1
|
Zhao S, Zhang B, Li L, Zhang P, Li G, Zhu Z, Choi Y, Dong L, Luo M, Guo S. Robust I···H-O Intramolecular Halogen Bond Boosts Reversible I 3-/I - Redox Behavior for Sustainable Potassium-Iodine Batteries. J Am Chem Soc 2025; 147:669-677. [PMID: 39723906 DOI: 10.1021/jacs.4c12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of Ti3C2(OH)x-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation. The cutting-edge characterizations and theoretical calculation results reveal that CNP exhibits great affinity to the electrochemically active I3-/I- redox couple, while the Ti-OH functional groups on MXene restrict the dissolution of polyiodides through forming the stable I···H-O intramolecular halogen bond. Benefiting from such a synergistic effect, the free-standing electrode ensures the reversible redox chemistry for developing high-performing potassium-iodine batteries. The fabricated pouch cell (100 mAh) shows a high energy density (130 Wh kg-1) with a full charge/discharge of 10 min, outperforming state-of-the-art new battery systems that require both high energy/power density. Such a potassium-iodine battery reduces the cost to 255 US$ kW h-1, which is much lower than that of the cathode materials in lithium-ion batteries and offers a sustainable option for grid-scale energy storage.
Collapse
Affiliation(s)
- Shuoqing Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Bohan Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Peng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Guohao Li
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhenyu Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - YoonJeong Choi
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Liubing Dong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Cha Y, Ki H, Im D, Lee Y, Lee S, Kim J, Lee JH, Kim J, Ihee H. The carbon-iodine bond cleavage and isomerization of iodoform visualized with femtosecond X-ray liquidography. Chem Sci 2024:d4sc04604h. [PMID: 39483255 PMCID: PMC11523838 DOI: 10.1039/d4sc04604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Iodoform (CHI3) has garnered significant attention for its unique ability to induce photo-cyclopropanation of olefins by releasing an iodine radical through C-I bond cleavage. However, the detailed mechanism underlying CHI3 photodissociation is still not fully understood. Here, we elucidate the ultrafast structural dynamics of CHI3 upon photoexcitation using femtosecond time-resolved X-ray liquidography (fs-TRXL) at an X-ray free-electron laser facility. The fs-TRXL data was decomposed into the isotropic and anisotropic data. The isotropic data reveal that the formation of CHI2 and I radicals upon photolysis precedes the emergence of iso-CHI2-I. After a short induction period, two competing geminate recombination pathways of CHI2 and I radicals take place: one pathway leads to the recovery of CHI3, while the other results in the formation of iso-CHI2-I. Additionally, the anisotropic data show how the transient anisotropic distribution of both the species formed upon photoexcitation and the ground-state species depleted upon photoexcitation decays through rotational dephasing. Furthermore, the observed structural dynamics of CHI3 has distinctive differences with that of BiI3, which can be attributed to differences in their central moieties, CH and Bi. Our findings provide insights into the photoinduced reaction dynamics of CHI3, enhancing the understanding of its role in photochemical reactions.
Collapse
Affiliation(s)
- Yongjun Cha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hosung Ki
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Donghwan Im
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonggon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jungmin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory Pohang 37673 Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University 100 Inha-ro, Michuhol-gu Incheon 22212 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
3
|
Heo J, Segalina A, Kim D, Ahn D, Oang KY, Park S, Kim H, Ihee H. Ultrafast Interfacial Charge Transfer Initiates Mechanical Stress and Heat Transport at the Au-TiO 2 Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400919. [PMID: 38976563 PMCID: PMC11425853 DOI: 10.1002/advs.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 07/10/2024]
Abstract
Metal-semiconductor interfaces are crucial components of optoelectronic and electrical devices, the performance of which hinges on intricate dynamics involving charge transport and mechanical interaction at the interface. Nevertheless, structural changes upon photoexcitation and subsequent carrier transportation at the interface, which crucially impact hot carrier stability and lifetime, remain elusive. To address this long-standing problem, they investigated the electron dynamics and resulting structural changes at the Au/TiO2 interface using ultrafast electron diffraction (UED). The analysis of the UED data reveals that interlayer electron transfer from metal to semiconductor generates a strong coupling between the two layers, offering a new way for ultrafast heat transfer through the interface and leading to a coherent structural vibration that plays a critical role in propagating mechanical stress. These findings provide insights into the relationship between electron transfer and interfacial mechanical and thermal properties.
