1
|
Maki K, Fukute J, Adachi T. Super-resolution imaging reveals nucleolar encapsulation by single-stranded DNA. J Cell Sci 2024; 137:jcs262039. [PMID: 39206638 PMCID: PMC11463959 DOI: 10.1242/jcs.262039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotic cell nuclei, specific sets of proteins gather in nuclear bodies and facilitate distinct genomic processes. The nucleolus, a nuclear body, functions as a factory for ribosome biogenesis by accumulating constitutive proteins, such as RNA polymerase I and nucleophosmin 1 (NPM1). Although in vitro assays have suggested the importance of liquid-liquid phase separation (LLPS) of constitutive proteins in nucleolar formation, how the nucleolus is structurally maintained with the intranuclear architecture remains unknown. This study revealed that the nucleolus is encapsulated by a single-stranded (ss)DNA-based molecular complex inside the cell nucleus. Super-resolution lattice-structured illumination microscopy (lattice-SIM) showed that there was a high abundance of ssDNA beyond the 'outer shell' of the nucleolus. Nucleolar disruption and the release of NPM1 were caused by in situ digestion of ssDNA, suggesting that ssDNA has a structural role in nucleolar encapsulation. Furthermore, we identified that ssDNA forms a molecular complex with histone H1 for nucleolar encapsulation. Thus, this study illustrates how an ssDNA-based molecular complex upholds the structural integrity of nuclear bodies to coordinate genomic processes such as gene transcription and replication.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Jumpei Fukute
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Peng AYT, Li J, Freeman BC. Nuclear Type I Myosins are Essential for Life and Genome Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615191. [PMID: 39386516 PMCID: PMC11463430 DOI: 10.1101/2024.09.26.615191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The active transport of large biomolecules within a cell is critical for homeostasis. While the cytoplasmic process is well-studied, how the spacing of nucleoplasmic cargo is coordinated is poorly understood. We investigated the impact of myosin motors in the nucleus of budding yeast. We found that life requires a nuclear type I myosin whereas the essential type II or V myosins were not requisite in the nucleus. Nuclear depletion of type I myosins triggered 3D genome disorganization, nucleolar disruption, broad gene expression changes, and nuclear membrane morphology collapse. Genome disorganization occurred first supporting a model where type I myosins actively maintain genome architecture that scaffolds nuclear membrane and nucleolar morphologies. Overall, nuclear myosin is critical for the form and function of the nucleus.
Collapse
|
3
|
Nowak J, Lenartowski R, Kalita K, Lehka L, Karatsai O, Lenartowska M, Rędowicz MJ. Myosin VI in the nucleolus of neurosecretory PC12 cells: its involvement in the maintenance of nucleolar structure and ribosome organization. Front Physiol 2024; 15:1368416. [PMID: 38774650 PMCID: PMC11106421 DOI: 10.3389/fphys.2024.1368416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.
