1
|
Pan R, Liu Y, Xie J, Wang R, Liu X, Zheng J, Tang X, Wang Y, Wang Z, Zhou X, Dang Y. Halogen-Dependent Circular Dichroism and Magneto-Photoluminescence Effects in Chiral 2D Lead Halide Perovskites. Inorg Chem 2024. [PMID: 39480989 DOI: 10.1021/acs.inorgchem.4c03998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Chiral lead halide perovskites (chiral LHPs) have emerged as one of the best candidates for opto-spintronics due to their large spin-orbit coupling (SOC) and unique chirality-induced spin selectivity (CISS) even in the absence of a magnetic field. Here, we report the impact of halide composition on circular dichroism (CD) and magneto-photoluminescence (PL) effects of chiral 2D LHPs (R/S-MBA)2PbBrxI4-x (MBA = C6H5CH2(CH3)NH3). By tuning the mixing ratio of Br/I halide anions, we find that (R/S-MBA)2PbBrxI4-x thin films exhibit tunable and wide wavelength range CD signals. Simultaneously, the main CD signals near the exciton absorption band gradually blue shift until they disappear. Moreover, the halogen-dependent negative magneto-PL effects of (R/S-MBA)2PbBrxI4-x thin films excited by left/right circularly polarized light can be detected at room temperature. We demonstrated that the halide composition can effectively modulate exciton splitting and chirality transfer in (R/S-MBA)2PbBrxI4-x owing to the chirality-induced SOC and crystalline structure transition, which lead to the adjustable CD signals. The interplay of Rashba-type band spin splitting and spin mixing among bright triplet exciton states is responsible for the halogen-dependent magneto-PL effect of chiral 2D LHPs. This study enables chiral 2D LHPs with CISS to be a new class of promising opto-spintronics materials for exploring high-performance spin-light-emitting diodes by halide engineering.
Collapse
Affiliation(s)
- Ruiheng Pan
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yutong Liu
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jifan Xie
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Rongyu Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xin Liu
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jiayu Zheng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiantong Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yongjie Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhen Wang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yangyang Dang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
2
|
Haque MA, Grieder A, Harvey SP, Brunecky R, Ye JY, Addison B, Zhang J, Dong Y, Xie Y, Hautzinger MP, Walpitage HH, Zhu K, Blackburn JL, Vardeny ZV, Mitzi DB, Berry JJ, Marder SR, Ping Y, Beard MC, Luther JM. Remote chirality transfer in low-dimensional hybrid metal halide semiconductors. Nat Chem 2024:10.1038/s41557-024-01662-2. [PMID: 39455700 DOI: 10.1038/s41557-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10-2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality.
Collapse
Affiliation(s)
| | - Andrew Grieder
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jiselle Y Ye
- National Renewable Energy Laboratory, Golden, CO, USA
- Department of Physics, Materials Science Program, Colorado School of Mines, Golden, CO, USA
| | | | - Junxiang Zhang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Yifan Dong
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Yi Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | | | | | - Kai Zhu
- National Renewable Energy Laboratory, Golden, CO, USA
| | | | - Zeev Valy Vardeny
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Joseph J Berry
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Seth R Marder
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering and Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yuan Ping
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph M Luther
- National Renewable Energy Laboratory, Golden, CO, USA.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
3
|
Zhang G, Lyu X, Qin Y, Li Y, Fan Z, Meng X, Cheng Y, Cao Z, Xu Y, Sun D, Gao Y, Gong Q, Lyu G. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2024; 13:275. [PMID: 39327415 PMCID: PMC11427471 DOI: 10.1038/s41377-024-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The on-chip measurement of polarization states plays an increasingly crucial role in modern sensing and imaging applications. While high-performance monolithic linearly polarized photodetectors have been extensively studied, integrated circularly polarized light (CPL) photodetectors are still hindered by inadequate discrimination capability. This study presents a broadband CPL photodetector utilizing achiral all-dielectric nanostructures, achieving an impressive discrimination ratio of ~107 at a wavelength of 405 nm. Our device shows outstanding CPL discrimination capability across the visible band without requiring intensity calibration. It functions based on the CPL-dependent near-field modes within achiral structures: under left or right CPL illumination, distinct near-field modes are excited, resulting in asymmetric irradiation of the two electrodes and generating a photovoltage with directions determined by the chirality of the incident light field. The proposed design strategy facilitates ultra-compact CPL detection across diverse materials, structures, and spectral ranges, presenting a novel avenue for achieving high-performance monolithic CPL detection.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yulu Qin
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zipu Fan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xianghan Meng
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yuqing Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.
| | - Zini Cao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yixuan Xu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Dong Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Guowei Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Hassanfiroozi A, Lu YC, Wu PC. Hybrid Anapole Induced Chirality in Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410568. [PMID: 39318103 DOI: 10.1002/adma.202410568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Indexed: 09/26/2024]
Abstract
The interaction between light and matter, particularly chirality, plays a pivotal role in modern science and technology. Typically, metasurfaces achieve chiro-optical effects by coupling electric and magnetic dipoles in specific orientations. In this work, the design and optimization of an asymmetric H-shaped metasurface is explored to induce hybrid anapole (HA) for optical activity. When the symmetry of the metasurface structure is disrupted, the design can simultaneously excite first-order and pseudo high-order HA under illumination with a specific circular polarization, both occurring within the same spectral regime. This results in high reflection for one circular polarization and a significant reduction in reflection for the orthogonal polarization, thereby exhibiting exceptional chiro-optical activity. Moreover, the HA-based chiral metasurface demonstrates strong polarization control capabilities, as verified by Stokes parameter analysis, revealing high birefringence and a pronounced dependence on the incident polarization angle. These results provide valuable insights for the design and optimization of HA metasurfaces for advanced optical applications and polarization control, paving the way for new developments in chiral nanophotonics.
