1
|
Kang S, Hong D, Das B, Lee SM, Park JS, Lee Y, Lee S. Ferroelectric Stochasticity in 2D CuInP 2S 6 and Its Application for True Random Number Generator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406850. [PMID: 39011946 DOI: 10.1002/adma.202406850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Indexed: 07/17/2024]
Abstract
True random number generators (TRNGs), which create cryptographically secure random bitstreams, hold great promise in addressing security concerns regarding hardware, communication, and authentication in the Internet of Things (IoT) realm. Recently, TRNGs based on nanoscale materials have gained considerable attention for avoiding conventional and predictable hardware circuitry designs that can be vulnerable to machine learning (ML) attacks. In this article, a low-power and low-cost TRNG developed by exploiting stochastic ferroelectric polarization switching in 2D ferroelectric CuInP2S6 (CIPS)-based capacitive structures, is reported. The stochasticity arises from the probabilistic switching of independent electrical dipoles. The TRNG exhibits enhanced stochastic variability with near-ideal entropy, uniformity, uniqueness, Hamming distance, and independence from autocorrelation variations. Its unclonability is systematically examined using device-to-device variations. The generated cryptographic bitstreams pass the National Institute of Standards and Technology (NIST) randomness tests. This nanoscale CIPS-based TRNG is circuit-integrable and exhibits potential for hardware security in edge devices with advanced data encryption.
Collapse
Affiliation(s)
- Seongkweon Kang
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Doojin Hong
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Biswajit Das
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sang-Min Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ji-Sang Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yoonmyung Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sungjoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
2
|
Liu L, Chen W, Zheng Y. Emergent Mechanics of Magnetic Skyrmions Deformed by Defects. PHYSICAL REVIEW LETTERS 2023; 131:246701. [PMID: 38181138 DOI: 10.1103/physrevlett.131.246701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
While magnetic skyrmions are often modeled as rigid particles, both experiments and micromagnetic simulations indicate their easy-to-deform characteristic, especially when their motion is restricted by defects. Here we establish a theoretical framework for the dynamics of magnetic skyrmions by incorporating the degrees of freedom related to deformation and predict well the current-driven dynamics of deformable skyrmions in the presence of line defects without any parameter fitting, where classical theories based on rigid-particle assumption deviate significantly. Further, we define an emergent property of magnetic skyrmions-flexibility and show that this property strongly modulates the depinning dynamics of skyrmions along a line defect with breaches. Our work explores the emergent mechanics of magnetic skyrmions and extends the current understanding on the dynamics of skyrmions interacted with defects.
Collapse
Affiliation(s)
- Linjie Liu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, 510275 Guangzhou, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, 510275, Guangzhou, China
| | - Weijin Chen
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, 510275 Guangzhou, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, 510275, Guangzhou, China
- School of Materials, Sun Yat-sen University, 518107 Shenzhen, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, 510275 Guangzhou, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, 510275, Guangzhou, China
| |
Collapse
|
3
|
Chen R, Li Y, Griggs W, Zang Y, Pavlidis VF, Moutafis C. Encoding and Multiplexing Information Signals in Magnetic Multilayers with Fractional Skyrmion Tubes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37428624 PMCID: PMC10360071 DOI: 10.1021/acsami.3c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tailored magnetic multilayers (MMLs) provide skyrmions with enhanced thermal stability, leading to the possibility of skyrmion-based devices for room-temperature applications. At the same time, the search for additional stable topological spin textures has been under intense research focus. Besides their fundamental importance, such textures may expand the information encoding capability of spintronic devices. However, fractional spin texture states within MMLs in the vertical dimension are yet to be investigated. In this work, we demonstrate numerically fractional skyrmion tubes (FSTs) in a tailored MML system. We subsequently propose to encode sequences of information signals with FSTs as information bits in a tailored MML device. Micromagnetic simulations and theoretical calculations are used to verify the feasibility of hosting distinct FST states within a single device, and their thermal stability is investigated. A multilayer multiplexing device is proposed, where multiple sequences of the information signals can be encoded and transmitted based on the nucleation and propagation of packets of FSTs. Finally, pipelined information transmission and automatic demultiplexing are demonstrated by exploiting the skyrmion Hall effect and introducing voltage-controlled synchronizers and width-based track selectors. The findings indicate that FSTs can be potential candidates as information carriers for future spintronic applications.