Collapse
Affiliation(s)
- Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders—BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Lenartowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Ulferts S, Lopes M, Miyamoto K, Grosse R. Nuclear actin dynamics and functions at a glance. J Cell Sci 2024; 137:jcs261630. [PMID: 38563209 DOI: 10.1242/jcs.261630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology I, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology I, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), 79104 Freiburg, Germany
| |
Collapse
|
5
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Mazzocca M, Loffreda A, Colombo E, Fillot T, Gnani D, Falletta P, Monteleone E, Capozi S, Bertrand E, Legube G, Lavagnino Z, Tacchetti C, Mazza D. Chromatin organization drives the search mechanism of nuclear factors. Nat Commun 2023; 14:6433. [PMID: 37833263 PMCID: PMC10575952 DOI: 10.1038/s41467-023-42133-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Nuclear factors rapidly scan the genome for their targets, but the role of nuclear organization in such search is uncharted. Here we analyzed how multiple factors explore chromatin, combining live-cell single-molecule tracking with multifocal structured illumination of DNA density. We find that factors displaying higher bound fractions sample DNA-dense regions more exhaustively. Focusing on the tumor-suppressor p53, we demonstrate that it searches for targets by alternating between rapid diffusion in the interchromatin compartment and compact sampling of chromatin dense regions. Efficient targeting requires balanced interactions with chromatin: fusing p53 with an exogenous intrinsically disordered region potentiates p53-mediated target gene activation at low concentrations, but leads to condensates at higher levels, derailing its search and downregulating transcription. Our findings highlight the role of disordered regions on factors search and showcase a powerful method to generate traffic maps of the eukaryotic nucleus to dissect how its organization guides nuclear factors action.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Alessia Loffreda
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
| | - Emanuele Colombo
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Tom Fillot
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
| | - Daniela Gnani
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Paola Falletta
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | | | - Serena Capozi
- Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, 34293, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, 34293, France
| | - Gaelle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Zeno Lavagnino
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
- IFOM ETS- The AIRC Institute of Molecular Oncology-Via Adamello 16, 20139, Milan, Italy
| | - Carlo Tacchetti
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
| | - Davide Mazza
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
7
|
Sakamoto T, Matsunaga S. Chromatin dynamics and subnuclear gene positioning for transcriptional regulation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102431. [PMID: 37562088 DOI: 10.1016/j.pbi.2023.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Plants have been found to exhibit diverse characteristics and functions of chromatin organization, showing both similarities and differences to animals. It is becoming clear how chromatin organization is linked to transcriptional regulation in response to environmental stresses. Regulation of specific chromatin positions in the nuclear space is important for transcription, and the mechanisms that enable such chromatin dynamics are gradually being unveiled. Genes move between subdomains responsible for transcriptional activation or suppression in the subnuclear space in a gene repositioning cycle. We propose a model of localized chromatin interaction in nuclear subdomains, in which the dynamics of local chromatin interactions have a more important impact on the regulation of gene expression than large-scale chromatin organization. In this mini-review, we highlight recent findings on chromatin dynamics, particularly involving transcriptional regulation, and discuss future directions in the study of chromatin organization in plants.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Science, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-0802, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
8
|
Shahid-Fuente IW, Toseland CP. Myosin in chromosome organisation and gene expression. Biochem Soc Trans 2023; 51:1023-1034. [PMID: 37171068 PMCID: PMC10317160 DOI: 10.1042/bst20220939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The importance of myosin motor protein is well-characterised within the cytoplasm and cytoskeleton. However, mounting evidence on four nuclear myosins highlights the central role these proteins have in maintaining genomic stability and gene expression. This review focuses on each of their critical roles in chromatin structure, chromosome translocation, transcription regulation, and DNA damage repair in terms of maintaining chromosome and chromatin integrity.
Collapse
|
9
|
Shi J, Hauschulte K, Mikicic I, Maharjan S, Arz V, Strauch T, Heidelberger JB, Schaefer JV, Dreier B, Plückthun A, Beli P, Ulrich HD, Wollscheid HP. Nuclear myosin VI maintains replication fork stability. Nat Commun 2023; 14:3787. [PMID: 37355687 PMCID: PMC10290672 DOI: 10.1038/s41467-023-39517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
The actin cytoskeleton is of fundamental importance for cellular structure and plasticity. However, abundance and function of filamentous actin in the nucleus are still controversial. Here we show that the actin-based molecular motor myosin VI contributes to the stabilization of stalled or reversed replication forks. In response to DNA replication stress, myosin VI associates with stalled replication intermediates and cooperates with the AAA ATPase Werner helicase interacting protein 1 (WRNIP1) in protecting these structures from DNA2-mediated nucleolytic attack. Using functionalized affinity probes to manipulate myosin VI levels in a compartment-specific manner, we provide evidence for the direct involvement of myosin VI in the nucleus and against a contribution of the abundant cytoplasmic pool during the replication stress response.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Kristine Hauschulte
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Srijana Maharjan
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
- Mainz Biomed N.V., Robert-Koch-Str. 50, D - 55129, Mainz, Germany
| | - Valerie Arz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Tina Strauch
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Jan B Heidelberger
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
- Max Planck School Matter to Life, Jahnstr. 29, D - 69120, Heidelberg, Germany
| | - Jonas V Schaefer
- University of Zurich, Department of Biochemistry, Winterthurerstr. 190, CH - 8057, Zurich, Switzerland
| | - Birgit Dreier
- University of Zurich, Department of Biochemistry, Winterthurerstr. 190, CH - 8057, Zurich, Switzerland
| | - Andreas Plückthun
- University of Zurich, Department of Biochemistry, Winterthurerstr. 190, CH - 8057, Zurich, Switzerland
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, D - 55128, Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany.
