1
|
Wang J, Jiang Z, Xu H, Li X, Jian Y, Xia L, Su P, Liu Q, Chai S, Ma M, Amedlous A, Barreau M, Hao Z, Yu J, He C. Elucidating Confinement and Microenvironment of Ru Clusters Stably Confined in MFI Zeolite for Efficient Propane Oxidation. Angew Chem Int Ed Engl 2025; 64:e202417618. [PMID: 39588740 DOI: 10.1002/anie.202417618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Achieving active and stable heterogeneous catalysts by encapsulating noble metal species within zeolites is highly promising for high utilization and cost efficiency in thermal and environmental catalytic reactions. Ru, considered an economical noble metal alternative with comparable performance, faces great challenges within MFI-type microporous zeolites due to its high cohesive energy and mobility. Herein, an innovative strategy was explored that couples hydrothermal in situ ligand protection with stepwise calcination in a flowing atmosphere to embed ultrasmall Ru clusters anchored at K+-healed silanol sites (≡Si-Ruδ+-O-K complexes) within 10-membered ring sinusoidal channels of MFI. Comprehensive experiments and theoretical calculations unveiled that the interplay between confined Ru clusters and MFI induces local strain in MFI, creating a unique catalytic microenvironment around the Ru clusters. This synergy interaction enhances alkane deep oxidation as the confined Ru clusters and the MFI microenvironment collectively pre-activate C3H8 and O2, facilitate the cleavage of C-H and C-C bonds at low temperatures. Notably, the stable geometric and electronic properties of the confined Ru show exceptional thermal stability up to 1000 °C, rivaling fresh catalysts. These findings shed vital methodological and mechanistic insights for developing efficacious heterogeneous catalysts for thermal catalysis.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
- Laboratoire Catalyse & Spectrochimie, Normandie Univ, ENSICAEN, UNICAEN, CNRS, Caen, 14000, France
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinzhe Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Lianghui Xia
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Pei Su
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Qiyuan Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
| | - Abdallah Amedlous
- Laboratoire Catalyse & Spectrochimie, Normandie Univ, ENSICAEN, UNICAEN, CNRS, Caen, 14000, France
| | - Mathias Barreau
- Laboratoire Catalyse & Spectrochimie, Normandie Univ, ENSICAEN, UNICAEN, CNRS, Caen, 14000, France
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, P.R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, P.R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P.R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, P.R. China
| |
Collapse
|
2
|
Zhou J, Sun Q, Qin Y, Liu H, Hu P, Xiong C, Ji H. Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation. J Colloid Interface Sci 2024; 663:94-102. [PMID: 38394821 DOI: 10.1016/j.jcis.2024.01.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Propane dehydrogenation (PDH) has been an outstanding technique with a bright prospect, which can meet the growing global demand for propylene. However, undesired side reactions result in the deactivation of the Pt-based catalysts, which contribute to the insufficient lifetime of the catalysts. Herein, we describe a novel catalyst by encapsulating bimetallic CoCu-modified Pt species in S-1 zeolite for efficient dehydrogenation of propane, which synergizes the confinement of zeolites and the geometric and electronic effects on Pt species for enhancing the catalyst stability. The introduction of bimetallic additives efficiently promotes the dispersion of platinum and the electron transfer between Pt species and the additives, which greatly prolongs the lifetime of the catalysts. Particularly, no obvious deactivation is observed on 0.2Pt0.3Co0.5CuK@S-1 after 93 h on stream with a weight hourly space velocity (WHSV) of 5.4 h-1, revealing an ultralow deactivation constant of 0.0011 h-1 (t = 909 h). The formation rate of propylene still maintains at a high value of 407 mol gPt-1 h-1 (WHSV = 21.6 h-1) at 580 ℃ even after on pure propane stream for 42 h. The catalyst with the bimetallic CoCu-modified Pt species in S-1 zeolite reveals ultra-high activity and stability for PDH, which is ascribed to the highly dispersed Pt species and the stabilization effect of bimetallic additives on Pt species.