Collapse
Affiliation(s)
- Jun Heo
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Radiation Center for Ultrafast ScienceKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Alekos Segalina
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Doo‐Sik Ahn
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
Samsung ElectronicsRepublic of Korea
| | - Key Young Oang
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Radiation Center for Ultrafast ScienceKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Sungjun Park
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
Samsung ElectronicsRepublic of Korea
| | - Hyungjun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
4
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
5
|
Kumar N, Sharma N, Kumar V, Kumar V, Jangid K, Devi B, Dwivedi AR, Giri K, Kumar R, Kumar V. Iodine-PEG as a unique combination for the metal-free synthesis of flavonoids through iodonium-triiodide ion-pair complexation. RSC Adv 2024; 14:6225-6233. [PMID: 38375003 PMCID: PMC10875328 DOI: 10.1039/d3ra08810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
An efficient metal-free single-step protocol has been developed for the direct synthesis of flavones from 2-hydroxyacetophenone and substituted benzaldehydes. This chemical transformation is exclusively promoted by the iodonium-triiodide ion couple formed through iodine and PEG-400 complexation. The triiodide anion not only helps in the abstraction of a proton from the acetophenone but also promotes the cyclization of intermediate chalcone to the corresponding flavones. The flavones were obtained in very high yields without using any toxic metal catalysts or harsh reaction conditions. The reaction mechanism was established through a series of test reactions and entrapping of reaction intermediates. The developed protocol provides direct access to flavones in high yields under milder reaction conditions with great substrate compatibility, including hydroxylated derivatives.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Navneet Sharma
- Department of Computational Sciences, Central University of Punjab Bathinda Punjab India-151401
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Vinay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab India-151401
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab India-151401
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Kousik Giri
- Department of Computational Sciences, Central University of Punjab Bathinda Punjab India-151401
| | - Rakesh Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| |
Collapse
|
6
|
Heo J, Kim D, Segalina A, Ki H, Ahn DS, Lee S, Kim J, Cha Y, Lee KW, Yang J, Nunes JPF, Wang X, Ihee H. Capturing the generation and structural transformations of molecular ions. Nature 2024; 625:710-714. [PMID: 38200317 PMCID: PMC10808067 DOI: 10.1038/s41586-023-06909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Molecular ions are ubiquitous and play pivotal roles1-3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4-6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9-11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that mega-electronvolt ultrafast electron diffraction (MeV-UED)12-14, used in conjunction with resonance-enhanced multiphoton ionization, can monitor the formation of 1,3-dibromopropane (DBP) cations and their subsequent structural dynamics forming a halonium ion. We find that the DBP+ cation remains for a substantial duration of 3.6 ps in aptly named 'dark states' that are structurally indistinguishable from the DBP electronic ground state. The structural data, supported by surface-hopping simulations15 and ab initio calculations16, reveal that the cation subsequently decays to iso-DBP+, an unusual intermediate with a four-membered ring containing a loosely bound17,18 bromine atom, and eventually loses the bromine atom and forms a bromonium ion with a three-membered-ring structure19. We anticipate that the approach used here can also be applied to examine the structural dynamics of other molecular ions and thereby deepen our understanding of ion chemistry.