| | - Hans-Peter Wollscheid
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany.
| |
Collapse
|
10
|
Dos Santos Á, Rollins DE, Hari-Gupta Y, McArthur H, Du M, Ru SYZ, Pidlisna K, Stranger A, Lorgat F, Lambert D, Brown I, Howland K, Aaron J, Wang L, Ellis PJI, Chew TL, Martin-Fernandez M, Pyne ALB, Toseland CP. Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription. Nat Commun 2023; 14:2855. [PMID: 37202403 PMCID: PMC10195817 DOI: 10.1038/s41467-023-38572-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- MRC LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Daniel E Rollins
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hannah McArthur
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mingxue Du
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | | - Kseniia Pidlisna
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Ane Stranger
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Faeeza Lorgat
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Danielle Lambert
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Kevin Howland
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Alice L B Pyne
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | |
Collapse
|
11
|
Karatsai O, Lehka L, Wojton D, Grabowska AI, Duda MK, Lenartowski R, Redowicz MJ. Unconventional myosin VI in the heart: Involvement in cardiac dysfunction progressing with age. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166748. [PMID: 37169038 DOI: 10.1016/j.bbadis.2023.166748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hypertrophic cardiomyopathy is the most common cardiovascular disease, which is characterized by structural and functional myocardial abnormalities. It is caused predominantly by autosomal dominant mutations, mainly in genes encoding cardiac sarcomeric proteins, resulting in diverse phenotypical patterns and a heterogenic clinical course. Unconventional myosin VI (MVI) is one of the proteins important for heart function, as it was shown that a point mutation within MYO6 is associated with left ventricular hypertrophy. Previously, we showed that MVI is expressed in the cardiac muscle, where it localizes to the sarcoplasmic reticulum and intercalated discs. Here, we addressed the mechanisms of its involvement in cardiac dysfunction in Snell's waltzer mice (natural MVI knockouts) during heart development. We showed that heart enlargement was already seen in the E14.5 embryos and newborn animals (P0), and was maintained throughout the examined lifespan (up to 12 months). The higher levels of MVI were observed in the hearts of E14.5 embryos and P0 of control heterozygous mice. A search for the mechanisms behind the observed phenotype revealed several changes, accumulation of which resulted in age-progressing heart dysfunction. The main changes that mostly contribute to this functional impairment are the increase in cardiomyocyte proliferation in newborns, disorganization of intercalated discs, and overexpression of SERCA2 in hearts isolated from 12-month-old mice, indicative of functional alterations of sarcoplasmic reticulum. Also, possible aberrations in the heart vascularization, observed in 12-month-old animals could be additional factors responsible for MVI-associated heart dysfunction.
Collapse
Affiliation(s)
- Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Dominika Wojton
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Izabela Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Monika Katarzyna Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka St., 01-813 Warsaw, Poland.
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, The Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland.
