functions, including a marked reduction in serum levels of gonadotropins (follicle-stimulating hormone, luteinizing hormone), testosterone, insulin-like growth factor 1, and glucose, but not vasopressin. All homozygous mice died before age 67 days in the study. Collectively, our results provide novel evidence that Cops5 in smooth muscle lineage plays an essential role in postnatal development and reproductive functions.
Collapse
Affiliation(s)
- Qian Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yonghong Man
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Qi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Shuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Neha Nayak
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Shizheng Song
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Joseph Dunbar
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48210, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY 10021, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48210, USA
| |
Collapse
|
39
|
Thomas DD, Lacinski RA, Lindsey BA. Single-cell RNA-seq reveals intratumoral heterogeneity in osteosarcoma patients: A review. J Bone Oncol 2023; 39:100475. [PMID: 37034356 PMCID: PMC10074210 DOI: 10.1016/j.jbo.2023.100475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
While primary bone malignancies make up just 0.2% of all cancers, osteosarcoma (OS) is the third most common cancer in adolescents. Due to its highly complex and heterogeneous tumor microenvironment (TME), OS has proven difficult to treat. There has been little to no improvement in therapy for this disease over the last 40 years. Even the recent success of immunotherapies in other blood-borne and solid malignancies has not translated to OS. With frequent recurrence and lung metastases continuing to pose a challenge in the clinic, recent advancements in molecular profiling, such as single-cell RNA sequencing (scRNA-seq), have proven useful in identifying novel biomarkers of OS tumors while providing new insight into this TME that could potentially lead to new therapeutic options. This review combines the analyses of over 150,000 cells from 18 lesions ranging from primary, recurrent, and metastatic OS lesions, revealing distinct cellular populations and gene signatures that exist between them. Here, we detail these previous findings and ultimately convey the intratumoral heterogeneity that exists within OS tumor specimens.
Collapse
Affiliation(s)
- Dylan D. Thomas
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Brock A. Lindsey
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
40
|
Zou X, Liu C, Wu X, Yuan Z, Yan F. Changes in N6-methyladenosine RNA methylomes of human periodontal ligament cells in response to inflammatory conditions. J Periodontal Res 2023; 58:444-455. [PMID: 36733232 DOI: 10.1111/jre.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the changes in the m6A methylation modification profile of human periodontal ligament cells (hPDLCs) in response to inflammatory conditions. BACKGROUND Periodontitis is an infectious disease of the periodontal support tissue that leads to the loss of alveolar bone. HPDLCs are primary cells that can repair periodontal tissue defects caused by periodontitis. However, the inflammatory conditions induce inflammatory damage and decrease ossification of hPDLCs. This inflammatory response depends on genetic and epigenetic mechanisms, including m6A methylation. METHODS HPDLCs were cultured with osteogenic induction medium (NC group), while TNF-α (10 ng/mL) and IL-1β (5 ng/mL) were added to simulate inflammatory conditions (Inflam group). Then RNA-seq and MeRIP-seq analyses were performed to identify m6A methylation modification in the transcriptome range of hPDLCs. RESULTS The results showed that the osteogenic differentiation of hPDLCs was inhibited under inflammatory conditions. RNA-seq analysis also revealed that the decreased genes in response to inflammatory conditions were primarily annotated in processes associated with ossification. Compared with the NC group, differentially m6A-methylated genes were primarily enriched in histone modification processes. Among 145 histone modification genes, 25 genes have been reported to be involved in the regulation of osteogenic differentiation, and they include KAT6B, EP300, BMI1, and KDMs (KDM1A, KDM2A, KDM3A, KDM4B, and KDM5A). CONCLUSION This study demonstrated that the m6A landscape of hPDLCs was changed in response to inflammation. M6A methylation differences among histone modification genes may act on the osteogenic differentiation of hPDLCs.