Collapse
Affiliation(s)
- Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuhan Qin
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China.
| |
Collapse
|
3
|
Zhao M, Wang X, Xu J, Li Y, Wang X, Chu X, Wang K, Wang Z, Zhang LL, Feng J, Song S, Zhang H. Strengthening the Metal-Acid Interactions by Using CeO 2 as Regulators of Precisely Placing Pt Species in ZSM-5 for Furfural Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313596. [PMID: 38408470 DOI: 10.1002/adma.202313596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Understanding the synergism between the metal site and acid site is of great significance in boosting the efficiency of bi-functional catalysts in many heterogeneous reactions, particularly in biomass upgrading. Herein, a "confined auto-redox" strategy is reported to fix CeO2-anchored Pt atoms on the inner wall of a ZSM-5 cage, achieving the target of finely controlling the placements of the two active sites. Compared with the conventional surface-supported counterpart, the encapsulated Pt/CeO2@ZSM-5 catalyst possesses remarkably-improved activity and selectivity, which can convert >99% furfural into cyclopentanone with 97.2% selectivity in 6 h at 160 °C. Besides the excellent catalytic performance, the ordered metal-acid distribution also makes such kind of catalyst an ideal research subject for metal-acid interactions. The following mechanization investigation reveals that the enhancement is strongly related to the unique encapsulation structure, which promotes the migration of the reactants over different active sites, thereby contributing to the tandem reaction.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Chu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zijian Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ling-Ling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Heard CJ, Grajciar L, Erlebach A. Migration of zeolite-encapsulated subnanometre platinum clusters via reactive neural network potentials. NANOSCALE 2024; 16:8108-8118. [PMID: 38567421 DOI: 10.1039/d4nr00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The migration of atoms and small clusters is an important process in sub-nanometre scale heterogeneous catalysis, affecting activity, accessibility and deactivation through sintering. Control of migration can be partially achieved via encapsulation of sub-nanometre metal particles into porous media such as zeolites. However, a general understanding of the migration mechanisms and their sensitivity to particle size and framework environment is lacking. Here, we extend the time-scale and sampling of atomistic simulations of platinum cluster diffusion in siliceous zeolite frameworks, by introducing a reactive neural network potential of density functional quality. We observe that Pt atoms migrate in a qualitatively different manner from clusters, occupying the dense region of the framework and avoiding the free pore space. We also find that for cage-like zeolite CHA there exists a maximum in self diffusivity for the Pt dimer beyond which, confinement effects hinder intercage migration. By extending the quality of sampling, NNP-based methods allow for the discovery of novel dynamical processes at the atomistic scale, bringing modelling closer to operando experimental characterization of catalytic materials.
Collapse
Affiliation(s)
- Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Praha 2, 12843, Czech Republic.
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Praha 2, 12843, Czech Republic.
| | - Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Praha 2, 12843, Czech Republic.
| |
Collapse
|
5
|
Xiao Y, Wang Z, Yao B, Cao M, Wang Y. Guiding the Driving Factors on Plasma Super-Photothermal S-Scheme Core-Shell Nanoreactor to Enhance Photothermal Catalytic H 2 Evolution and Selective CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304843. [PMID: 37936334 DOI: 10.1002/smll.202304843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 11/09/2023]
Abstract
Light-induced heat has a non-negligible role in photocatalytic reactions. However, it is still challenging to design highly efficient catalysts that can make use of light and thermal energy synergistically. Herein, the study proposes a plasma super-photothermal S-scheme heterojunction core-shell nanoreactor based on manipulation of the driving factors, which consists of α-Fe2 O3 encapsulated by g-C3 N4 modified with gold quantum dots. α-Fe2 O3 can promote carrier spatial separation while also acting as a thermal core to radiate heat to the shell, while Au quantum dots transfer energetic electrons and heat to g-C3 N4 via surface plasmon resonance. Consequently, the catalytic activity of Au/α-Fe2 O3 @g-C3 N4 is significantly improved by internal and external double hot spots, and it shows an H2 evolution rate of 5762.35 µmol h-1 g-1 , and the selectivity of CO2 conversion to CH4 is 91.2%. This work provides an effective strategy to design new plasma photothermal catalysts for the solar-to-fuel transition.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 6500504, P. R. China
| |
Collapse
|
6
|
Wang J, Li R, Zhang G, Dong C, Fan Y, Yang S, Chen M, Guo X, Mu R, Ning Y, Li M, Fu Q, Bao X. Confinement-Induced Indium Oxide Nanolayers Formed on Oxide Support for Enhanced CO 2 Hydrogenation Reaction. J Am Chem Soc 2024; 146:5523-5531. [PMID: 38367215 DOI: 10.1021/jacs.3c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.