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
12
|
Ball ML, Koestler SA, Muresan L, Rehman SA, O’Holleran K, White R. The anatomy of transcriptionally active chromatin loops in Drosophila primary spermatocytes using super-resolution microscopy. PLoS Genet 2023; 19:e1010654. [PMID: 36867662 PMCID: PMC10016678 DOI: 10.1371/journal.pgen.1010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
While the biochemistry of gene transcription has been well studied, our understanding of how this process is organised in 3D within the intact nucleus is less well understood. Here we investigate the structure of actively transcribed chromatin and the architecture of its interaction with active RNA polymerase. For this analysis, we have used super-resolution microscopy to image the Drosophila melanogaster Y loops which represent huge, several megabases long, single transcription units. The Y loops provide a particularly amenable model system for transcriptionally active chromatin. We find that, although these transcribed loops are decondensed they are not organised as extended 10nm fibres, but rather they largely consist of chains of nucleosome clusters. The average width of each cluster is around 50nm. We find that foci of active RNA polymerase are generally located off the main fibre axis on the periphery of the nucleosome clusters. Foci of RNA polymerase and nascent transcripts are distributed around the Y loops rather than being clustered in individual transcription factories. However, as the RNA polymerase foci are considerably less prevalent than the nucleosome clusters, the organisation of this active chromatin into chains of nucleosome clusters is unlikely to be determined by the activity of the polymerases transcribing the Y loops. These results provide a foundation for understanding the topological relationship between chromatin and the process of gene transcription.
Collapse
Affiliation(s)
- Madeleine L. Ball
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Stefan A. Koestler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Kevin O’Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
dos Santos Á, Fili N, Hari-Gupta Y, Gough RE, Wang L, Martin-Fernandez M, Aaron J, Wait E, Chew TL, Toseland CP. Binding partners regulate unfolding of myosin VI to activate the molecular motor. Biochem J 2022; 479:1409-1428. [PMID: 35722941 PMCID: PMC9342898 DOI: 10.1042/bcj20220025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
Myosin VI is the only minus-end actin motor and it is coupled to various cellular processes ranging from endocytosis to transcription. This multi-potent nature is achieved through alternative isoform splicing and interactions with a network of binding partners. There is a complex interplay between isoforms and binding partners to regulate myosin VI. Here, we have compared the regulation of two myosin VI splice isoforms by two different binding partners. By combining biochemical and single-molecule approaches, we propose that myosin VI regulation follows a generic mechanism, independently of the spliced isoform and the binding partner involved. We describe how myosin VI adopts an autoinhibited backfolded state which is released by binding partners. This unfolding activates the motor, enhances actin binding and can subsequently trigger dimerization. We have further expanded our study by using single-molecule imaging to investigate the impact of binding partners upon myosin VI molecular organization and dynamics.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Natalia Fili
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rosemarie E. Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | - Eric Wait
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | | |
Collapse
|
14
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
15
|
Razin SV, Ulianov SV. Genome-Directed Cell Nucleus Assembly. BIOLOGY 2022; 11:biology11050708. [PMID: 35625436 PMCID: PMC9138775 DOI: 10.3390/biology11050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Speckles and other nuclear bodies, the nucleolus and perinucleolar zone, transcription/replication factories and the lamina-associated compartment, serve as a structural basis for various genomic functions. In turn, genome activity and specific chromatin 3D organization directly impact the integrity of intranuclear assemblies, initiating/facilitating their formation and dictating their composition. Thus, the large-scale nucleus structure and genome activity mutually influence each other. The cell nucleus is frequently considered a compartment in which the genome is placed to protect it from external forces. Here, we discuss the evidence demonstrating that the cell nucleus should be considered, rather, as structure built around the folded genome. Decondensing chromosomes provide a scaffold for the assembly of the nuclear envelope after mitosis, whereas genome activity directs the assembly of various nuclear compartments, including nucleolus, speckles and transcription factories. Abstract The cell nucleus is frequently considered a cage in which the genome is placed to protect it from various external factors. Inside the nucleus, many functional compartments have been identified that are directly or indirectly involved in implementing genomic DNA’s genetic functions. For many years, it was assumed that these compartments are assembled on a proteinaceous scaffold (nuclear matrix), which provides a structural milieu for nuclear compartmentalization and genome folding while simultaneously offering some rigidity to the cell nucleus. The results of research in recent years have made it possible to consider the cell nucleus from a different angle. From the “box” in which the genome is placed, the nucleus has become a kind of mobile exoskeleton, which is formed around the packaged genome, under the influence of transcription and other processes directly related to the genome activity. In this review, we summarize the main arguments in favor of this point of view by analyzing the mechanisms that mediate cell nucleus assembly and support its resistance to mechanical stresses.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: or
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|