1
|
Wang H, Zhang Y, Jiang Y, Xiang R, Gong H, Gong Y, Xu H, Ma Z, Xie Y, Zhu Y, Hu B, He X, Liu J, Zhang J, Xiao X. The function and mechanism of clinical trial agent CPI-613 in multiple myeloma. Biochem Pharmacol 2024; 232:116717. [PMID: 39675585 DOI: 10.1016/j.bcp.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Multiple myeloma (MM) is an incurable malignant hematological neoplasm characterized by clonal proliferation of plasma cells accumulating in the bone marrow. Currently, the treatment of MM is usually based on a multi-drug combination strategy, and the remission rates of MM patients have been greatly improved. However, MM is still not immune to drug resistance and recurrence and is an incurable tumor. In this study, a comprehensive screen of the TCA cycle identified oxoglutarate dehydrogenase (OGDH) and pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) as the most clinically relevant genes in MM, highlighting their potential as therapeutic targets. CPI-613, a novel non-redox-active lipoic acid analog that causes mitochondrial metabolism dysfunction by targeting OGDH and PDHA1, is currently in clinical trials in a variety of malignancies. In our study, CPI-613 was found to inhibit the proliferation of MM cells, and its combination with bortezomib (BTZ) produced a significant inhibitory effect at lower doses. In addition, CPI-613 can disrupt various mitochondrial functions, such as disrupting mitochondrial morphology, reducing oxidative phosphorylation, decreasing 5'- adenylate triphosphate production, and increasing reactive oxygen species, which ultimately leads to cell death mediated by the intrinsic apoptotic pathway in vitro. Furthermore, we found CPI-613 significantly inhibited tumor growth and induced intrinsic apoptosis in the MM mouse xenograft model. This study reveals the mechanism and effect of CPI-613 in MM, which suggests that CPI-613 may be a new drug option for the clinical treatment of MM, but further clinical trials are needed for evaluation.
Collapse
Affiliation(s)
- Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Jiang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Ruohong Xiang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Yanfei Gong
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Hao Xu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Zekang Ma
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Yu Zhu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Bin Hu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Xiao He
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang 421001, China.
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Udumula MP, Rashid F, Singh H, Pardee T, Luther S, Bhardwaj T, Anjaly K, Piloni S, Hijaz M, Gogoi R, Philip PA, Munkarah AR, Giri S, Rattan R. Targeting mitochondrial metabolism with CPI-613 in chemoresistant ovarian tumors. J Ovarian Res 2024; 17:226. [PMID: 39543742 PMCID: PMC11566742 DOI: 10.1186/s13048-024-01546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND There is evidence indicating that chemoresistance in tumor cells is mediated by the reconfiguration of the tricarboxylic acid cycle, leading to heightened mitochondrial activity and oxidative phosphorylation (OXPHOS). Previously, we have shown that ovarian cancer cells that are resistant to chemotherapy display increased OXPHOS, mitochondrial function, and metabolic flexibility. To exploit this weakness in chemoresistant ovarian cancer cells, we examined the effectiveness of the mitochondrial inhibitor CPI-613 in treating preclinical ovarian cancer. METHODS Chemosensitive OVCAR3, and chemoresistant CAOV3 and F2 ovarian cancer cells lines and their xenografts in nude mice were used. Functional metabolic studies were performed using Seahorse instrument. Metabolite quantification was performed using LC/MS/MS. RESULTS Mice treated with CPI-613 exhibited a notable increase in overall survival and a reduction in tumor development and burden in OVCAR3, F2, and CAOV3 xenografts. CPI-613 suppressed the activity of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complex, which are two of its targets. This led to a reduction in OXPHOS and tricarboxylic acid cycle activity in all 3 xenografts. The addition of CPI-613 enhanced the responsiveness of chemotherapy in the chemoresistant F2 and CAOV3 tumors, resulting in a notable improvement in survival rates and a reduction in tumor size as compared to using chemotherapy alone. CPI-613 reduced the chemotherapy-induced OXPHOS in chemoresistant tumors. The study revealed that the mechanism by which CPI-613 inhibits tumor growth is through mitochondrial collapse. This is evidenced by an increase in superoxide production within the mitochondria, a decrease in ATP generation, and the release of cytochrome C, which triggers mitochondria-induced apoptosis. CONCLUSION Our study demonstrates the translational potential of CPI-613 against chemoresistant ovarian tumors.