Collapse
Affiliation(s)
- Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangli Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Wang D, Zhang C, Zhang L, Xie X, Lv Y. Integrated Optimization of Crystal Facets and Nanoscale Spatial Confinement toward the Boosted Catalytic Performance of Pd Nanocrystals. Inorg Chem 2024; 63:1247-1257. [PMID: 38154082 DOI: 10.1021/acs.inorgchem.3c03635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Tuning the surface chemical property and the local environment of nanocrystals is crucial for realizing a high catalytic performance in various reactions. Herein, we aim to elucidate the structure sensitivity of Pd facets on the surface catalytic hydrogenation reaction and to identify what role the nanoconfinement effect plays in the catalytic properties of Pd nanocrystal catalysts. By controlling the coating structures of mesoporous silica (mSiO2) on Pd nanocrystals with different exposed facets that include {100}, {111}, and {hk0}, we present a series of Pd@mSiO2 nanoreactors in core-shell and yolk-shell structures and the discovery of a partial-coated structure, which can provide different types of nanoconfinement, and we propose a seed size-dominated growth mechanism. We demonstrate that a superior activity was exhibited in Pd nanocrystals enclosed by the {hk0} facet as compared to the Pd{100} and Pd{111} facets, and substantially enhanced efficiency and stability were achieved in Pd@mSiO2 particles with yolk-shell structures, indicating a crucial superiority of optimizing the configuration of crystal facets and nanoconfinement. Our study provides an efficient strategy to rationally design and optimize nanocatalysts for promoting catalytic performance.
Collapse
Affiliation(s)
- Dongling Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaobin Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Zhang K, Dou X, Hou H, Zhou Z, Lopez-Haro M, Meira DM, Liu P, He P, Liu L. Generation of Subnanometer Metal Clusters in Silicoaluminate Zeolites as Bifunctional Catalysts. JACS AU 2023; 3:3213-3226. [PMID: 38034962 PMCID: PMC10685439 DOI: 10.1021/jacsau.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
Zeolite-encapsulated subnanometer metal catalysts are an emerging class of solid catalysts with superior performances in comparison to metal catalysts supported on open-structure solid carriers. Currently, there is no general synthesis methodology for the encapsulation of subnanometer metal catalysts in different zeolite structures. In this work, we will show a general synthesis method for the encapsulation of subnanometer metal clusters (Pt, Pd, and Rh) within various silicoaluminate zeolites with different topologies (MFI, CHA, TON, MOR). The successful generation of subnanometer metal species in silicoaluminate zeolites relies on the introduction of Sn, which can suppress the migration of subnanometer metal species during high-temperature oxidation-reduction treatments according to advanced electron microscopy and spectroscopy characterizations. The advantage of encapsulated subnanometer Pt catalysts in silicoaluminate zeolites is reflected in the direct coupling of ethane and benzene for production of ethylbenzene, in which the Pt and the acid sites work in a synergistic way.
