1
|
Batoon L, Hawse JR, McCauley LK, Weivoda MM, Roca H. Efferocytosis and Bone Dynamics. Curr Osteoporos Rep 2024; 22:471-482. [PMID: 38914730 DOI: 10.1007/s11914-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of efferocytosis in bone dynamics and skeletal health. RECENT FINDINGS Several types of efferocytes have been identified within the skeleton, with macrophages being the most extensively studied. Efferocytosis is not merely a 'clean-up' process vital for maintaining skeletal homeostasis; it also plays a crucial role in promoting resolution pathways and orchestrating bone dynamics, such as osteoblast-osteoclast coupling during bone remodeling. Impaired efferocytosis has been associated with aging-related bone loss and various skeletal pathologies, including osteoporosis, osteoarthritis, rheumatoid arthritis, and metastatic bone diseases. Accordingly, emerging evidence suggests that targeting efferocytic mechanisms has the potential to alleviate these conditions. While efferocytosis remains underexplored in the skeleton, recent discoveries have shed light on its pivotal role in bone dynamics, with important implications for skeletal health and pathology. However, there are several knowledge gaps and persisting technical limitations that must be addressed to fully unveil the contributions of efferocytosis in bone.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Megan M Weivoda
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA.
| |
Collapse
|
2
|
Soto CA, Lesch ML, Becker JL, Sharipol A, Khan A, Schafer XL, Becker MW, Munger JC, Frisch BJ. The Lactate Receptor GPR81 is a Mechanism of Leukemia-Associated Macrophage Polarization in the Bone Marrow Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566874. [PMID: 39185193 PMCID: PMC11343108 DOI: 10.1101/2023.11.13.566874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Interactions between acute myeloid leukemia (AML) and the bone marrow microenvironment (BMME) are critical to leukemia progression and chemoresistance. Altered metabolite levels in the tumor microenvironment contribute to immunosuppression in solid tumors, while this has not been studied yet in the leukemic BMME. Metabolomics of AML patient bone marrow serum detected elevated metabolites, including lactate, compared to age- and sex-matched controls. Excess lactate has been implicated in solid tumors for inducing suppressive tumor-associated macrophages (TAMs) and correlates with poor prognosis. We describe the role of lactate in the polarization of leukemia-associated macrophages (LAMs) using a murine model of blast crisis chronic myelogenous leukemia (bcCML) and mice genetically lacking the lactate receptor GPR81. LAMs were CD206hi and suppressive in transcriptomics and cytokine profiling. Yet, LAMs had a largely unique expression profile from other types of TAMs. We demonstrate GPR81 signaling as a mechanism of both LAM polarization and the direct support of leukemia cell growth and self-repopulation. Furthermore, LAMs and elevated lactate diminished the function of hematopoietic progenitors and stromal support, while knockout of GPR81 had modest protective effects on the hematopoietic system. We report microenvironmental lactate as a critical driver of AML-induced immunosuppression and leukemic progression, thus identifying GPR81 signaling as an exciting and novel therapeutic target for treating this devastating disease.