Collapse
Affiliation(s)
- Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen Cheng Lu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan
- Meta-nanoPhotonics Center, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
5
|
Xiao J, Zheng H, Liu Y, Fang L, Li J, Kim J, Wang Y, Liu Q, Ma X, Hou S. Strain-Amplified Exciton Chirality in Organic-Inorganic Hybrid Materials. PHYSICAL REVIEW LETTERS 2024; 133:056903. [PMID: 39159092 DOI: 10.1103/physrevlett.133.056903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/25/2024] [Accepted: 06/07/2024] [Indexed: 08/21/2024]
Abstract
Chiral organic-inorganic hybrids combining chirality of organic molecules and semiconducting properties of inorganic frameworks generate chiral excitons without external spin injection, creating the potential for chiroptoelectronics. However, the relationship between molecular chirality and exciton chirality is still unclear. Here we show the strain-amplified exciton chirality in one-dimensional chiral metal halides. Utilizing chirality-induced spin-orbital coupling theory, we quantitatively demonstrate the impact of the strain-engineered molecular assembly of chiral cations on exciton chirality, offering a feasible way to amplify exciton chirality by molecular manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qi Liu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
6
|
Lu R, Wen Z, Zhang P, Chen Y, Wang H, Jin H, Zhang L, Chen Y, Wang S, Pan S. Color-Tunable Perovskite Nanomaterials with Intense Circularly Polarized Luminescence and Tailorable Compositions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311013. [PMID: 38372007 DOI: 10.1002/smll.202311013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Indexed: 02/20/2024]
Abstract
The ability to design halide perovskite nanocrystals (PNCs) with circularly polarized luminescence (CPL) offers exceptional potential in photonic technologies. Despite recent inspiring advances, the creation of PNCs with full-color tailorablity, outstanding CPL, and long-term stability remains a substantial challenge. Herein, a robust strategy to craft CPL-active PNCs is reported, exhibiting appealing full-color tunable wavelengths, enhanced CPL, and prolonged stability. In contrast to conventional methodologies, this strategy utilizes chiral nematic mesoporous silica (CNMS) as host to render in situ confined growth of diverse achiral PNCs. By strategically engineering photonic bandgap, adjusting loading amount of PNCs, and manipulating cations/anion compositions of PNCs, robust CPL responses with tunable wavelength and intensity are successfully obtained. The resulting PNCs-CNMS achieves stable CPL emissions with full-color tunability and impressive luminescent dissymmetric factors up to -0.17. Remarkably, silica-based hosts as a protective barrier confer exceptional resistance to humidity, photodegradation, and thermal stability, even up to 95 °C. Furthermore, the ability to achieve reversible CPL switching within PNCs-CNMS is attainable by leveraging the responsiveness of CNMS matrix or dynamic behavior of impregnated PNCs. Additionally, circularly polarized light-emitting diode devices based on PNCs-CNMS can be conveniently fabricated. This research affords a powerful platform for designing functional chiroptical materials.
Collapse
Affiliation(s)
- Rong Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhuangchuan Wen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Pengfei Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yang Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Huihui Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Huile Jin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| | - Yihuang Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| | - Shun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| | - Shuang Pan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
7
|
Chen Q, Ding Z, Zhang L, Wang D, Geng C, Feng Y, Zhang J, Ren M, Li S, Qaid SMH, Jiang Y, Yuan M. Uniaxial-Oriented Chiral Perovskite for Flexible Full-Stokes Polarimeter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400493. [PMID: 38733358 DOI: 10.1002/adma.202400493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Indexed: 05/13/2024]
Abstract
Full-Stokes polarization detection, with high integration and portability, offers an efficient path toward next-gen multi-information optoelectronic systems. Nevertheless, current techniques relying on optical filters create rigid and bulky configurations, limiting practicality. Here, a flexible, filter-less full-Stokes polarimeter featuring a uniaxial-oriented chiral perovskite film is first reported. It is found that, the strategic manipulation of the surfactant-mediated Marangoni effect during blade coating, is crucial for guiding an equilibrious mass transport to achieve oriented crystallization. Through this approach, the obtained uniaxial-oriented chiral perovskite films inherently possess anisotropy and chirality, and thereby with desired sensitivity to both linearly polarized light and circularly polarized light vectors. The uniaxial-oriented crystalline structure also improves photodetection, achieving a specific detectivity of 5.23 × 1013 Jones, surpassing non-oriented devices by 10×. The as-fabricated flexible polarimeters enable accurate capture of full-Stokes polarization without optical filters, exhibiting slight detection errors for the Stokes parameters: ΔS1 = 9.2%, ΔS2 = 8.6%, and ΔS3 = 6.5%, approaching the detection accuracy of optics-filter polarimeters. This proof of concept also demonstrates applications in matrix polarization imaging.
