1
|
Luo Y, Talross GJS, Carlson JR. Function and evolution of Ir52 receptors in mate detection in Drosophila. Curr Biol 2024:S0960-9822(24)01355-1. [PMID: 39471807 DOI: 10.1016/j.cub.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/11/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Identifying a suitable mating partner is an ancient and critical biological problem. How a fruit fly distinguishes a fly of the same species from flies of innumerable related species remains unclear. We analyze the Ir52 receptors, expressed in taste neurons on the fly legs and encoded by a cluster of genes. We find that the cluster shows dynamic evolution, rapidly expanding and contracting over evolutionary time. We develop a novel in vivo expression system and find that Ir52 receptors respond differently to pheromone extracts of different fly species. The receptors are activated by some compounds and inhibited by others, with different receptors showing distinct response profiles. Circuit mapping shows that Ir52 neurons are pre-synaptic to sexually dimorphic neurons that overlap with neurons acting in courtship behavior. Our results support a model in which Ir52 receptors detect information about the species of a potential mating partner.
Collapse
Affiliation(s)
- Yichen Luo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Groza C, Chen X, Wheeler TJ, Bourque G, Goubert C. A unified framework to analyze transposable element insertion polymorphisms using graph genomes. Nat Commun 2024; 15:8915. [PMID: 39414821 PMCID: PMC11484939 DOI: 10.1038/s41467-024-53294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Transposable elements are ubiquitous mobile DNA sequences generating insertion polymorphisms, contributing to genomic diversity. We present GraffiTE, a flexible pipeline to analyze polymorphic mobile elements insertions. By integrating state-of-the-art structural variant detection algorithms and graph genomes, GraffiTE identifies polymorphic mobile elements from genomic assemblies or long-read sequencing data, and genotypes these variants using short or long read sets. Benchmarking on simulated and real datasets reports high precision and recall rates. GraffiTE is designed to allow non-expert users to perform comprehensive analyses, including in models with limited transposable element knowledge and is compatible with various sequencing technologies. Here, we demonstrate the versatility of GraffiTE by analyzing human, Drosophila melanogaster, maize, and Cannabis sativa pangenome data. These analyses reveal the landscapes of polymorphic mobile elements and their frequency variations across individuals, strains, and cultivars.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
- Human Genetics, McGill University, Montréal, QC, Canada
| | - Clément Goubert
- Human Genetics, McGill University, Montréal, QC, Canada.
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Tahami MS, Vargas-Chavez C, Poikela N, Coronado-Zamora M, González J, Kankare M. Transposable elements in Drosophila montana from harsh cold environments. Mob DNA 2024; 15:18. [PMID: 39354634 PMCID: PMC11445987 DOI: 10.1186/s13100-024-00328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates. RESULTS Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints. CONCLUSIONS Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
Collapse
Affiliation(s)
- Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
4
|
Huang Y, Gao Y, Ly K, Lin L, Lambooij JP, King EG, Janssen A, Wei KHC, Lee YCG. Varying recombination landscapes between individuals are driven by polymorphic transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613564. [PMID: 39345575 PMCID: PMC11429682 DOI: 10.1101/2024.09.17.613564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Meiotic recombination is a prominent force shaping genome evolution, and understanding the causes for varying recombination landscapes within and between species has remained a central, though challenging, question. Recombination rates are widely observed to negatively associate with the abundance of transposable elements (TEs), selfish genetic elements that move between genomic locations. While such associations are usually interpreted as recombination influencing the efficacy of selection at removing TEs, accumulating findings suggest that TEs could instead be the cause rather than the consequence. To test this prediction, we formally investigated the influence of polymorphic, putatively active TEs on recombination rates. We developed and benchmarked a novel approach that uses PacBio long-read sequencing to efficiently, accurately, and cost-effectively identify crossovers (COs), a key recombination product, among large numbers of pooled recombinant individuals. By applying this approach to Drosophila strains with distinct TE insertion profiles, we found that polymorphic TEs, especially RNA-based TEs and TEs with local enrichment of repressive marks, reduce the occurrence of COs. Such an effect leads to different CO frequencies between homologous sequences with and without TEs, contributing to varying CO maps between individuals. The suppressive effect of TEs on CO is further supported by two orthogonal approaches-analyzing the distributions of COs in panels of recombinant inbred lines in relation to TE polymorphism and applying marker-assisted estimations of CO frequencies to isogenic strains with and without transgenically inserted TEs. Our investigations reveal how the constantly changing mobilome can actively modify recombination landscapes, shaping genome evolution within and between species.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yi Gao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Kayla Ly
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jan Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | | | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | - Kevin H.-C. Wei
- Department of Zoology, University of British Columbia, Canada