Collapse
Affiliation(s)
- Celia A. Soto
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Maggie L. Lesch
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Jennifer L. Becker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester School of Medicine, Rochester, NY, USA
| | - Amal Khan
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Xenia L. Schafer
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Michael W. Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joshua C. Munger
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Benjamin J. Frisch
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
3
|
Yuan Y, Chen L, Yang J, Zhou S, Fang Y, Zhang Q, Zhang N, Li Y, Yuan L, Jia F, Ni S, Xiang C. Enhanced homing of mesenchymal stem cells for in situ niche remodeling and bone regeneration. NANO RESEARCH 2024; 17:7449-7460. [DOI: 10.1007/s12274-024-6715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 09/09/2024]
|
4
|
Gui R, Jin H. Organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH for biosensing, bioimaging and biotherapeutics applications. Talanta 2024; 275:126171. [PMID: 38703479 DOI: 10.1016/j.talanta.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China
| |
Collapse
|
5
|
Fuchs C, Stalnaker KJ, Dalgard CL, Sukumar G, Hupalo D, Dreyfuss JM, Pan H, Wang Y, Pham L, Wu X, Jozic I, Anderson RR, Cho S, Meyerle JH, Tam J. Plantar Skin Exhibits Altered Physiology, Constitutive Activation of Wound-Associated Phenotypes, and Inherently Delayed Healing. J Invest Dermatol 2024; 144:1633-1648.e14. [PMID: 38237729 DOI: 10.1016/j.jid.2023.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 06/24/2024]
Abstract
Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine J Stalnaker
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Hupalo
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Linh Pham
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xunwei Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillp Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunghun Cho
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jon H Meyerle
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Tan MJH, Patel SK, Chiu J, Zheng ZT, Odom TW. Liquid lasing from solutions of ligand-engineered semiconductor nanocrystals. J Chem Phys 2024; 160:154703. [PMID: 38624126 DOI: 10.1063/5.0201731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Semiconductor nanocrystals (NCs) can function as efficient gain materials with chemical versatility because of their surface ligands. Because the properties of NCs in solution are sensitive to ligand-environment interactions, local chemical changes can result in changes in the optical response. However, amplification of the optical response is technically challenging because of colloidal instability at NC concentrations needed for sufficient gain to overcome losses. This paper demonstrates liquid lasing from plasmonic lattice cavities integrated with ligand-engineered CdZnS/ZnS NCs dispersed in toluene and water. By taking advantage of calcium ion-induced aggregation of NCs in aqueous solutions, we show how lasing threshold can be used as a transduction signal for ion detection. Our work highlights how NC solutions and plasmonic lattices with open cavity architectures can serve as a biosensing platform for lab-on-chip devices.
Collapse
Affiliation(s)
- Max J H Tan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Shreya K Patel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jessica Chiu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
7
|
Lachance-Brais C, Yao C, Reyes-Valenzuela A, Asohan J, Guettler E, Sleiman HF. Exceptional Nuclease Resistance of DNA and RNA with the Addition of Small-Molecule Nucleobase Mimics. J Am Chem Soc 2024; 146:5811-5822. [PMID: 38387071 DOI: 10.1021/jacs.3c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nucleases present a formidable barrier to the application of nucleic acids in biology, significantly reducing the lifetime of nucleic acid-based drugs. Here, we develop a novel methodology to protect DNA and RNA from nucleases by reconfiguring their supramolecular structure through the addition of a nucleobase mimic, cyanuric acid. In the presence of cyanuric acid, polyadenine strands assemble into triple helical fibers known as the polyA/CA motif. We report that this motif is exceptionally resistant to nucleases, with the constituent strands surviving for up to 1 month in the presence of serum. The conferred stability extends to adjacent non-polyA sequences, albeit with diminishing returns relative to their polyA sections due to hypothesized steric clashes. We introduce a strategy to regenerate stability through the introduction of free polyA strands or positively charged amino side chains, enhancing the stability of sequences of varied lengths. The proposed protection mechanism involves enzyme failure to recognize the unnatural polyA/CA motif, coupled with the motif's propensity to form long, bundling supramolecular fibers. The methodology provides a fundamentally new mechanism to protect nucleic acids from degradation using a supramolecular approach and increases lifetime in serum to days, weeks, or months.