Collapse
Affiliation(s)
- Quanlin Chen
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zijin Ding
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Li Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Di Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cong Geng
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yanxing Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jia Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Miao Ren
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Saisai Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuanzhi Jiang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
8
|
Zhu H, Wang Q, Chen W, Sun K, Zhong H, Ye T, Wang Z, Zhang W, Müller-Buschbaum P, Sun XW, Wu D, Wang K. Chiral perovskite-CdSe/ZnS QDs composites with high circularly polarized luminescence performance achieved through additive-solvent engineering. J Chem Phys 2024; 160:234703. [PMID: 38884407 DOI: 10.1063/5.0200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.
Collapse
Affiliation(s)
- Hongmei Zhu
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Qingqian Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
- Institute of Physics, Henan Academy of Sciences, Mingli Road 266-38, Zhengzhou, China
| | - Wei Chen
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Kun Sun
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Huaying Zhong
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Taikang Ye
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Zhaojin Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Wenda Zhang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Xiao Wei Sun
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Dan Wu
- College of New Materials and New Energies, Shenzhen Technology University (SZTU), Lantian Road 3002, Pingshan, 518055 Shenzhen, China
| | - Kai Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| |
Collapse
|
9
|
Sha X, Du K, Zeng Y, Lai F, Yin J, Zhang H, Song B, Han J, Xiao S, Kivshar Y, Song Q. Chirality tuning and reversing with resonant phase-change metasurfaces. SCIENCE ADVANCES 2024; 10:eadn9017. [PMID: 38787955 PMCID: PMC11122676 DOI: 10.1126/sciadv.adn9017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Dynamic control of circular dichroism in photonic structures is critically important for compact spectrometers, stereoscopic displays, and information processing exploiting multiple degrees of freedom. Metasurfaces can help miniaturize chiral devices but only produce static and limited chiral responses. While external stimuli can tune resonances, their modulations are often weak, and reversing continuously the sign of circular dichroism is extremely challenging. Here, we demonstrate the dynamically tunable chiral response of resonant metasurfaces supporting chiral bound states in the continuum combining them with phase-change materials. Phase transition between amorphous and crystalline phases allows for control of chiral response and varies chirality rapidly from -0.947 to +0.958 backward and forward via the chirality continuum. Our demonstrations underpin the rapid development of chiral photonics and its applications.
Collapse
Affiliation(s)
- Xinbo Sha
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kang Du
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yixuan Zeng
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Fangxing Lai
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Jun Yin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Hanxu Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Quantum Science Center of Guangdong-Hong Kong-Macan Greater Bay Area, Shenzhen 518055, P. R. China
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| |
Collapse
|
10
|
Jin B, Lu Y, Sun J, Sun X, Wen L, Zhang Q, Zhao D, Qiu M. Cryogenic Electron-Beam Writing for Perovskite Metasurface. NANO LETTERS 2024; 24:5610-5617. [PMID: 38669343 DOI: 10.1021/acs.nanolett.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Halide perovskites (HPs) metasurfaces have recently attracted significant interest due to their potential to not only further enhance device performance but also reveal the unprecedented functionalities and novel photophysical properties of HPs. However, nanopatterning on HPs is critically challenging as they are readily destructed by the organic solvents in the standard lithographic processes. Here, we present a novel, subtle, and fully nondestructive HPs metasurface fabrication strategy based on cryogenic electron-beam writing. This technique allows for high-precision patterning and in situ imaging of HPs with excellent compatibility. As a proof-of-concept, broadband absorption enhanced metasurfaces were realized by patterning nanopillar arrays on CH3NH3PbI3 film, which results in photodetectors with approximately 14-times improvement on responsivity and excellent stability. Our findings highlight the great feasibility of cryogenic electron-beam writing for producing perovskite metasurface and unlocking the unprecedented photoelectronic properties of HPs.
Collapse
Affiliation(s)
- Binbin Jin
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Yihan Lu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Jiacheng Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xinyu Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Liaoyong Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou 311421, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou 311421, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
11
|
Kilic U, Hilfiker M, Wimer S, Ruder A, Schubert E, Schubert M, Argyropoulos C. Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials. Nat Commun 2024; 15:3757. [PMID: 38704375 PMCID: PMC11069550 DOI: 10.1038/s41467-024-48051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides.
Collapse
Affiliation(s)
- Ufuk Kilic
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Matthew Hilfiker
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Onto Innovation Inc., Wilmington, MA, 01887, USA
| | - Shawn Wimer
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Alexander Ruder
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eva Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mathias Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Solid State Physics and NanoLund, Lund University, P.O. Box 118, 22100, Lund, Sweden
| | - Christos Argyropoulos
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16803, USA.