Collapse
Affiliation(s)
- Xihong Zou
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaoyi Liu
- Hangzhou Stomatological Hospital, Hangzhou, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Hu ZC, Lu JQ, Zhang TW, Liang HF, Yuan H, Su DH, Ding W, Lian RX, Ge YX, Liang B, Dong J, Zhou XG, Jiang LB. Piezoresistive MXene/Silk fibroin nanocomposite hydrogel for accelerating bone regeneration by Re-establishing electrical microenvironment. Bioact Mater 2023; 22:1-17. [PMID: 36203961 PMCID: PMC9513113 DOI: 10.1016/j.bioactmat.2022.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The electrical microenvironment plays an important role in bone repair. However, the underlying mechanism by which electrical stimulation (ES) promotes bone regeneration remains unclear, limiting the design of bone microenvironment–specific electroactive materials. Herein, by simple co-incubation in aqueous suspensions at physiological temperatures, biocompatible regenerated silk fibroin (RSF) is found to assemble into nanofibrils with a β-sheet structure on MXene nanosheets, which has been reported to inhibit the restacking and oxidation of MXene. An electroactive hydrogel based on RSF and bioencapsulated MXene is thus prepared to promote efficient bone regeneration. This MXene/RSF hydrogel also acts as a piezoresistive pressure transducer, which can potentially be utilized to monitor the electrophysiological microenvironment. RNA sequencing is performed to explore the underlying mechanisms, which can activate Ca2+/CALM signaling in favor of the direct osteogenesis process. ES is found to facilitate indirect osteogenesis by promoting the polarization of M2 macrophages, as well as stimulating the neogenesis and migration of endotheliocytes. Consistent improvements in bone regeneration and angiogenesis are observed with MXene/RSF hydrogels under ES in vivo. Collectively, the MXene/RSF hydrogel provides a distinctive and promising strategy for promoting direct osteogenesis, regulating immune microenvironment and neovascularization under ES, leading to re-establish electrical microenvironment for bone regeneration. MXene nanosheets could direct the selective growth of silk nanofibrils. Prepared MXene/RSF hydrogel exhibited good conductivity and sensing ability. The electroactive hydrogel could promote osteogenic differentiation of BMSCs by activating the Ca2+/CALM signaling pathway. The conductive system created an osteoblast–macrophage–endotheliocyte virtuous circle for bone microenvironment.
Collapse
|
42
|
Liang C, Ji D, Qin F, Chen G. CAF signature predicts the prognosis of colorectal cancer patients: A retrospective study based on bulk RNA sequencing and single-cell RNA sequencing data. Medicine (Baltimore) 2023; 102:e33149. [PMID: 36897717 PMCID: PMC9997814 DOI: 10.1097/md.0000000000033149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
The incidence rate and mortality rate of colorectal cancer (CRC) ranks third and second globally. Cancer-associated fibroblasts (CAFs) are the major constituent of the stromal cells in the tumor microenvironment (TME) and are closely associated with patients' prognoses. Our study intended to establish a prognostic model for CRC using hallmark genes of CAFs. The expression values of genes and clinicopathological characteristics of patients were enrolled from the cancer genome atlas database as well as the gene expression omnibus database. The single-cell RNA sequencing data were collected and analyzed in the deeply integrated human single-cell omics database and cancer single-cell expression map databases. The ESTIMATE algorithm was applied to access the infiltration levels of immune and stromal cells. The prognostic genes were selected by the Cox regression analysis and the prognostic signature was constructed by the least absolute shrinkage and selection operator algorithm. gene set enrichment analysis was used to explore the enriched gene sets. In this study, based on bulk RNA sequencing and single-cell RNA sequencing data, and we found that more CAFs were infiltrated in the tumor microenvironment and consisted of 3 subtypes. Then we constructed a prognostic signature for CRC using hallmark genes of CAFs and proved that this signature exhibited high values to predict the overall survival of CRC patients in independent training and validating cohorts. Besides, function enrichment analysis revealed that our prognostic model was significantly associated with immune regulation. Further analysis showed that the infiltrated levels of tumor-suppressing immune cells and the expression of higher immune checkpoint genes in CRC tissues were higher in patients with high-risk scores. Furthermore, immunohistochemistry analysis exhibited that these genes in our prognostic signature were markedly upregulated in CRC tissues. We first constructed a signature based on CAFs hallmark genes to predict the survival of CRC patients and further revealed that the tumor-suppressing microenvironment and dysregulated immune checkpoint genes in CRC tissues were partly responsible for the poor prognosis of patients.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongze Ji
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Qin
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Castiglioni S, Locatelli L, Cazzaniga A, Orecchio FM, Santaniello T, Piazzoni C, Bureau L, Borghi F, Milani P, Maier JA. Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:801. [PMID: 36903679 PMCID: PMC10005756 DOI: 10.3390/nano13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topographical properties of the extracellular matrix. We show that a 20 nm ns-ZrOx surface accelerates the osteogenic differentiation of human bone marrow-derived MSCs (bMSCs) by increasing the deposition of calcium in the extracellular matrix and upregulating some osteogenic differentiation markers. bMSCs seeded on 20 nm ns-ZrOx show randomly oriented actin fibers, changes in nuclear morphology, and a reduction in mitochondrial transmembrane potential when compared to the cells cultured on flat zirconia (flat-ZrO2) substrates and glass coverslips used as controls. Additionally, an increase in ROS, known to promote osteogenesis, was detected after 24 h of culture on 20 nm ns-ZrOx. All the modifications induced by the ns-ZrOx surface are rescued after the first hours of culture. We propose that ns-ZrOx-induced cytoskeletal remodeling transmits signals generated by the extracellular environment to the nucleus, with the consequent modulation of the expression of genes controlling cell fate.