Collapse
Affiliation(s)
| | - Chihyu Yao
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | | | - Jathavan Asohan
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | - Elizabeth Guettler
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | - Hanadi F Sleiman
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| |
Collapse
|
8
|
Wu Y, Cheng M, Jiang Y, Zhang X, Li J, Zhu Y, Yao Q. Calcium-based biomaterials: Unveiling features and expanding applications in osteosarcoma treatment. Bioact Mater 2024; 32:385-399. [PMID: 37920827 PMCID: PMC10618625 DOI: 10.1016/j.bioactmat.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023] Open
Abstract
Calcium, an indispensable element in bone tissues, plays a crucial role in various cellular processes involved in cancer progression. Its ubiquitous yet spatially distinct distribution in the body presents an opportunity to target calcium homeostasis as a novel strategies for cancer treatment, with specific advantages in osteosarcoma therapy. In this comprehensive review, we retrospect the calcium biology intersected with cancer progression, highlight the unveiling features of calcium-based biomaterials in regulating both bone homeostasis and cancer development. We also provide an overview of recent breakthroughs in cancer therapy that leverage calcium biomaterials, showcasing their potential to serve as versatile, customizable platforms for osteosarcoma treatment and as reservoirs for supporting bone reconstruction.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Min Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yi Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingqiang Yao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
9
|
Pereira RS, Kumar R, Cais A, Paulini L, Kahler A, Bravo J, Minciacchi VR, Krack T, Kowarz E, Zanetti C, Godavarthy PS, Hoeller F, Llavona P, Stark T, Tascher G, Nowak D, Meduri E, Huntly BJP, Münch C, Pampaloni F, Marschalek R, Krause DS. Distinct and targetable role of calcium-sensing receptor in leukaemia. Nat Commun 2023; 14:6242. [PMID: 37802982 PMCID: PMC10558580 DOI: 10.1038/s41467-023-41770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, β-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.
Collapse
Affiliation(s)
- Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alessia Cais
- Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara Paulini
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alisa Kahler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Costanza Zanetti
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Fabian Hoeller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Pablo Llavona
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Tabea Stark
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Institute of General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
10
|
Hajjar S, Zhou X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol 2023; 44:807-825. [PMID: 37714775 PMCID: PMC10543622 DOI: 10.1016/j.it.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
pH is tightly maintained at cellular, tissue, and systemic levels, and altered pH - particularly in the acidic range - is associated with infection, injury, solid tumors, and physiological and pathological inflammation. However, how pH is sensed and regulated and how it influences immune responses remain poorly understood at the tissue level. Applying conceptual frameworks of homeostatic and inflammatory circuitries, we categorize cellular and tissue components engaged in pH regulation, drawing parallels from established cases in physiology. By expressing various intracellular (pHi) and extracellular pH (pHe)-sensing receptors, the immune system may integrate information on tissue and cellular states into the regulation of homeostatic and inflammatory programs. We introduce the novel concept of resistance and adaptation responses to rationalize pH-dependent immunomodulation intertwined with homeostatic equilibrium and inflammatory control. We discuss emerging challenges and opportunities in understanding the immunological roles of pH sensing, which might reveal new strategies to combat inflammation and restore tissue homeostasis.
Collapse
Affiliation(s)
- Stephanie Hajjar
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA
| | - Xu Zhou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Yu S, Reddy O, Abaci A, Ai Y, Li Y, Chen H, Guvendiren M, Belfield KD, Zhang Y. Novel BODIPY-Based Photobase Generators for Photoinduced Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45281-45289. [PMID: 37708358 DOI: 10.1021/acsami.3c09326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Photobase generators (PBGs) are compounds that utilize light-sensitive chemical-protecting groups to offer spatiotemporal control of releasing organic bases upon targeted light irradiation. PBGs can be implemented as an external control to initiate anionic polymerizations such as thiol-ene Michael addition reactions. However, there are limitations for common PBGs, including a short absorption wavelength and weak base release that lead to poor efficiency in photopolymerization. Therefore, there is a great need for visible-light-triggered PBGs that are capable of releasing strong bases efficiently. Here, we report two novel BODIPY-based visible-light-sensitive PBGs for light-induced activation of the thiol-ene Michael "click" reaction and polymerization. These PBGs were designed by connecting the BODIPY-based light-sensitive protecting group with tetramethylguanidine (TMG), a strong base. Moreover, we exploited the heavy atom effect to increase the efficiency of releasing TMG and the polymerization rate. These BODIPY-based PBGs exhibit extraordinary activity toward thiol-ene Michael addition-based polymerization, and they can be used in surface coating and polymer network formation of different thiol and vinyl monomers.