| |
Collapse
|
12
|
Kim H, Figueroa Morales CA, Seong S, Hu Z, Gong X. Perovskite-Supramolecular Co-Assembly for Chiral Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16515-16521. [PMID: 38507219 DOI: 10.1021/acsami.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hybrid inorganic-organic perovskites with chiral response and outstanding optoelectronic characteristics are promising materials for next-generation spin-optoelectronics. In particular, two-dimensional (2D) perovskites are promising chiroptical candidates due to their unique ability to incorporate chiral organic cations into their crystal structure, which imparts chirality. To enable their practical applications in chiral optoelectronic devices, it is essential to achieve an anisotropy factor (gCD ∼ 2) in chiral 2D perovskites. Currently, chiral 2D perovskites exhibit a relatively low gCD of 3.1 × 10-3. Several approaches have been explored to improve the chiral response of chiral 2D perovskites, including tailoring the molecular structure of chiral cations and increasing the degree of octahedral tilting in the perovskite lattice. However, current methods for chiral amplification have only achieved a moderate enhancement of gCD by 2-fold and are often accompanied by undesirable shifts or inversion in the circular dichroism spectra. There is a need for a more efficient approach to enhancing the chirality in 2D perovskites. Here, we report an innovative coassembly process that allows us to seamlessly grow chiral 2D perovskites on supramolecular helical structures. We discover that the interactions between perovskites and chiral supramolecular structures promote crystal lattice distortion in perovskites, which improves the chirality of 2D perovskites. Additionally, the obtained hierarchical coassembly can effectively harness the structural chirality of the supramolecular helices. The multilevel chiral enhancement leads to an enhancement in gCD by 2.7-fold without compromising the circular dichroism spectra of 2D perovskites.
Collapse
Affiliation(s)
- Hongki Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carlos A Figueroa Morales
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sijun Seong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhengtao Hu
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiwen Gong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Cheng Y, Guo X, Shi Y, Pan L. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. NANOTECHNOLOGY 2024; 35:242001. [PMID: 38467065 DOI: 10.1088/1361-6528/ad3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Flexible photodetectors (PDs) have garnered increasing attention for their potential applications in diverse fields, including weather monitoring, smart robotics, smart textiles, electronic eyes, wearable biomedical monitoring devices, and so on. Notably, perovskite nanostructures have emerged as a promising material for flexible PDs due to their distinctive features, such as a large optical absorption coefficient, tunable band gap, extended photoluminescence decay time, high carrier mobility, low defect density, long exciton diffusion lengths, strong self-trapped effect, good mechanical flexibility, and facile synthesis methods. In this review, we first introduce various synthesis methods for perovskite nanostructures and elucidate their corresponding optical and electrical properties, encompassing quantum dots, nanocrystals, nanowires, nanobelts, nanosheets, single-crystal thin films, polycrystalline thin films, and nanostructured arrays. Furthermore, the working mechanism and key performance parameters of optoelectronic devices are summarized. The review also systematically compiles recent advancements in flexible PDs based on various nanostructured perovskites. Finally, we present the current challenges and prospects for the development of perovskite nanostructures-based flexible PDs.
Collapse
Affiliation(s)
- Yan Cheng
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Guo
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yi Shi
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lijia Pan
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
14
|
Dai C, Wan S, Li Z, Shi Y, Zhang S, Li Z. Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots. Nat Commun 2024; 15:845. [PMID: 38287059 PMCID: PMC10825124 DOI: 10.1038/s41467-024-45284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
Directional emission of photoluminescence despite its incoherence is an attractive technique for light-emitting fields and nanophotonics. Optical metasurfaces provide a promising route for wavefront engineering at the subwavelength scale, enabling the feasibility of unidirectional emission. However, current directional emission strategies are mostly based on static metasurfaces, and it remains a challenge to achieve unidirectional emissions tuning with high performance. Here, we demonstrate quantum dots-hydrogel integrated gratings for actively switchable unidirectional emission with simultaneously a narrow divergence angle less than 1.5° and a large diffraction angle greater than 45°. We further demonstrate that the grating efficiency alteration leads to a more than 7-fold tuning of emission intensity at diffraction order due to the variation of hydrogel morphology subject to change in ambient humidity. Our proposed switchable emission strategy can promote technologies of active light-emitting devices for radiation control and optical imaging.
Collapse
Affiliation(s)
- Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Shuai Wan
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, 999077, China.
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China.
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
- School of Microelectronics, Wuhan University, Wuhan, 430072, China.
- Suzhou Institute of Wuhan University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Zhong WH, Chen HR, Li ZM, Zhu JY, Shi CH, Cao QL, Zhao JJ, Chen LZ. 1D Chiral Enantiomer Lead-Free Perovskites Induced Chiralopical Activity and Photoelectric Response. Inorg Chem 2023; 62:17985-17992. [PMID: 37842935 DOI: 10.1021/acs.inorgchem.3c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Chirality is a fascinating geometrical concept with widespread applications in biology, chemistry, and materials. Incorporating chirality into hybrid perovskite materials can induce novel physical properties (chiral optical activity, nonlinear optics, etc.). Hybrid lead-free or lead-substituted perovskite materials, as representatives of perovskites, have been widely used in fields such as photovoltaics, sensors, catalysis, and detectors. However, the successful introduction of chirality into hybrid lead-free perovskites, which can enable their potential applications in areas such as circularly polarized light photodetectors, memories, and spin transistors, remains a challenging research topic. Here, we synthesized two new chiral lead-free perovskites, [(R)-2-methylpiperazine][BiI5] and [(S)-2-methylpiperazine][BiI5]. The material possesses a perovskite structure with a one-dimensional (1D) arrangement, denoted as ABX5. This structure is composed of chiral cations, specifically methylpiperazine, and endless chains of [BiI3] along the a-axis. These chains are assembled from distorted coplanar [BiI5]2- octahedra. The testing results revealed that (R)-1 and (S)-1 have narrow band gaps (Eg-R = 2.016 eV, Eg-S = 1.964 eV), high photoelectric response, and long carrier lifetime [R = 4.94 μs (τ), S = 7.85 μs (τ)]. It is worth noting that 1D chiral lead-free perovskites (R)-1 and (S)-1, which are synthesized in this study with narrow band gaps, high photoelectric response, and long carrier lifetime, have the potential to serve as alternative materials for the perovskite layer in future iterations of lead-free perovskite solar cells. Moreover, this research will inspire the preparation of multifunctional, lead-free perovskites.