Collapse
Affiliation(s)
- Kun Zhang
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Dou
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaming Hou
- National
Energy Center for Coal to Clean Fuels, Synfuels
China Technology Co., Ltd., Beijing 101407, China
| | - Ziyu Zhou
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Miguel Lopez-Haro
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz 11519, Spain
| | - Debora M. Meira
- CLS@APS
sector
20, Advanced Photon Source, Argonne National
Laboratory, 9700 S. Cass
Avenue, Argonne, Illinois 60439, United States
- Canadian
Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Ping Liu
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Peng He
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National
Energy Center for Coal to Clean Fuels, Synfuels
China Technology Co., Ltd., Beijing 101407, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Zhao M, Li C, Gómez D, Gonell F, Diaconescu VM, Simonelli L, Haro ML, Calvino JJ, Meira DM, Concepción P, Corma A. Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite. Nat Commun 2023; 14:7174. [PMID: 37935688 PMCID: PMC10630368 DOI: 10.1038/s41467-023-42938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Zeolites containing Rh single sites stabilized by phosphorous were prepared through a one-pot synthesis method and are shown to have superior activity and selectivity for ethylene hydroformylation at low temperature (50 °C). Catalytic activity is ascribed to confined Rh2O3 clusters in the zeolite which evolve under reaction conditions into single Rh3+ sites. These Rh3+ sites are effectively stabilized in a Rh-(O)-P structure by using tetraethylphosphonium hydroxide as a template, which generates in situ phosphate species after H2 activation. In contrast to Rh2O3, confined Rh0 clusters appear less active in propanal production and ultimately transform into Rh(I)(CO)2 under similar reaction conditions. As a result, we show that it is possible to reduce the temperature of ethylene hydroformylation with a solid catalyst down to 50 °C, with good activity and high selectivity, by controlling the electronic and morphological properties of Rh species and the reaction conditions.
Collapse
Affiliation(s)
- Minjie Zhao
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Chengeng Li
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Daviel Gómez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Francisco Gonell
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Vlad Martin Diaconescu
- CELLS - ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Laura Simonelli
- CELLS - ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Miguel Lopez Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica. Facultad Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510-Cádiz, Spain
| | - Jose Juan Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica. Facultad Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510-Cádiz, Spain
| | - Debora Motta Meira
- Debora CLS@APS, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, USA
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
10
|
Zheng Y, Vidal-Moya A, Hernández-Garrido JC, Mon M, Leyva-Pérez A. Silver-Exchanged Zeolite Y Catalyzes a Selective Insertion of Carbenes into C-H and O-H Bonds. J Am Chem Soc 2023; 145. [PMID: 37922487 PMCID: PMC10655197 DOI: 10.1021/jacs.3c08317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
Commercially available zeolite Y modulates the catalytic activity and selectivity of ultrasmall silver species during the Buchner reaction and the carbene addition to methylene and hydroxyl bonds, by simply exchanging the counter cations of the zeolite framework. The zeolite acts as a macroligand to tune the silver catalytic site, enabling the use of this cheap and recyclable solid catalyst for the in situ formation of carbenes from diazoacetate and selective insertion in different C-H (i.e., cyclohexane) and C-O (i.e., water) bonds. The amount of catalyst in the reaction can be as low as ≤0.1 mol % silver. Besides, this reactivity allows deeply drying the HY zeolite framework by making the strongly adsorbed water molecules react with the in situ formed carbenes.
Collapse
Affiliation(s)
- Yongkun Zheng
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Alejandro Vidal-Moya
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Carlos Hernández-Garrido
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Marta Mon
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Kong X, Wu H, Lu K, Zhang X, Zhu Y, Lei H. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41205-41223. [PMID: 37638534 DOI: 10.1021/acsami.3c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The galvanic replacement reaction (GRR) is recognized as a redox process where one metal undergoes oxidation by the ions of another metal possessing a higher reduction potential. This reaction takes place at the interface between a substrate and a solution containing metal ions. Utilizing metal or metal oxide as sacrificial templates enables the synthesis of metallic nanoparticles, oxide-metal composites, and mixed oxides through GRR. Growing evidence showed that GRR has a direct impact on surface structures and properties. This has generated significant interest in catalysis and opened up new horizons for the application of GRR in energy and chemical transformations. This review provides a comprehensive overview of the synthetic strategies utilizing GRR for the creation of catalytically active structures. It discusses the formation of alloys, intermetallic compounds, single atom alloys, metal-oxide composites, and mixed metal oxides with diverse nanostructures. Additionally, GRR serves as a postsynthesis method to modulate metal-oxide interfaces through the replacement of oxide domains. The review also outlines potential future directions in this field.