Collapse
Affiliation(s)
- Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Francesca Maria Orecchio
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Tommaso Santaniello
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Claudio Piazzoni
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Lionel Bureau
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Francesca Borghi
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Paolo Milani
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| |
Collapse
|
44
|
Tian Y, Tsujisaka Y, Li VY, Tani K, Lucena-Cacace A, Yoshida Y. Immunosuppressants Tacrolimus and Sirolimus revert the cardiac antifibrotic properties of p38-MAPK inhibition in 3D-multicellular human iPSC-heart organoids. Front Cell Dev Biol 2022; 10:1001453. [PMID: 36438566 PMCID: PMC9692097 DOI: 10.3389/fcell.2022.1001453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Cardiac reactive fibrosis is a fibroblast-derived maladaptive process to tissue injury that exacerbates an uncontrolled deposition of large amounts of extracellular matrix (ECM) around cardiomyocytes and vascular cells, being recognized as a pathological entity of morbidity and mortality. Cardiac fibrosis is partially controlled through the sustained activation of TGF-β1 through IL-11 in fibroblasts. Yet, preclinical studies on fibrosis treatment require human physiological approaches due to the multicellular crosstalk between cells and tissues in the heart. Here, we leveraged an iPSC-derived multi-lineage human heart organoid (hHO) platform composed of different cardiac cell types to set the basis of a preclinical model for evaluating drug cardiotoxicity and assessing cardiac fibrosis phenotypes. We found that the inhibition of the p38-MAPK pathway significantly reduces COL1A1 depositions. Yet, concomitant treatment with organ-rejection immunosuppressant drugs Tacrolimus or Sirolimus reverts this effect, opening new questions on the clinical considerations of combined therapies in reducing fibrosis after organ transplantation.
Collapse
Affiliation(s)
- Yu Tian
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuta Tsujisaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Vanessa Y. Li
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Wellesley College, Wellesley, MA, United States
| | - Kanae Tani
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Taylor JB, Malone-Povolny MJ, Merricks EP, Wimsey LE, Soliman D, Nichols TC, Wallet SM, Maile R, Schoenfisch MH. Mechanisms of Foreign Body Response Mitigation by Nitric Oxide Release. Int J Mol Sci 2022; 23:11635. [PMID: 36232937 PMCID: PMC9569454 DOI: 10.3390/ijms231911635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Implantable glucose biosensors provide real-time information about blood glucose fluctuations, but their utility and accuracy are time-limited due to the foreign body response (FBR) following their insertion beneath the skin. The slow release of nitric oxide (NO), a gasotransmitter with inflammation regulatory properties, from a sensor surface has been shown to dramatically improve sensors' analytical biocompatibility by reducing the overall FBR response. Indeed, work in a porcine model suggests that as long as the implants (sensors) continue to release NO, even at low levels, the inflammatory cell infiltration and resulting collagen density are lessened. While these studies strongly support the benefits of NO release in mitigating the FBR, the mechanisms through which exogenous NO acts on the surrounding tissue, especially under the condition of hyperglycemia, remain vague. Such knowledge would inform strategies to refine appropriate NO dosage and release kinetics for optimal therapeutic activity. In this study, we evaluated mediator, immune cell, and mRNA expression profiles in the local tissue microenvironment surrounding implanted sensors as a function of NO release, diabetes, and implantation duration. A custom porcine wound healing-centric multiplex gene array was developed for nanoString barcoding analysis. Tissues adjacent to sensors with sustained NO release abrogated the implant-induced acute and chronic FBR through modulation of the tissue-specific immune chemokine and cytokine microenvironment, resulting in decreased cellular recruitment, proliferation, and activation at both the acute (7-d) and chronic (14-d) phases of the FBR. Further, we found that sustained NO release abrogated the implant-induced acute and chronic foreign body response through modulation of mRNA encoding for key immunological signaling molecules and pathways, including STAT1 and multiple STAT1 targets including MAPK14, IRAK4, MMP2, and CXCL10. The condition of diabetes promoted a more robust FBR to the implants, which was also controlled by sustained NO release.