Collapse
Affiliation(s)
- Shupei Yu
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Ojasvita Reddy
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Alperen Abaci
- . . Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Yongling Ai
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Yanmei Li
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Hao Chen
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Murat Guvendiren
- . . Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Kevin D Belfield
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Yuanwei Zhang
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| |
Collapse
|
12
|
Han Y, Katayama S, Futakuchi M, Nakamichi K, Wakabayashi Y, Sakamoto M, Nakayama J, Semba K. Targeting c-Jun Is a Potential Therapy for Luminal Breast Cancer Bone Metastasis. Mol Cancer Res 2023; 21:908-921. [PMID: 37310848 DOI: 10.1158/1541-7786.mcr-22-0695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Luminal breast cancer has the highest bone metastasis frequency among all breast cancer subtypes; however, its metastatic mechanism has not been elucidated because of a lack of appropriate models. We have previously developed useful bone metastatic cell lines of luminal breast cancer using MCF7 cells. In this study, we characterized bone metastatic MCF7-BM cell lines and identified c-Jun as a novel bone metastasis marker of luminal breast cancer. The protein level of c-Jun was upregulated in MCF7-BM cells compared with that in parental cells, and its deficiency resulted in the suppression of tumor cell migration, transformation, and reduced osteolytic ability. In vivo, dominant-negative c-Jun exhibited smaller bone metastatic lesions and a lower metastatic frequency. Histologic analysis revealed that c-Jun expression was heterogeneous in bone metastatic lesions, whereas c-Jun overexpression mediated a vicious cycle between MCF7-BM cells and osteoclasts by enhancing calcium-induced migration and releasing the osteoclast activator BMP5. Pharmacological inhibition of c-Jun by the Jun amino-terminal kinase (JNK) inhibitor JNK-IN-8 effectively suppressed tumorigenesis and bone metastasis in MCF7-BM cells. Furthermore, c-Jun downstream signals were specifically correlated with the clinical prognosis of patients with the luminal subtype of breast cancer. Our results illustrate the potential benefits of a therapy that targets c-Jun to prevent bone metastasis in luminal breast cancer. IMPLICATIONS c-Jun expression mediates bone metastasis in luminal breast cancer by forming a vicious cycle in the bone microenvironment, which reveals potential strategies for subtype-specific bone metastasis therapy.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shota Katayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuru Futakuchi
- Department of Pathological Diagnostics, Yamagata University, Yamagata, Japan
| | - Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mai Sakamoto
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
13
|
Dubourg V, Schulz MC, Terpe P, Ruhs S, Kopf M, Gekle M. Hypothesis-generating analysis of the impact of non-damaging metabolic acidosis on the transcriptome of different cell types: Integrated stress response (ISR) modulation as general transcriptomic reaction to non-respiratory acidic stress? PLoS One 2023; 18:e0290373. [PMID: 37624790 PMCID: PMC10456223 DOI: 10.1371/journal.pone.0290373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular pH is an important parameter influencing cell function and fate. Microenvironmental acidosis accompanies different pathological situations, including inflammation, hypoxia and ischemia. Research focussed mainly on acidification of the tumour micromilieu and the possible consequences on proliferation, migration and drug resistance. Much less is known regarding the impact of microenvironmental acidosis on the transcriptome of non-tumour cells, which are exposed to local acidosis during inflammation, hypoxia, ischemia or metabolic derailment. In the present hypothesis-generating study, we investigated the transcriptional impact of extracellular acidosis on five non-tumour cell types of human and rat origin, combining RNA-Sequencing and extensive bioinformatics analyses. For this purpose, cell type-dependent acidosis resiliences and acidosis-induced transcriptional changes within these resilience ranges were determined, using 56 biological samples. The RNA-Sequencing results were used for dual differential-expression analysis (DESeq and edgeR) and, after appropriate homology mapping, Gene Ontology enrichment analysis (g:Profiler), Ingenuity Pathway Analysis (IPA®), as well as functional enrichment analysis for predicted upstream regulators, were performed. Extracellular acidosis led to substantial, yet different, quantitative transcriptional alterations in all five cell types. Our results identify the regulator of the transcriptional activity NCOA5 as the only general acidosis-responsive gene. Although we observed a species- and cell type-dominated response regarding gene expression regulation, Gene Ontology enrichment analysis and upstream regulator analysis predicted a general acidosis response pattern. Indeed, they suggested the regulation of four general acidosis-responsive cellular networks, which comprised the integrated stress response (ISR), TGF-β signalling, NFE2L2 and TP53. Future studies will have to extend the results of our bioinformatics analyses to cell biological and cell physiological validation experiments, in order to test the refined working hypothesis here.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marie-Christin Schulz
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Klinik für Anästhesiologie und Intensivmedizin, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
14
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
15
|
Zhang H, Liesveld JL, Calvi LM, Lipe BC, Xing L, Becker MW, Schwarz EM, Yeh SCA. The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Res 2023; 11:15. [PMID: 36918531 PMCID: PMC10014945 DOI: 10.1038/s41413-023-00249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.