Collapse
Affiliation(s)
- Xiao Kong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Hao Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Kun Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Xinyi Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States
| |
Collapse
|
12
|
Xiao Y, Yao B, Cao M, Wang Y. Super-Photothermal Effect-Mediated Fast Reaction Kinetic in S-Scheme Organic/Inorganic Heterojunction Hollow Spheres Toward Optimized Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207499. [PMID: 36896995 DOI: 10.1002/smll.202207499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Indexed: 06/08/2023]
Abstract
Using full solar spectrum for energy conversion and environmental remediation is a major challenge, and solar-driven photothermal chemistry is a promising route to achieve this goal. Herein, this work reports a photothermal nano-constrained reactor based on hollow structured g-C3 N4 @ZnIn2 S4 core-shell S-scheme heterojunction, where the synergistic effect of super-photothermal effect and S-scheme heterostructure significantly improve the photocatalytic performance of g-C3 N4 . The formation mechanism of g-C3 N4 @ZnIn2 S4 is predicted in advance by theoretical calculations and advanced techniques, and the super-photothermal effect of g-C3 N4 @ZnIn2 S4 and its contribution to the near-field chemical reaction is confirmed by numerical simulations and infrared thermography. Consequently, the photocatalytic degradation rate of g-C3 N4 @ZnIn2 S4 for tetracycline hydrochloride is 99.3%, and the photocatalytic hydrogen production is up to 4075.65 µmol h-1 g-1 , which are 6.94 and 30.87 times those of pure g-C3 N4 , respectively. The combination of S-scheme heterojunction and thermal synergism provides a promising insight for the design of an efficient photocatalytic reaction platform.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 6500504, P. R. China
| |
Collapse
|
13
|
Lu K, Kong X, Cai J, Yu S, Zhang X. Review on supported metal catalysts with partial/porous overlayers for stabilization. NANOSCALE 2023; 15:8084-8109. [PMID: 37073811 DOI: 10.1039/d3nr00287j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heterogeneous catalysts of supported metals are important for both liquid-phase and gas-phase chemical transformations which underpin the petrochemical sector and manufacture of bulk or fine chemicals and pharmaceuticals. Conventional supported metal catalysts (SMC) suffer from deactivation resulting from sintering, leaching, coking and so on. Besides the choice of active species (e.g. atoms, clusters, nanoparticles) to maximize catalytic performances, strategies to stabilize active species are imperative for rational design of catalysts, particularly for those catalysts that work under heated and corrosive reaction conditions. The complete encapsulation of metal active species within a matrix (e.g. zeolites, MOFs, carbon, etc.) or core-shell arrangements is popular. However, the use of partial/porous overlayers (PO) to preserve metals, which simultaneously ensures the accessibility of active sites through controlling the size/shape of diffusing reactants and products, has not been systematically reviewed. The present review identifies the key design principles for fabricating supported metal catalysts with partial/porous overlayers (SMCPO) and demonstrates their advantages versus conventional supported metals in catalytic reactions.
Collapse
Affiliation(s)
- Kun Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China.
| | - Xiao Kong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China.
| | - Junmeng Cai
- Biomass Energy Engineering Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai 5645002, Guizhou, P.R. China
- Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute Luban Street, Renhuai 564502, Guizhou, P.R. China
| | - Xingguang Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China.
| |
Collapse
|
14
|
Yasumura S, Kato T, Toyao T, Maeno Z, Shimizu KI. An automated reaction route mapping for the reaction of NO and active species on Ag 4 clusters in zeolites. Phys Chem Chem Phys 2023; 25:8524-8531. [PMID: 36883572 DOI: 10.1039/d2cp04761f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A computational investigation of the catalytic reaction on multinuclear sites is very challenging. Here, using an automated reaction route mapping method, the single-component artificial force induced reaction (SC-AFIR) algorithm, the catalytic reaction of NO and OH/OOH species over the Ag42+ cluster in a zeolite is investigated. The results of the reaction route mapping for H2 + O2 reveal that OH and OOH species are formed over the Ag42+ cluster via an activation barrier lower than that of OH formation from H2O dissociation. Then, reaction route mapping is performed to examine the reactivity of the OH and OOH species with NO molecules over the Ag42+ cluster, resulting in the facile reaction path of HONO formation. With the aid of the automated reaction route mapping, the promotion effect of H2 addition on the SCR reaction was computationally proposed (boosting the formation of OH and OOH species). In addition, the present study emphasizes that automated reaction route mapping is a powerful tool to elucidate the complicated reaction pathway on multi-nuclear clusters.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| | - Taisetsu Kato
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| | - Zen Maeno
- School of Advanced Engineering, Kogakuin University, Tokyo, 192-0015, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.