Collapse
Affiliation(s)
- Wen-He Zhong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Hao-Ran Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Zi-Mu Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Jie-Yu Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Cai-Hong Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Qing-Ling Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Jia-Jia Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Li-Zhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| |
Collapse
|
16
|
Wang X, Jin L, Sergeev A, Liu W, Gu S, Li N, Fan K, Chen SC, Wong KS, Sun X, Zhao N. Quasi-2D Dion-Jacobson phase perovskites as a promising material platform for stable and high-performance lasers. SCIENCE ADVANCES 2023; 9:eadj3476. [PMID: 37889979 PMCID: PMC10610889 DOI: 10.1126/sciadv.adj3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Metal halide perovskites have shown outstanding optoelectronic and nonlinear optical properties; yet, to realize wafer-scale high-performance perovskite-integrated photonics, the materials also need to have excellent ambient stability and compatibility with nanofabrication processes. In this work, we introduce Dion-Jacobson (D-J) phase perovskites for photonic device applications. By combining self-assembled monolayer-assisted film growth with thermal pressing, we obtain a series of compact and extremely smooth D-J phase perovskite thin films that exhibit excellent stability during electron-beam lithography, solvent development, and rinse. Combining spectroscopic and morphological characterizations, we further demonstrate how organic spacers can be used to fine-tune the photophysical properties and processability of the perovskite films. The distributed-feedback lasers based on the D-J phase perovskites exhibit a low lasing threshold (5.5 μJ cm-2 pumped with nanosecond laser), record high Q factor (up to 30,000), and excellent stability, with an unencapsulated device demonstrating a T90 beyond 60 hours in ambient conditions (50% relative humidity).
Collapse
Affiliation(s)
- Xuezhou Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Long Jin
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Aleksandr Sergeev
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Songyun Gu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kezhou Fan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shih-chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiankai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
17
|
Zhao Y, Yin X, Li P, Ren Z, Gu Z, Zhang Y, Song Y. Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. NANO-MICRO LETTERS 2023; 15:187. [PMID: 37515723 PMCID: PMC10387041 DOI: 10.1007/s40820-023-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Collapse
Affiliation(s)
- Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xing Yin
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ziqiu Ren
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yanlin Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, People's Republic of China.
| |
Collapse
|
18
|
Wei J, Luo Q, Liang S, Zhou L, Chen P, Pang Q, Zhang JZ. Metal Halide Perovskite Nanocrystals for Near-Infrared Circularly Polarized Luminescence with High Photoluminescence Quantum Yield via Chiral Ligand Exchange. J Phys Chem Lett 2023:5489-5496. [PMID: 37289830 DOI: 10.1021/acs.jpclett.3c01184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using ligand exchange on FAPbI3 perovskite nanocrystals (PNCs) surface with chiral tridentate l-cysteine (l-cys) ligand, we successfully prepared chiral FAPbI3 PNCs that show circularly polarized luminescence (CPL) (dissymmetry factor; glum = 2.1 × 10-3) in the near-infrared (NIR) region from 700 to 850 nm and a photoluminescence quantum yield (PLQY) of 81%. The chiral characteristics of FAPbI3 PNCs are ascribed to induction by chiral l/d-cys, and the high PLQY is attributed to the passivation of the PNCs defects with l-cys. Also, effective passivation of defects on the surface of FAPbI3 PNCs by l-cys results in excellent stability toward atmospheric water and oxygen. The conductivity of the l-cys treated FAPbI3 NC films is improved, which is attributed to the partial substitution of l-cys for the insulating long oleyl ligand. The CPL of the l-cys ligand treated FAPbI3 PNCs film retains a glum of -2.7 × 10-4. This study demonstrates a facile yet effective approach to generating chiral PNCs with CPL for NIR photonics applications.
Collapse
Affiliation(s)
- Jianwu Wei
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Qiulian Luo
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Sengui Liang
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
19
|
Xu Y, Mi W. Chiral-induced spin selectivity in biomolecules, hybrid organic-inorganic perovskites and inorganic materials: a comprehensive review on recent progress. MATERIALS HORIZONS 2023; 10:1924-1955. [PMID: 36989068 DOI: 10.1039/d3mh00024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.
