1
|
Cho FH, Park J, Oh S, Yu J, Jeong Y, Colazzo L, Spree L, Hommel C, Ardavan A, Boero G, Donati F. A continuous-wave and pulsed X-band electron spin resonance spectrometer operating in ultra-high vacuum for the study of low dimensional spin ensembles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:063904. [PMID: 38864723 DOI: 10.1063/5.0189974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavelength microstrip line resonator realized using epitaxially grown copper films on single crystal Al2O3 substrates. The one-dimensional microstrip line resonator exhibits a quality factor of more than 200 at room temperature, close to the upper limit determined by radiation losses. The surface characterizations of the copper strip of the resonator by atomic force microscopy, low-energy electron diffraction, and scanning tunneling microscopy show that the surface is atomically clean, flat, and single crystalline. Measuring the ESR spectrum at 15 K from a few nm thick molecular film of YPc2, we find a continuous-wave ESR sensitivity of 2.6 × 1011 spins/G · Hz1/2, indicating that a signal-to-noise ratio of 3.9 G · Hz1/2 is expected from a monolayer of YPc2 molecules. Advanced pulsed ESR experimental capabilities, including dynamical decoupling and electron-nuclear double resonance, are demonstrated using free radicals diluted in a glassy matrix.
Collapse
Affiliation(s)
- Franklin H Cho
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Juyoung Park
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Soyoung Oh
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Jisoo Yu
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeong
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Luciano Colazzo
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Lukas Spree
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Caroline Hommel
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Arzhang Ardavan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Giovanni Boero
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Fabio Donati
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
2
|
Mutter PM, Burkard G. Fingerprints of Qubit Noise in Transient Cavity Transmission. PHYSICAL REVIEW LETTERS 2022; 128:236801. [PMID: 35749203 DOI: 10.1103/physrevlett.128.236801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Noise affects the coherence of qubits and thereby places a bound on the performance of quantum computers. We theoretically study a generic two-level system with fluctuating control parameters in a photonic cavity and find that basic features of the noise spectral density are imprinted in the transient transmission through the cavity. We obtain analytical expressions for generic noise and proceed to study the cases of quasistatic, white and 1/f^{α} noise in more detail. Additionally, we propose a way of extracting the noise power spectral density in a frequency band only bounded by the range of the qubit-cavity detuning and with an exponentially decaying error due to finite measurement times. Our results suggest that measurements of the time-dependent transmission probability represent a novel way of extracting noise characteristics.
Collapse
Affiliation(s)
- Philipp M Mutter
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Guido Burkard
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
3
|
Connors EJ, Nelson J, Edge LF, Nichol JM. Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations. Nat Commun 2022; 13:940. [PMID: 35177606 PMCID: PMC8854405 DOI: 10.1038/s41467-022-28519-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Electron spins in silicon quantum dots are promising qubits due to their long coherence times, scalable fabrication, and potential for all-electrical control. However, charge noise in the host semiconductor presents a major obstacle to achieving high-fidelity single- and two-qubit gates in these devices. In this work, we measure the charge-noise spectrum of a Si/SiGe singlet-triplet qubit over nearly 12 decades in frequency using a combination of methods, including dynamically-decoupled exchange oscillations with up to 512 π pulses during the qubit evolution. The charge noise is colored across the entire frequency range of our measurements, although the spectral exponent changes with frequency. Moreover, the charge-noise spectrum inferred from conductance measurements of a proximal sensor quantum dot agrees with that inferred from coherent oscillations of the singlet-triplet qubit, suggesting that simple transport measurements can accurately characterize the charge noise over a wide frequency range in Si/SiGe quantum dots.
Collapse
Affiliation(s)
- Elliot J Connors
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - J Nelson
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Lisa F Edge
- HRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, CA, 90265, USA
| | - John M Nichol
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|