| |
Collapse
|
15
|
Sha H, Cui J, Li J, Zhang Y, Yang W, Li Y, Yu R. Ptychographic measurements of varying size and shape along zeolite channels. SCIENCE ADVANCES 2023; 9:eadf1151. [PMID: 36921047 PMCID: PMC10017048 DOI: 10.1126/sciadv.adf1151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/15/2023] [Indexed: 06/12/2023]
Abstract
Sub-angstrom resolution imaging of porous materials like zeolites is important to reveal their structure-property relationships involved in ion exchange, molecule adsorption and separation, and catalysis. Using multislice electron ptychography, we successfully measured the atomic structure of zeolite at sub-angstrom lateral resolution for 100-nanometer-thick samples. Both lateral and depth deformations of the straight channels are mapped, showing the three-dimensional structural inhomogeneity and flexibility. Since most zeolites in industrial applications are usually tens to hundreds of nanometers thick, the sub-angstrom resolution imaging and accurate measurements of depth-dependent local structures with electron ptychography at low-dose condition will find wide applications in porous materials close to their industrially relevant conditions.
Collapse
Affiliation(s)
- Haozhi Sha
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Jizhe Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxuan Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Wenfeng Yang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
17
|
Zi W, Zhang J, Jiang J, Qu K, Tao S, Zhang J. Synthesis and Crystal Structure of a New RTH-Type Precursor and Its Interlayer Expanded Zeolite. Chemistry 2023; 29:e202202754. [PMID: 36420967 DOI: 10.1002/chem.202202754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Two dimensional zeolites have drawn a lot of attention due to their structural diversity and chemical composition, which can be used to obtain 3D zeolites, for which there is no direct synthesis. Here, a new layer silicate zeolite L was synthesized using the N, N-dimethyl-(2-methyl)-benzimidazolium as the organic structure-directing agent (OSDA) in the presence of fluoride. Structure determination by single-crystal X-ray diffraction reveals that the pure silica precursor with five-ring pores in the crystalline sheets is composed of the rth layer stacking along the (001) direction in an …AAAA… sequence with SDA+ cations and F- residing within the interlayer spaces. Variable temperature powder X-ray diffraction (PXRD) results showed that the new layer could transform into a 3D RTH topology structure at 350 °C via 2D-3D topotactic transformation. Furthermore, a new 3D zeolite material is obtained by treating the original layer with a diethoxydimethylsilane agent under hydrochloric acid condition (HCl-DEDMS). Based on the PXRD results and the original layer structure, the new 3D zeolite structure expanding the rth layer with another Si atom is constructed, which possesses a 10×8×6 channel system. It displays a high BET surface area of 188 cm3 /g with an external surface area of 130 cm3 /g. The structure and textural properties pave a way for potential catalytic applications. The research not only provides a new layered zeolite, broadening the 2D zeolite framework types, but also allows for the discovery of a new stable 3D zeolite expanding the RTH structure with Si atom, which hasn't been reported yet.