Collapse
Affiliation(s)
- Runze Chen
- Nano Engineering and Spintronic Technologies (NEST) Research Group, Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Yu Li
- Nano Engineering and Spintronic Technologies (NEST) Research Group, Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Will Griggs
- Nano Engineering and Spintronic Technologies (NEST) Research Group, Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Yuzhe Zang
- Nano Engineering and Spintronic Technologies (NEST) Research Group, Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Vasilis F Pavlidis
- Advanced Processor Technologies (APT) Research Group, Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Christoforos Moutafis
- Nano Engineering and Spintronic Technologies (NEST) Research Group, Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
4
|
Gruber R, Brems MA, Rothörl J, Sparmann T, Schmitt M, Kononenko I, Kammerbauer F, Syskaki MA, Farago O, Virnau P, Kläui M. 300-Times-Increased Diffusive Skyrmion Dynamics and Effective Pinning Reduction by Periodic Field Excitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208922. [PMID: 36739114 DOI: 10.1002/adma.202208922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/30/2023] [Indexed: 05/17/2023]
Abstract
Thermally induced skyrmion dynamics, as well as skyrmion pinning effects, in thin films have attracted significant interest. While pinning poses challenges in deterministic skyrmion devices and slows down skyrmion diffusion, for applications in non-conventional computing, both pinning of an appropriate strength and skyrmion diffusion speed are key. Here, periodic field excitations are employed to realize an increase of the skyrmion diffusion by more than two orders of magnitude. Amplifying the excitation, a drastic reduction of the effective skyrmion pinning, is reported, and a transition from pinning-dominated diffusive hopping to dynamics approaching free diffusion is observed. By tailoring the field oscillation frequency and amplitude, a continuous tuning of the effective pinning and skyrmion dynamics is demonstrated, which is a key asset and enabler for non-conventional computing applications. It is found that the periodic excitations additionally allow stabilization of skyrmions at different sizes for field values that are inaccessible in static systems, opening up new approaches to ultrafast skyrmion motion by transiently exciting moving skyrmions.
Collapse
Affiliation(s)
- Raphael Gruber
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Maarten A Brems
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Jan Rothörl
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Tobias Sparmann
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Maurice Schmitt
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Iryna Kononenko
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
- National Academy of Sciences of Ukraine, Institute of Applied Physics, 58 Petropavlivska St., Sumy, 40000, Ukraine
| | - Fabian Kammerbauer
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Maria-Andromachi Syskaki
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
- Singulus Technologies AG, Hanauer Landstraße 103, 63796, Kahl am Main, Germany
| | - Oded Farago
- Biomedical Engineering Department, Ben Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Peter Virnau
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| | - Mathias Kläui
- Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany
| |
Collapse
|
5
|
Liu C, Zhang S, Maier SA, Ren H. Disorder-Induced Topological State Transition in the Optical Skyrmion Family. PHYSICAL REVIEW LETTERS 2022; 129:267401. [PMID: 36608180 DOI: 10.1103/physrevlett.129.267401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Skyrmions endowed with topological protection have been extensively investigated in various platforms including magnetics, ferroelectrics, and liquid crystals, stimulating applications such as memories, logic devices, and neuromorphic computing. While the optical counterpart has been proposed and realized recently, the study of optical skyrmions is still in its infancy. Among the unexplored questions, the investigation of the topology induced robustness against disorder is of substantial importance on both fundamental and practical sides but remains elusive. In this Letter, we manage to generate optical skyrmions numerically in real space with different topological features at will, providing a unique platform to investigate the robustness of various optical skyrmions. A disorder-induced topological state transition is observed for the first time in a family of optical skyrmions composed of six classes with different skyrmion numbers. Intriguingly, the optical skyrmions produced from a vectorial hologram are exceptionally robust against scattering from a random medium, shedding light on topological photonic devices for the generation and manipulation of robust states for applications including imaging and communication.
Collapse
Affiliation(s)
- Changxu Liu
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom and Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universitaet Muenchen, 80539 Muenchen, Germany
| | - Shuang Zhang
- Department of Physics, University of Hong Kong, Hong Kong, China and Department of Electrical Engineering, University of Hong Kong, Hong Kong, China
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universitaet Muenchen, 80539 Muenchen, Germany; and Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Chen G, Ophus C, Lo Conte R, Wiesendanger R, Yin G, Schmid AK, Liu K. Ultrasensitive Sub-monolayer Palladium Induced Chirality Switching and Topological Evolution of Skyrmions. NANO LETTERS 2022; 22:6678-6684. [PMID: 35939526 DOI: 10.1021/acs.nanolett.2c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral spin textures are fundamentally interesting, with promise for device applications. Stabilizing chirality is conventionally achieved by introducing Dzyaloshinskii-Moriya interaction (DMI) in asymmetric multilayers, where the thickness of each layer is at least a few monolayers. Here we report an ultrasensitive chirality switching in (Ni/Co)n multilayer induced by capping with only 0.22 monolayer of Pd. Using spin-polarized low-energy electron microscopy, we monitor the gradual evolution of domain walls from left-handed to right-handed Néel walls and quantify the DMI induced by the Pd capping layer. We also observe the chiral evolution of a skyrmion during the DMI switching, where no significant topological protection is found as the skyrmion winding number varies. This corresponds to a minimum energy cost of <1 attojoule during the skyrmion chirality switching. Our results demonstrate the detailed chirality evolution within skyrmions during the DMI sign switching, which is relevant to practical applications of skyrmionic devices.
Collapse
Affiliation(s)
- Gong Chen
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Colin Ophus
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Roberto Lo Conte
- Department of Materials Science & Engineering, University of California, Berkeley, California 95720, United States
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | | | - Gen Yin
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Andreas K Schmid
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kai Liu
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|