Collapse
Affiliation(s)
- Yingdan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
20
|
Li Z, Jiang N, Gao X, Shi J, Wei Z, Zheng H, Shen C. Meta-Atom Coupling Induced Chiral Hotspot in Silicon Nitride Staggered Nanorods Meta-Surface. J Phys Chem Lett 2023; 14:3307-3312. [PMID: 36988312 DOI: 10.1021/acs.jpclett.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Dielectric meta-surfaces have emerged as an effective way for fabricating chiral optical devices, and the chiral meta-surfaces are usually constituted by periodic chiral meta-atom structures. Here, we report a chiral meta-surface consisting of nonchiral silicon nitride rectangular nanorods. The chiral hotspots are generated between the staggered nanorods due to the coupling between the two nearest neighbor nanorod units. 14.6% macroscopic circular dichroism (CD) is achieved experimentally with larger area staggered nanorods. Meanwhile, we demonstrate that the wavelength tuning capability of this design from 696 to 820 nm by simply modulating the overlap length of nanorods. Our work highlights the mechanisms for CD hotspot generation without complex chiral units, which paves a novel way for future on-chip photon-spin selective devices.
Collapse
Affiliation(s)
- Ziying Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Gao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Shi
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongming Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Houzhi Zheng
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Mendoza-Carreño J, Molet P, Otero-Martínez C, Alonso MI, Polavarapu L, Mihi A. Nanoimprinted 2D-Chiral Perovskite Nanocrystal Metasurfaces for Circularly Polarized Photoluminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210477. [PMID: 36657020 DOI: 10.1002/adma.202210477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The versatile hybrid perovskite nanocrystals (NCs) are one of the most promising materials for optoelectronics by virtue of their tunable bandgaps and high photoluminescence (PL) quantum yields. However, their inherent crystalline chemical structure limits the chiroptical properties achievable with the material. The production of chiral perovskites has become an active field of research for its promising applications in optics, chemistry, or biology. Typically, chiral halide perovskites are obtained by the incorporation of different chiral moieties in the material. Unfortunately, these chemically modified perovskites have demonstrated moderate values of chiral PL so far. Here, a general and scalable approach is introduced to produce chiral PL from arbitrary nanoemitters assembled into 2D-chiral metasurfaces. The fabrication via nanoimprinting lithography employs elastomeric molds engraved with chiral motifs covering millimeter areas that are used to pattern two types of unmodified colloidal perovskite NC inks: green-emissive CsPbBr3 and red-emissive CsPbBr1 I2 . The perovskite 2D-metasurfaces exhibit remarkable PL dissymmetry factors (glum ) of 0.16 that can be further improved up to glum of 0.3 by adding a high-refractive-index coating on the metasurfaces. This scalable approach to produce chiral photoluminescent thin films paves the way for the seamless production of bright chiral light sources for upcoming optoelectronic applications.
Collapse
Affiliation(s)
- Jose Mendoza-Carreño
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Pau Molet
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Materials Chemistry and Physics Group, Campus Universitario As Lagoas, Vigo, 36310, Spain
| | - Maria Isabel Alonso
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Materials Chemistry and Physics Group, Campus Universitario As Lagoas, Vigo, 36310, Spain
| | - Agustín Mihi
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| |
Collapse
|
22
|
Zhang Y, Chen M, He T, Chen H, Zhang Z, Wang H, Lu H, Ling Q, Hu Z, Liu Y, Chen Y, Long G. Highly Efficient and Stable FA-Based Quasi-2D Ruddlesden-Popper Perovskite Solar Cells by the Incorporation of β-Fluorophenylethanamine Cations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210836. [PMID: 36744546 DOI: 10.1002/adma.202210836] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Indexed: 05/17/2023]
Abstract
2D Ruddlesden-Popper (2D RP) perovskite, with attractive environmental and structural stability, has shown great application in perovskite solar cells (PSCs). However, the relatively inferior photovoltaic efficiencies of 2D PSCs limit their further application. To address this issue, β-fluorophenylethanamine (β-FPEA) as a novel spacer cation is designed and employed to develop stable and efficient quasi-2D RP PSCs. The strong dipole moment of the β-FPEA enhances the interactions between the cations and [PbI6 ]4- octahedra, thus improving the charge dissociation of quasi-2D RP perovskite. Additionally, the introduction of the β-FPEA cation optimizes the energy level alignment, improves the crystallinity, stabilizes both the mixed phase and a-FAPbI3 phase of the quasi-2D RP perovskite film, prolongs the carrier diffusion length, increases the carrier lifetime and decreases the trap density. By incorporating the β-FPEA, the quasi-2D RP PSCs exhibit a power conversion efficiency (PCE) of 16.77% (vs phenylethylammonium (PEA)-based quasi-2D RP PSCs of 12.81%) on PEDOT:PSS substrate and achieve a champion PCE of 19.11% on the PTAA substrate. It is worth noting that the unencapsulated β-FPEA-based quasi-2D RP PSCs exhibit considerably improved thermal and moisture stability. These findings provide an effective strategy for developing novel spacer cations for high-performance 2D RP PSCs.