Collapse
Affiliation(s)
- Wenwen Zi
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jun Zhang
- School of Materials and Chemistry Engineering, Anhui University of Architecture, Hefei, 230601, China
| | - Jingang Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai, 200062, P. R. China
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Shuo Tao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Junjun Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shanxi, 710021, China
| |
Collapse
|
18
|
Copper nanoparticles control of carbon supported copper catalysts for dimethyl carbonate synthesis: A short review. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Li A, Zhang Y, Heard CJ, Gołąbek K, Ju X, Čejka J, Mazur M. Encapsulating Metal Nanoparticles into a Layered Zeolite Precursor with Surface Silanol Nests Enhances Sintering Resistance. Angew Chem Int Ed Engl 2023; 62:e202213361. [PMID: 36342499 DOI: 10.1002/anie.202213361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Supported metal nanoparticles are used as heterogeneous catalysts but often deactivated due to sintering at high temperatures. Confining metal species into a porous matrix reduces sintering, yet supports rarely provide additional stabilization. Here, we used the silanol-rich layered zeolite IPC-1P to stabilize ultra-small Rh nanoparticles. By adjusting the IPC-1P interlayer space through swelling, we prepared various architectures, including microporous and disordered mesoporous. In situ scanning transmission electron microscopy confirmed that Rh nanoparticles are resistant to sintering at high temperature (750 °C, 6 hrs). Rh clusters strongly bind to surface silanol quadruplets at IPC-1P layers by hydrogen transfer to clusters, while high silanol density hinders their migration based on density functional theory calculations. Ultimately, combining swelling with long-chain surfactant and utilizing metal-silanol interactions resulted in a novel, catalytically active material-Rh@IPC_C22.
Collapse
Affiliation(s)
- Ang Li
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Yuyan Zhang
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Kinga Gołąbek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Xiaohui Ju
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| |
Collapse
|
20
|
Gao M, Yang Z, Zhang H, Ma J, Zou Y, Cheng X, Wu L, Zhao D, Deng Y. Ordered Mesopore Confined Pt Nanoclusters Enable Unusual Self-Enhancing Catalysis. ACS CENTRAL SCIENCE 2022; 8:1633-1645. [PMID: 36589882 PMCID: PMC9801509 DOI: 10.1021/acscentsci.2c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/17/2023]
Abstract
As an important kind of emerging heterogeneous catalyst for sustainable chemical processes, supported metal cluster (SMC) catalysts have received great attention for their outstanding activity; however, the easy aggregation of metal clusters due to their migration along the substrate's surface usually deteriorates their activity and even causes catalyst failure during cycling. Herein, stable Pt nanoclusters (NCs, ∼1.06 nm) are homogeneously confined in the uniform spherical mesopores of mesoporous titania (mpTiO2) by the interaction between Pt NCs and metal oxide pore walls made of polycrystalline anatase TiO2. The obtained Pt-mpTiO2 exhibits excellent stability with well-retained CO conversion (∼95.0%) and Pt NCs (∼1.20 nm) in the long term water-gas shift (WGS) reaction. More importantly, the Pt-mpTiO2 displays an unusual increasing activity during the cyclic catalyzing WGS reaction, which was found to stem from the in situ generation of interfacial active sites (Ti3+-Ov-Ptδ+) by the reduction effect of spillover hydrogen generated at the stably supported Pt NCs. The Pt-mpTiO2 catalysts also show superior performance toward the selective hydrogenation of furfural to 2-methylfuran. This work discloses an efficient and robust Pt-mpTiO2 catalyst and systematically elucidates the mechanism underlying its unique catalytic activity, which helps to design stable SMC catalysts with self-enhancing interfacial activity in sustainable heterogeneous catalysis.
Collapse
Affiliation(s)
- Meiqi Gao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Zhirong Yang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Haijiao Zhang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Xiaowei Cheng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, Hohhot010021, China
| | - Dongyuan Zhao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| |
Collapse
|
21
|
Li T, Wang S, Yu H, Yuan L, Zhang D, Yin H. Encapsulation of Noble Metal Nanoclusters into Zeolites for Highly Efficient Catalytic Hydrogenation of Nitroaromatics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tianhao Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Luohao Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
22
|
Dispersive two-dimensional MXene via potassium fulvic acid for mixed matrix membranes with enhanced organic solvent nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Antúnez-García J, Yocupicio-Gaxiola RI, Serrato AR, Petranovskii V, Murrieta-Rico FN, Shelyapina MG, Fuentes-Moyado S. A theoretical study of the effect of exchange cations in surface of ZSM-5 lamellar zeolites. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Wan H, Gong N, Liu L. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|