Collapse
Affiliation(s)
- Mary P Udumula
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
- Department of ObGyn and Reproductive Biology, Michigan State University, One Ford Place , Detroit, MI, 48202, USA
| | - Faraz Rashid
- Department of Neurology, Henry Ford Hospital, 2779 West Grand Blvd., Detroit, MI, 48202, USA
| | - Harshit Singh
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
| | - Tim Pardee
- Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, 27157, USA
| | | | - Tanya Bhardwaj
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Department of Biology, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Km Anjaly
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
| | - Sofia Piloni
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
| | - Miriana Hijaz
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
- Department of ObGyn and Reproductive Biology, Michigan State University, One Ford Place , Detroit, MI, 48202, USA
| | - Radhika Gogoi
- Department of Oncology, Wayne State School of Medicine, 4100 John R St, Detroit, MI, 48201, USA
| | - Philip A Philip
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
- Department of Hematology Oncology, Henry Ford Hospital, 2779 West Grand Blvd., Detroit, MI, 48202, USA
| | - Adnan R Munkarah
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, 2779 West Grand Blvd., Detroit, MI, 48202, USA
| | - Ramandeep Rattan
- Division of Gynecologic Oncology, Department of Women's Health Services, Henry Ford Hospital, One Ford Place, Detroit, MI, 48202, USA.
- Henry Ford Cancer, 2800 West Grand Blvd., Detroit, MI, 48202, USA.
- Department of Oncology, Wayne State School of Medicine, 4100 John R St, Detroit, MI, 48201, USA.
- Department of ObGyn and Reproductive Biology, Michigan State University, One Ford Place , Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
4
|
Guo Y, Cai C, Zhang B, Tan B, Tang Q, Lei Z, Qi X, Chen J, Zheng X, Zi D, Li S, Tan J. Targeting USP11 regulation by a novel lithium-organic coordination compound improves neuropathologies and cognitive functions in Alzheimer transgenic mice. EMBO Mol Med 2024; 16:2856-2881. [PMID: 39394468 PMCID: PMC11555261 DOI: 10.1038/s44321-024-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD), as the most common neurodegenerative disease worldwide, severely impairs patients' cognitive functions. Although its exact etiology remains unclear, the abnormal aggregations of misfolded β-amyloid peptide and tau protein are considered pivotal in its pathological progression. Recent studies identify ubiquitin-specific protease 11 (USP11) as the key regulator of tau deubiquitination, exacerbating tau aggregation and AD pathology. Thereby, inhibiting USP11 function, via either blocking USP11 activity or lowering USP11 protein level, may serve as an effective therapeutic strategy against AD. Our research introduces IsoLiPro, a unique lithium isobutyrate-L-proline coordination compound, effectively lowers USP11 protein level and enhances tau ubiquitination in vitro. Additionally, long-term oral administration of IsoLiPro dramatically reduces total and phosphorylated tau levels in AD transgenic mice. Moreover, IsoLiPro also significantly lessens β-amyloid deposition and synaptic damage, improving cognitive functions in these animal models. These results indicate that IsoLiPro, as a novel small-molecule USP11 inhibitor, can effectively alleviate AD-like pathologies and improve cognitive functions, offering promise as a potential multi-targeting therapeutic agent against AD.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chuanbin Cai
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bingjie Zhang
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Bo Tan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qinmin Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Pharmacy, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaojiang Zheng
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China.
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
5
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Kumar N, Delu V, Ulasov I, Kumar S, Singh RK, Kumar S, Shukla A, Patel AK, Yadav L, Tiwari R, Rachana K, Mohanta SP, Singh V, Yadav A, Kaushalendra K, Acharya A. Pharmacological Insights: Mitochondrial ROS Generation by FNC (Azvudine) in Dalton's Lymphoma Cells Revealed by Super Resolution Imaging. Cell Biochem Biophys 2024; 82:873-883. [PMID: 38483755 DOI: 10.1007/s12013-024-01238-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 08/25/2024]
Abstract
Nucleoside analogs are a common form of chemotherapy that disrupts DNA replication and repair, leading to cell cycle arrest and apoptosis. Reactive oxygen species (ROS) production is a significant mechanism through which these drugs exert their anticancer effects. This study investigated a new nucleoside analog called FNC or Azvudine, and its impact on ROS production and cell viability in Dalton's lymphoma (DL) cells. The study found that FNC treatment resulted in a time- and dose-dependent increase in ROS levels in DL cells. After 15 and 30 min of treatment with 2 and 1 mg/ml of FNC, mitochondrial ROS production was observed in DL cells. Furthermore, prolonged exposure to FNC caused structural alterations and DNA damage in DL cells. The results suggest that FNC's ability to impair DL cell viability may be due to its induction of ROS production and indicate a need for further investigation.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Zoology, School of Basic and Applied Sciences, Raffles University, Neemrana, Rajasthan, 301705, India
| | - Vikram Delu
- Senior Analyst, Pashmina Certification Centre, Wildlife Institute of India (WII), Dehradun, Uttarakhand, 248001, India
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Lokesh Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ruchi Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kumari Rachana
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | | | - Varsha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Anuradha Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kaushalendra Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl, 796001, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Li Y, Zhou H, Zhao Z, Yan S, Chai Y. Mitoxantrone encapsulated photosensitizer nanomicelle as carrier-free theranostic nanomedicine for near-infrared fluorescence imaging-guided chemo-photodynamic combination therapy on cancer. Int J Pharm 2024; 655:124025. [PMID: 38513816 DOI: 10.1016/j.ijpharm.2024.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Combination therapy exhibits higher efficacy than any single therapy, inspiring various nanocarrier-assisted multi-drug co-delivery systems for the combined treatment of cancer. However, most nanocarriers are inert and non-therapeutic and have potential side effects. Herein, an amphiphilic polymer composed of a hydrophobic photosensitizer and hydrophilic poly(ethylene glycol) was employed as the nanocarriers and photosensitizers to encapsulate the chemotherapeutic drug mitoxantrone for chemo-photodynamic combination therapy. The resulting nanodrug consisted solely of pharmacologically active ingredients, thus avoiding potential toxicity induced by inert excipients. This multifunctional nanoplatform demonstrated significantly superior treatment performance compared to monotherapy for colorectal cancer, both in vitro and in vivo, achieving near-infrared fluorescence imaging-mediated chemo-photodynamic combined eradication of malignancy.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China.