Collapse
Affiliation(s)
- Yunxin Zhang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Mingqian Chen
- The Centre of Nanoscale Science and Technology, Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
- State Key Laboratory and Institute of Element-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hongbin Chen
- State Key Laboratory and Institute of Element-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhe Zhang
- State Key Laboratory and Institute of Element-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hebin Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Haolin Lu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Qin Ling
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology, Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Element-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guankui Long
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| |
Collapse
|
23
|
Wang Q, Ding H, Yang T, Xu Q, Mu H, Lu T, Jiao M, Zhang J, Cao K, Li Z, Wang H, Zhang S, Wang K, Yang C. Pressure-induced distinct excitonic properties of 2D perovskites with isomeric organic molecules for spacer cations. NANOSCALE 2023; 15:6234-6242. [PMID: 36892211 DOI: 10.1039/d2nr06816h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spacer organic cations in two-dimensional (2D) perovskites play vital roles in inducing structural distortion of the inorganic components and dominating unique excitonic properties. However, there is still little understanding of spacer organic cations with identical chemical formulas, and different configurations have an impact on the excitonic dynamics. Herein, we investigate and compare the evolution of the structural and photoluminescence (PL) properties of [CH3(CH2)4NH3]2PbI4 ((PA)2PbI4) and [(CH3)2CH(CH2)2NH3]2PbI4 ((PNA)2PbI4) with isomeric organic molecules for spacer cations by combining steady-state absorption, PL, Raman and time-resolved PL spectra under high pressures. Intriguingly, the band gap is continuously tuned under pressure and decreased to 1.6 eV at 12.5 GPa for (PA)2PbI4 2D perovskites. Simultaneously, multiple phase transitions occur and the carrier lifetimes are prolonged. In contrast, the PL intensity of (PNA)2PbI4 2D perovskites exhibits an almost 15-fold enhancement at 1.3 GPa and an ultrabroad spectral range of up to 300 nm in the visible region at 7.48 GPa. These results indicate that the isomeric organic cations (PA+ and PNA+) with different configurations significantly mediate distinct excitonic behaviors due to different resilience to high pressures and reveal a novel interaction mechanism between organic spacer cations and inorganic layers under compression. Our findings not only shed light on the vital roles of isomeric organic molecules as organic spacer cations in 2D perovskites under pressure, but also open a route to rationally design highly efficient 2D perovskites incorporating such spacer organic molecules in optoelectronic devices.
Collapse
Affiliation(s)
- Qingya Wang
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Huafeng Ding
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Tieshan Yang
- School of Mathematical and Physical Sciences and the ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Qinfeng Xu
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Haifeng Mu
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Taiping Lu
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Mengmeng Jiao
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Jie Zhang
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Kunjian Cao
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Zhigang Li
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Honggang Wang
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Shufang Zhang
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Chuanlu Yang
- Department of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
24
|
Cao Z, He J, Jiao C, Liu Z, Xu L, Zheng C, Peng S, Chen B. Chiroptical Activity in All-Inorganic Intrinsically Chiral Perovskite-like Nanocrystals Synthesized via Enantioselective Strategy. J Phys Chem Lett 2023; 14:2533-2541. [PMID: 36877191 DOI: 10.1021/acs.jpclett.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enantiomeric control of intrinsically chiral inorganic nanocrystals (NCs), despite being reported in few systems over the past years, still remains a challenging task. Here, we succeeded in the enantioselective synthesis of intrinsically chiral perovskite-like CsCuCl3 NCs in the presence of chiral amino acids using an antisolvent crystallization method at room temperature. The d-/l-ligand-induced enantiomeric NCs showed the relevant characteristic chiroptical responses. Interestingly, under the addition of each d- or l-form of the ligand, the chiroptical activity of the NCs could be tailored through facilely tuning the Cs/Cu feed ratios and amino acid types. The polarity of such amino acids and their coordination configurations with the NC structures contributed to the distinct behaviors. The ability to manipulate the ligand-induced enantioselective strategy would open pathways for the controllable synthesis of intrinsically chiral inorganics and enable a better understanding of the origins of precursor-ligand-associated chiral discrimination and crystallization phenomena.
Collapse
Affiliation(s)
- Zetan Cao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia He
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuangwei Jiao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Liu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linfeng Xu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zheng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simin Peng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Tao L, Zhan H, Cheng Y, Qin C, Wang L. Enhanced Circularly Polarized Photoluminescence of Chiral Perovskite Films by Surface Passivation with Chiral Amines. J Phys Chem Lett 2023; 14:2317-2322. [PMID: 36847471 DOI: 10.1021/acs.jpclett.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybrid organic-inorganic perovskites have shown promise in circularly polarized light source applications when chirality has been introduced. Circularly polarized photoluminescence (CPL) is a significant tool for investigating the chiroptical properties of perovskites. However, further research is still urgently needed, especially with regard to optimization. Here we demonstrate that chiral ligands can influence the electronic structure of perovskites, increasing the asymmetry and emitting circularly polarized photons in photoluminescence. After the modification of chiral amines, the defects of films are passivated, leading to enhanced radiation recombination for which more circularly polarized photons are emitted. Meanwhile, the modification increases the asymmetry in the electronic structure of perovskites, manifested by an increase in the magnetic dipole moment from 0.166 to 0.257 μB and an enhanced CPL signal. This approach offers the possibility of fabricating and refining circularly polarized light-emitting diodes.