Collapse
Affiliation(s)
- Jun Heo
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alekos Segalina
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hosung Ki
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Foundry Business, Samsung Electronics Inc., Hwasung, Gyeonggi, Republic of Korea
| | - Seonggon Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jungmin Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yongjun Cha
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyung Won Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - J Pedro F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Lima FA, Otte F, Vakili M, Ardana-Lamas F, Biednov M, Dall’Antonia F, Frankenberger P, Gawelda W, Gelisio L, Han H, Huang X, Jiang Y, Kloos M, Kluyver T, Knoll M, Kubicek K, Bermudez Macias IJ, Schulz J, Turkot O, Uemura Y, Valerio J, Wang H, Yousef H, Zalden P, Khakhulin D, Bressler C, Milne C. Experimental capabilities for liquid jet samples at sub-MHz rates at the FXE Instrument at European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1168-1182. [PMID: 37860937 PMCID: PMC10624029 DOI: 10.1107/s1600577523008159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
The Femtosecond X-ray Experiments (FXE) instrument at the European X-ray Free-Electron Laser (EuXFEL) provides an optimized platform for investigations of ultrafast physical, chemical and biological processes. It operates in the energy range 4.7-20 keV accommodating flexible and versatile environments for a wide range of samples using diverse ultrafast X-ray spectroscopic, scattering and diffraction techniques. FXE is particularly suitable for experiments taking advantage of the sub-MHz repetition rates provided by the EuXFEL. In this paper a dedicated setup for studies on ultrafast biological and chemical dynamics in solution phase at sub-MHz rates at FXE is presented. Particular emphasis on the different liquid jet sample delivery options and their performance is given. Our portfolio of high-speed jets compatible with sub-MHz experiments includes cylindrical jets, gas dynamic virtual nozzles and flat jets. The capability to perform multi-color X-ray emission spectroscopy (XES) experiments is illustrated by a set of measurements using the dispersive X-ray spectrometer in von Hamos geometry. Static XES data collected using a multi-crystal scanning Johann-type spectrometer are also presented. A few examples of experimental results on ultrafast time-resolved X-ray emission spectroscopy and wide-angle X-ray scattering at sub-MHz pulse repetition rates are given.
Collapse
Affiliation(s)
- F. A. Lima
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - F. Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Fakultät für Physik, Technical University Dortmund, Dortmund, Germany
| | - M. Vakili
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - M. Biednov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - W. Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - L. Gelisio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - X. Huang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T. Kluyver
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Knoll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Kubicek
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - J. Schulz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - O. Turkot
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Uemura
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P. Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | - C. Milne
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
8
|
Kochetov V, Ahsan MS, Hein D, Wilkinson I, Bokarev SI. Valence and Core Photoelectron Spectra of Aqueous I3- from Multi-Reference Quantum Chemistry. Molecules 2023; 28:5319. [PMID: 37513192 PMCID: PMC10383688 DOI: 10.3390/molecules28145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The I3- molecule is known to undergo substantial structural reorganization upon solvation by a protic solvent, e.g., water. However, the details of this process are still controversially discussed in the literature. In the present study, we combined experimental and theoretical efforts to disentangle this controversy. The valence (5p), N4,5 (4d), and M4,5 (3d) edge photoelectron spectra were measured in an aqueous solution and computed using high-level multi-reference methods. Our previous publication mainly focused on obtaining reliable experimental evidence, whereas in the present article, we focused primarily on theoretical aspects. The complex electronic structure of I3- requires the inclusion of both static and dynamic correlation, e.g., via the multi-configurational perturbation theory treatment. However, the resulting photoelectron spectra appear to be very sensitive to problems with variational stability and intruder states. We attempted to obtain artifact-free spectra, allowing for a more reliable interpretation of experiments. Finally, we concluded that the 3d Photoelectron Spectrum (PES) is particularly informative, evidencing an almost linear structure with a smaller degree of bond asymmetry than previously reported.
Collapse
Affiliation(s)
- Vladislav Kochetov
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
| | - Md Sabbir Ahsan
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Dennis Hein
- Operando Interfacial Photochemistry, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Iain Wilkinson
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
- Chemistry Department, School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
9
|
Nimmrich A, Panman MR, Berntsson O, Biasin E, Niebling S, Petersson J, Hoernke M, Björling A, Gustavsson E, van Driel TB, Dohn AO, Laursen M, Zederkof DB, Tono K, Katayama T, Owada S, Nielsen MM, Davidsson J, Uhlig J, Hub JS, Haldrup K, Westenhoff S. Solvent-Dependent Structural Dynamics in the Ultrafast Photodissociation Reaction of Triiodide Observed with Time-Resolved X-ray Solution Scattering. J Am Chem Soc 2023. [PMID: 37163700 PMCID: PMC10375522 DOI: 10.1021/jacs.3c00484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.
Collapse
Affiliation(s)
- Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Matthijs R Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Elisa Biasin
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Jonas Petersson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Maria Hoernke
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Tim B van Driel
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
- Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Mads Laursen
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jan Davidsson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| | - Jochen S Hub
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Department of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
10
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
11
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|