| | - Huimin Zhou
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Ziwei Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Susu Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yichao Chai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Pan X, Xu C, Cheng G, Chen Z, Liu M, Mei Y. Transcription factor E2F3 activates CDC25B to regulate DNA damage and promote mitoxantrone resistance in stomach adenocarcinoma. Mol Biol Rep 2024; 51:90. [PMID: 38194158 DOI: 10.1007/s11033-023-08933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.
Collapse
Affiliation(s)
- Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China.
| |
Collapse
|
10
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
11
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
12
|
Tau S, Miller TW. The role of cancer cell bioenergetics in dormancy and drug resistance. Cancer Metastasis Rev 2023; 42:87-98. [PMID: 36696004 PMCID: PMC10233409 DOI: 10.1007/s10555-023-10081-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
While anti-cancer drug treatments are often effective for the clinical management of cancer, these treatments frequently leave behind drug-tolerant persister cancer cells that can ultimately give rise to recurrent disease. Such persistent cancer cells can lie dormant for extended periods of time, going undetected by conventional clinical means. Understanding the mechanisms that such dormant cancer cells use to survive, and the mechanisms that drive emergence from dormancy, is critical to the development of improved therapeutic strategies to prevent and manage disease recurrence. Cancer cells often exhibit metabolic alterations compared to their non-transformed counterparts. An emerging body of evidence supports the notion that dormant cancer cells also have unique metabolic adaptations that may offer therapeutically targetable vulnerabilities. Herein, we review mechanisms through which cancer cells metabolically adapt to persist during drug treatments and develop drug resistance. We also highlight emerging therapeutic strategies to target dormant cancer cells via their metabolic features.
Collapse
Affiliation(s)
- Steven Tau
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA.
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, HB-7936, Lebanon, NH 03756, USA.
| |
Collapse
|
13
|
Anderson R, Pladna KM, Schramm NJ, Wheeler FB, Kridel S, Pardee TS. Pyruvate Dehydrogenase Inhibition Leads to Decreased Glycolysis, Increased Reliance on Gluconeogenesis and Alternative Sources of Acetyl-CoA in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15020484. [PMID: 36672433 PMCID: PMC9857304 DOI: 10.3390/cancers15020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease characterized by poor outcomes and therapy resistance. Devimistat is a novel agent that inhibits pyruvate dehydrogenase complex (PDH). A phase III clinical trial in AML patients combining devimistat and chemotherapy was terminated for futility, suggesting AML cells were able to circumvent the metabolic inhibition of devimistat. The means by which AML cells resist PDH inhibition is unknown. AML cell lines treated with devimistat or deleted for the essential PDH subunit, PDHA, showed a decrease in glycolysis and decreased glucose uptake due to a reduction of the glucose transporter GLUT1 and hexokinase II. Both devimistat-treated and PDHA knockout cells displayed increased sensitivity to 2-deoxyglucose, demonstrating reliance on residual glycolysis. The rate limiting gluconeogenic enzyme phosphoenolpyruvate carboxykinase 2 (PCK2) was significantly upregulated in devimistat-treated cells, and its inhibition increased sensitivity to devimistat. The gluconeogenic amino acids glutamine and asparagine protected AML cells from devimistat. Non-glycolytic sources of acetyl-CoA were also important with fatty acid oxidation, ATP citrate lyase (ACLY) and acyl-CoA synthetase short chain family member 2 (ACSS2) contributing to resistance. Finally, devimistat reduced fatty acid synthase (FASN) activity. Taken together, this suggests that AML cells compensate for PDH and glycolysis inhibition by gluconeogenesis for maintenance of essential glycolytic intermediates and fatty acid oxidation, ACLY and ACSS2 for non-glycolytic production of acetyl-CoA. Strategies to target these escape pathways should be explored in AML.