Collapse
Affiliation(s)
- James B Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Maggie J Malone-Povolny
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Lauren E Wimsey
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Daniel Soliman
- Department of Surgery, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
- Curriculum of Toxicology, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Improved osteogenic differentiation by extremely low electromagnetic field exposure: possible application for bone engineering. Histochem Cell Biol 2022; 158:369-381. [PMID: 35751679 PMCID: PMC9512759 DOI: 10.1007/s00418-022-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Human periodontal ligament mesenchymal stem cells (hPDLSCs) are a promising cell type model for regenerative medicine applications due to their anti-inflammatory, immunomodulatory and non-tumorigenic potentials. Extremely low-frequency electromagnetic fields (ELF-EMF) are reported to affect biological properties such as cell proliferation and differentiation and modulate gene expression profile. In this study, we investigated the effects of an intermittent ELF-EMF exposure (6 h/day) for the standard differentiation period (28 days) and for 10 days in hPDLSCs in the presence or not of osteogenic differentiation medium (OM). We evaluated cell proliferation, de novo calcium deposition and osteogenic differentiation marker expression in sham and ELF-EMF-exposed cells. After ELF-EMF exposure, compared with sham-exposed, an increase in cell proliferation rate (p < 0.001) and de novo calcium deposition (p < 0.001) was observed after 10 days of exposure. Real-time PCR and Western blot results showed that COL1A1 and RUNX-2 gene expression and COL1A1, RUNX-2 and OPN protein expression were upregulated respectively in the cells exposed to ELF-EMF exposure along with or without OM for 10 days. Altogether, these results suggested that the promotion of osteogenic differentiation is more efficient in ELF-EMF-exposed hPDLSCs. Moreover, our analyses indicated that there is an early induction of hPDLSC differentiation after ELF-EMF application.
Collapse
|
47
|
Yasunaga M, Kobayashi F, Sogo Y, Murotomi K, Hirose M, Hara Y, Yamazaki M, Ito A. The enhancing effects of heparin on the biological activity of FGF-2 in heparin-FGF-2-calcium phosphate composite layers. Acta Biomater 2022; 148:345-354. [PMID: 35697197 DOI: 10.1016/j.actbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the composite layers is important for its wider application in orthopedics and dentistry. This study incorporated low-molecular-weight heparin (LMWH) into the FGF-2-calcium phosphate composite layers and clarified the enhancing effects of LMWH on the biological activity of FGF-2 in the composite layers in vitro. LMWH-FGF-2-calcium phosphate composite layers were successfully formed on zirconia in supersaturated calcium phosphate solutions. The composite layers comprised continuous and macroscopically homogeneous layers and particles smaller than 500 nm in size composed of amorphous calcium phosphate. The amounts of Ca and P deposited on zirconia remained almost unchanged with the addition of LMWH under the presence of FGF-2 in the supersaturated calcium phosphate solution. The LMWH in the supersaturated calcium phosphate solution increased the stability of FGF-2 in the solution and the amount of FGF-2 in the composite layers. The LMWH in the composite layers increased the mitogenic and endothelial tube-forming activities of FGF-2, and FGF-2 activity of inducing osteogenic differentiation gene expression pattern in the composite layers. Our results indicate that the enhanced biological activity of FGF-2 in the LMWH-FGF-2-calcium phosphate composite layers is attributed to an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the supersaturated calcium phosphate solution and the composite layers. The LMWH-FGF-2-calcium phosphate composite layer is a promising coating for orthopedic and dental implants. STATEMENT OF SIGNIFICANCE: Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the layers is important for wider its application in orthopedics and dentistry. This study demonstrates the enhancing effects of low-molecular-weight heparin (LMWH) contained within LMWH-FGF-2-calcium phosphate composite layers on the biological activity of FGF-2 in vitro. Our results indicate that the enhanced biological activity of FGF-2 within the composite layers arises from an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the LMWH-FGF-2-calcium phosphate composite layers and supersaturated calcium phosphate solutions used for coating the composite layers.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Fumiko Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Sogo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
48
|
Ponnu J, Hoecker U. Signaling Mechanisms by Arabidopsis Cryptochromes. FRONTIERS IN PLANT SCIENCE 2022; 13:844714. [PMID: 35295637 PMCID: PMC8918993 DOI: 10.3389/fpls.2022.844714] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 05/29/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that regulate growth, development, and metabolism in plants. In Arabidopsis thaliana (Arabidopsis), CRY1 and CRY2 possess partially redundant and overlapping functions. Upon exposure to blue light, the monomeric inactive CRYs undergo phosphorylation and oligomerization, which are crucial to CRY function. Both the N- and C-terminal domains of CRYs participate in light-induced interaction with multiple signaling proteins. These include the COP1/SPA E3 ubiquitin ligase, several transcription factors, hormone signaling intermediates and proteins involved in chromatin-remodeling and RNA N6 adenosine methylation. In this review, we discuss the mechanisms of Arabidopsis CRY signaling in photomorphogenesis and the recent breakthroughs in Arabidopsis CRY research.
Collapse
Affiliation(s)
| | - Ute Hoecker
- *Correspondence: Ute Hoecker, , orcid.org/0000-0002-5636-9777
| |
Collapse
|