Collapse
Affiliation(s)
- Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jane L Liesveld
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Endocrinology/Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Brea C Lipe
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Allergy/Immunology/Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Shu-Chi A Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
17
|
Yu P, Yan K, Wang S, Yao C, Lei Z, Tang Y, Zhang F. NIR-II Dyad-Doped Ratiometric Nanosensor with Enhanced Spectral Fidelity in Biological Media for In Vivo Biosensing. NANO LETTERS 2022; 22:9732-9740. [PMID: 36454944 DOI: 10.1021/acs.nanolett.2c04084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ratiometric fluorescence nanosensors provide quantitative biological information. However, spectral shift and distortion of ratiometric nanosensors in biological media often compromise sensing accuracy, limiting in vivo applications. Here, we develop a fluorescent dyad (aBOP-IR1110) in the second near-infrared (NIR-II) window by covalently linking an asymmetric aza-BODIPY with a ONOO--responsive meso-thiocyanine. The dyad encapsulated in the PEGylated nanomicelle largely improves spectral fidelity in serum culture by >9.4 times compared to that of its noncovalent counterpart. The increased molecular weights (>1480 Da) and hydrophobicity (LogP of 7.87-12.36) lock dyads inside the micelles, which act as the shield against the external environment. ONOO--altered intramolecular Förster resonance energy transfer (FRET) generates linear ratiometric response with better serum tolerance, enabling us to monitor the dynamics of oxidative stress in traumatic brain injury and evaluate therapeutic efficiency. The results show high correlation with in vitro triphenyltetrazolium chloride staining, suggesting the potential of NIR-II dyad-doped nanosensor for in vivo high-fidelity sensing applications.
Collapse
Affiliation(s)
- Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 200433, China
| | - Yaohui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
19
|
Harris JC, Sterin EH, Day ES. Membrane-Wrapped Nanoparticles for Enhanced Chemotherapy of Acute Myeloid Leukemia. ACS Biomater Sci Eng 2022; 8:4439-4448. [PMID: 36103274 PMCID: PMC9633094 DOI: 10.1021/acsbiomaterials.2c00832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work reports the development of a biomimetic membrane-wrapped nanoparticle (MWNP) platform for targeted chemotherapy of acute myeloid leukemia (AML). Doxorubicin (DOX), a chemotherapeutic used to treat leukemias, lymphomas, and other cancers, was encapsulated in polymeric NPs that were coated with cytoplasmic membranes derived from human AML cells. The release rate of DOX from the MWNPs was characterized under both storage and physiological conditions, with faster release observed at pH 5.5 than pH 7.4. The system was then introduced to AML cell cultures to test the functionality of the released DOX cargo as compared to DOX delivered freely or via NPs coated with poly(ethylene glycol) (PEG). The MWNPs delivered DOX in an efficient and targeted manner, inducing up to 80% apoptosis in treated cells at a dose of 5 μM, compared to 15% for free DOX and 17% for DOX-loaded PEG-coated NPs at the same drug concentration. The mechanism of cell death was confirmed as DNA double-strand breaks through a γH2A.X assay, indicating that the released DOX retained its expected mechanism of action. These findings designate MWNPs as a robust drug delivery system with great potential for future development in treatments of AML and other blood cancers.
Collapse
Affiliation(s)
- Jenna C Harris
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Eric H Sterin
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, 4th Floor, Newark, Delaware 19713, United States
| | - Emily S Day
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, 4th Floor, Newark, Delaware 19713, United States
- Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|