Collapse
Affiliation(s)
- Rebecca Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kristin M. Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Nathaniel J. Schramm
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Frances B. Wheeler
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Steven Kridel
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Timothy S. Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
- Cornerstone Pharmaceuticals Inc., Cranbury, NJ 08512, USA
- Correspondence: ; Tel.: +1-336-716-5847; Fax: +1-336-716-5687
| |
Collapse
|
14
|
Tabe Y, Konopleva M. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:138-150. [PMID: 37065866 PMCID: PMC10099600 DOI: 10.20517/cdr.2022.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Laboratory Medicine, Juntendo University, Tokyo 112-8421, Japan
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Konopleva
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence to: Prof. Marina Konopleva, Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine and Montefiore Medical Center,1300 Morris Park Avenue, NY 10461, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
15
|
Tong X, Zhou F. Integrated bioinformatic analysis of mitochondrial metabolism-related genes in acute myeloid leukemia. Front Immunol 2023; 14:1120670. [PMID: 37138869 PMCID: PMC10149950 DOI: 10.3389/fimmu.2023.1120670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a common hematologic malignancy characterized by poor prognoses and high recurrence rates. Mitochondrial metabolism has been increasingly recognized to be crucial in tumor progression and treatment resistance. The purpose of this study was to examined the role of mitochondrial metabolism in the immune regulation and prognosis of AML. Methods In this study, mutation status of 31 mitochondrial metabolism-related genes (MMRGs) in AML were analyzed. Based on the expression of 31 MMRGs, mitochondrial metabolism scores (MMs) were calculated by single sample gene set enrichment analysis. Differential analysis and weighted co-expression network analysis were performed to identify module MMRGs. Next, univariate Cox regression and the least absolute and selection operator regression were used to select prognosis-associated MMRGs. A prognosis model was then constructed using multivariate Cox regression to calculate risk score. We validated the expression of key MMRGs in clinical specimens using immunohistochemistry (IHC). Then differential analysis was performed to identify differentially expressed genes (DEGs) between high- and low-risk groups. Functional enrichment, interaction networks, drug sensitivity, immune microenvironment, and immunotherapy analyses were also performed to explore the characteristic of DEGs. Results Given the association of MMs with prognosis of AML patients, a prognosis model was constructed based on 5 MMRGs, which could accurately distinguish high-risk patients from low-risk patients in both training and validation datasets. IHC results showed that MMRGs were highly expressed in AML samples compared to normal samples. Additionally, the 38 DEGs were mainly related to mitochondrial metabolism, immune signaling, and multiple drug resistance pathways. In addition, high-risk patients with more immune-cell infiltration had higher Tumor Immune Dysfunction and Exclusion scores, indicating poor immunotherapy response. mRNA-drug interactions and drug sensitivity analyses were performed to explore potential druggable hub genes. Furthermore, we combined risk score with age and gender to construct a prognosis model, which could predict the prognosis of AML patients. Conclusion Our study provided a prognostic predictor for AML patients and revealed that mitochondrial metabolism is associated with immune regulation and drug resistant in AML, providing vital clues for immunotherapies.
Collapse
|
16
|
Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules 2022; 27:molecules27227800. [PMID: 36431901 PMCID: PMC9698468 DOI: 10.3390/molecules27227800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.
Collapse
|
17
|
Therapeutic Drug-Induced Metabolic Reprogramming in Glioblastoma. Cells 2022; 11:cells11192956. [PMID: 36230918 PMCID: PMC9563867 DOI: 10.3390/cells11192956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma WHO IV (GBM), the most common primary brain tumor in adults, is a heterogenous malignancy that displays a reprogrammed metabolism with various fuel sources at its disposal. Tumor cells primarily appear to consume glucose to entertain their anabolic and catabolic metabolism. While less effective for energy production, aerobic glycolysis (Warburg effect) is an effective means to drive biosynthesis of critical molecules required for relentless growth and resistance to cell death. Targeting the Warburg effect may be an effective venue for cancer treatment. However, past and recent evidence highlight that this approach may be limited in scope because GBM cells possess metabolic plasticity that allows them to harness other substrates, which include but are not limited to, fatty acids, amino acids, lactate, and acetate. Here, we review recent key findings in the literature that highlight that GBM cells substantially reprogram their metabolism upon therapy. These studies suggest that blocking glycolysis will yield a concomitant reactivation of oxidative energy pathways and most dominantly beta-oxidation of fatty acids.
Collapse
|