Collapse
Affiliation(s)
- Lutao Tao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
26
|
Yao B, Wei Q, Yang Y, Zhou W, Jiang X, Wang H, Ma M, Yu D, Yang Y, Ning Z. Symmetry-Broken 2D Lead-Tin Mixed Chiral Perovskite for High Asymmetry Factor Circularly Polarized Light Detection. NANO LETTERS 2023; 23:1938-1945. [PMID: 36802631 DOI: 10.1021/acs.nanolett.2c05085] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Symmetry-broken-induced spin splitting plays a key role for selective circularly polarized light absorption and spin carrier transport. Asymmetrical chiral perovskite is rising as the most promising material for direct semiconductor-based circularly polarized light detection. However, the increase of asymmetry factor and extension of response region remain to be a challenge. Herein, we fabricated a two-dimensional tin-lead mixed chiral perovskite with tunable absorption in the visible region. Theoretical simulation indicates that the mixing of the tin and lead in chiral perovskite breaks the symmetry of the pure ones, resulting in pure spin splitting. We then fabricated a chiral circularly polarized light detector based on this tin-lead mixed perovskite. A high asymmetry factor for the photocurrent of 0.44 is achieved, which is 144% higher than pure lead 2D perovskite, and it is the highest value reported for the pure chiral 2D perovskite-based circularly polarized light detector using a simple device structure.
Collapse
Affiliation(s)
- Bing Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Wei
- High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen 518055, China
| | - Yunqing Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjia Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xianyuan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mingyu Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Danni Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
27
|
Klein M, Wang Y, Tian J, Ha ST, Paniagua-Domínguez R, Kuznetsov AI, Adamo G, Soci C. Polarization-Tunable Perovskite Light-Emitting Metatransistor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207317. [PMID: 36308036 DOI: 10.1002/adma.202207317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Emerging immersive visual communication technologies require light sources with complex functionality for dynamic control of polarization, directivity, wavefront, spectrum, and intensity of light. Currently, this is mostly achieved by free space bulk optic elements, limiting the adoption of these technologies. Flat optics based on artificially structured metasurfaces that operate at the sub-wavelength scale are a viable solution, however, their integration into electrically driven devices remains challenging. Here, a radically new approach to monolithic integration of a dielectric metasurface into a perovskite light-emitting transistor is demonstrated. It is shown that nanogratings directly structured on top of the transistor channel yield an 8-fold increase of electroluminescence intensity and dynamic tunability of polarization. This new light-emitting metatransistor device concept opens unlimited opportunities for light management strategies based on metasurface design and integration.
Collapse
Affiliation(s)
- Maciej Klein
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yutao Wang
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Interdisciplinary Graduate School, Energy Research Institute @NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore
| | - Jingyi Tian
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Son Tung Ha
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Ramón Paniagua-Domínguez
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Giorgio Adamo
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Cesare Soci
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
28
|
A Theoretical Design of Chiral Molecules through Conformational Lock towards Circularly Polarized Luminescence. PHOTONICS 2022. [DOI: 10.3390/photonics9080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Circularly polarized (CP) light has shown great potential in quantum computing, optical communications, and three-dimensional displays. It is still a challenge to produce high-efficiency and high-purity CP light. Herein, we proposed a strategy to design chiral organic small molecules for CP light generation. These kinds of chiral molecules are formed by achiral light-emitting groups and achiral alkyl chains through conformational lock, which indicates that chirality can also be introduced into achiral light-emitting groups through rational molecular design. The chirality of these molecules can be further tuned by changing the length of the alkyl chains connecting the diketopyrrolopyrrole unit. The chiroptical properties of these molecules are confirmed by calculated electronic circular dichroism and chiral emission spectra, and further confirmed in experiments. The strategy developed in this work will greatly enlarge the candidate library of chiral luminescent materials.
Collapse
|
29
|
Hsu WL, Chen YC, Yeh SP, Zeng QC, Huang YW, Wang CM. Review of Metasurfaces and Metadevices: Advantages of Different Materials and Fabrications. NANOMATERIALS 2022; 12:nano12121973. [PMID: 35745310 PMCID: PMC9231017 DOI: 10.3390/nano12121973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Flat optics, metasurfaces, metalenses, and related materials promise novel on-demand light modulation within ultrathin layers at wavelength scale, enabling a plethora of next-generation optical devices, also known as metadevices. Metadevices designed with different materials have been proposed and demonstrated for different applications, and the mass production of metadevices is necessary for metadevices to enter the consumer electronics market. However, metadevice manufacturing processes are mainly based on electron beam lithography, which exhibits low productivity and high costs for mass production. Therefore, processes compatible with standard complementary metal–oxide–semiconductor manufacturing techniques that feature high productivity, such as i-line stepper and nanoimprint lithography, have received considerable attention. This paper provides a review of current metasurfaces and metadevices with a focus on materials and manufacturing processes. We also provide an analysis of the relationship between the aspect ratio and efficiency of different materials.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Yen-Chun Chen
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Shang Ping Yeh
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Qiu-Chun Zeng
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Yao-Wei Huang
- Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (Y.-W.H.); (C.-M.W.)
| | - Chih-Ming Wang
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
- Correspondence: (Y.-W.H.); (C.-M.W.)
| |
Collapse
|
30
|
Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and Transformative Metaphotonics with Emerging Materials. Chem Rev 2022; 122:15414-15449. [PMID: 35549165 DOI: 10.1021/acs.chemrev.1c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan S Sinev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.,Ioffe Institute, Russian Academy of Science, St. Petersburg 194021, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|