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Catalán A, Gygax D, Rodríguez-Montes L, Hinzke T, Hoff KJ, Duchen P. Two novel genomes of fireflies with different degrees of sexual dimorphism reveal insights into sex-biased gene expression and dosage compensation. Commun Biol 2024; 7:906. [PMID: 39068254 PMCID: PMC11283472 DOI: 10.1038/s42003-024-06550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Sexual dimorphism arises because of divergent fitness optima between the sexes. Phenotypic divergence between sexes can range from mild to extreme. Fireflies, bioluminescent beetles, present various degrees of sexual dimorphism, with species showing very mild sexual dimorphism to species presenting female-specific neoteny, posing a unique framework to investigate the evolution of sexually dimorphic traits across species. In this work, we present novel assembled genomes of two firefly species, Lamprohiza splendidula and Luciola italica, species with different degrees of sexual dimorphism. We uncover high synteny conservation of the X-chromosome across ~ 180 Mya and find full X-chromosome dosage compensation in our two fireflies, hinting at common mechanism upregulating the single male X-chromosome. Different degrees of sex-biased expressed genes were found across two body parts showing different proportions of expression conservation between species. Interestingly, we do not find X-chromosome enrichment of sex-biased genes, but retrieve autosomal enrichment of sex-biased genes. We further uncover higher nucleotide diversity in the intronic regions of sex-biased genes, hinting at a maintenance of heterozygosity through sexual selection. We identify different levels of sex-biased gene expression divergence including a set of genes showing conserved sex-biased gene expression between species. Divergent and conserved sex-biased genes are good candidates to test their role in the maintenance of sexually dimorphic traits.
Collapse
Affiliation(s)
- Ana Catalán
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany.
| | - Daniel Gygax
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany
- Helmholtz Center Munich, Helmholtz Pioneer Campus, Ingolstädter Landstraße 1, Munich, Oberschleißheim, 85764, Germany
| | - Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
7
|
van den Bos E, Gadau J, Schrader L. Molecular identification of polymorphic transposable elements in populations of the invasive ant Cardiocondyla obscurior. Biol Methods Protoc 2024; 9:bpae050. [PMID: 39050818 PMCID: PMC11268152 DOI: 10.1093/biomethods/bpae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating de novo genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families. So far, this technique has almost exclusively been used in plants. Here, we present an optimized TD protocol for insect species with small genomes such as ants (ca. 200-600 Mb). We characterized TE polymorphisms between two distinct genetic lineages of the invasive ant Cardiocondyla obscurior, as well as between neighboring populations of the New World lineage. We found active LTR/Ty3 retrotransposons, that contributed to the genetic diversification of populations in this species.
Collapse
Affiliation(s)
- Esther van den Bos
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| |
Collapse
|
8
|
Zhang T, Tan S, Tang N, Li Y, Zhang C, Sun J, Guo Y, Gao H, Cai Y, Sun W, Wang C, Fu L, Ma H, Wu Y, Hu X, Zhang X, Gee P, Yan W, Zhao Y, Chen Q, Guo B, Wang H, Zhang YE. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 2024; 187:3741-3760.e30. [PMID: 38843831 DOI: 10.1016/j.cell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanqing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Gao
- Rengene Biotechnology Co., Ltd., Beijing 100036, China
| | - Yujia Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liangzheng Fu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yachao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Gee
- MaxCyte Inc., Rockville, MD 20850, USA
| | - Weihua Yan
- Cold Spring Biotech Corp., Beijing 100031, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baocheng Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Srivastav SP, Feschotte C, Clark AG. Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary. Genome Res 2024; 34:711-724. [PMID: 38749655 PMCID: PMC11216404 DOI: 10.1101/gr.278062.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
The piRNA pathway is a highly conserved mechanism to repress transposable element (TE) activity in the animal germline via a specialized class of small RNAs called piwi-interacting RNAs (piRNAs). piRNAs are produced from discrete genomic regions called piRNA clusters (piCs). Although the molecular processes by which piCs function are relatively well understood in Drosophila melanogaster, much less is known about the origin and evolution of piCs in this or any other species. To investigate piC origin and evolution, we use a population genomic approach to compare piC activity and sequence composition across eight geographically distant strains of D. melanogaster with high-quality long-read genome assemblies. We perform annotations of ovary piCs and genome-wide TE content in each strain. Our analysis uncovers extensive variation in piC activity across strains and signatures of rapid birth and death of piCs. Most TEs inferred to be recently active show an enrichment of insertions into old and large piCs, consistent with the previously proposed "trap" model of piC evolution. In contrast, a small subset of active LTR families is enriched for the formation of new piCs, suggesting that these TEs have higher proclivity to form piCs. Thus, our findings uncover processes leading to the origin of piCs. We propose that piC evolution begins with the emergence of piRNAs from individual insertions of a few select TE families prone to seed new piCs that subsequently expand by accretion of insertions from most other TE families during evolution to form larger "trap" clusters. Our study shows that TEs themselves are the major force driving the rapid evolution of piCs.
Collapse
Affiliation(s)
- Satyam P Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Dittrich C, Hoelzl F, Smith S, Fouilloux CA, Parker DJ, O’Connell LA, Knowles LS, Hughes M, Fewings A, Morgan R, Rojas B, Comeault AA. Genome Assembly of the Dyeing Poison Frog Provides Insights into the Dynamics of Transposable Element and Genome-Size Evolution. Genome Biol Evol 2024; 16:evae109. [PMID: 38753031 PMCID: PMC11152451 DOI: 10.1093/gbe/evae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Genome size varies greatly across the tree of life and transposable elements are an important contributor to this variation. Among vertebrates, amphibians display the greatest variation in genome size, making them ideal models to explore the causes and consequences of genome size variation. However, high-quality genome assemblies for amphibians have, until recently, been rare. Here, we generate a high-quality genome assembly for the dyeing poison frog, Dendrobates tinctorius. We compare this assembly to publicly available frog genomes and find evidence for both large-scale conserved synteny and widespread rearrangements between frog lineages. Comparing conserved orthologs annotated in these genomes revealed a strong correlation between genome size and gene size. To explore the cause of gene-size variation, we quantified the location of transposable elements relative to gene features and find that the accumulation of transposable elements in introns has played an important role in the evolution of gene size in D. tinctorius, while estimates of insertion times suggest that many insertion events are recent and species-specific. Finally, we carry out population-scale mobile-element sequencing and show that the diversity and abundance of transposable elements in poison frog genomes can complicate genotyping from repetitive element sequence anchors. Our results show that transposable elements have clearly played an important role in the evolution of large genome size in D. tinctorius. Future studies are needed to fully understand the dynamics of transposable element evolution and to optimize primer or bait design for cost-effective population-level genotyping in species with large, repetitive genomes.
Collapse
Affiliation(s)
- Carolin Dittrich
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Franz Hoelzl
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Chloe A Fouilloux
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Darren J Parker
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Bangor University, Bangor, UK
| | | | - Lucy S Knowles
- NERC Environmental Omics Facility, University of Sheffield, Sheffield, UK
| | - Margaret Hughes
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Ade Fewings
- Supercomputing Wales, Digital Services, Bangor University, Bangor, UK
| | - Rhys Morgan
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Bangor University, Bangor, UK
| | - Bibiana Rojas
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Aaron A Comeault
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Bangor University, Bangor, UK
| |
Collapse
|
11
|
Sadova N, Blank-Landeshammer B, Curic D, Iken M, Weghuber J. Sex-specific pharmacokinetic response to phytoestrogens in Drosophila melanogaster. Biomed Pharmacother 2024; 175:116612. [PMID: 38663102 DOI: 10.1016/j.biopha.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Drosophila melanogaster, or the fruit fly, is widely used for modeling numerous human diseases, such as neurodegeneration, tumor development, cachexia, and intestinal dysfunction. It is a suitable model organism for research targeting the physiology and pathophysiology of the intestinal epithelial barrier and has also been used as a model organism for preliminary drug and bioactive nutrient screening. However, the application of D. melanogaster in research on drug bioavailability and pharmacokinetic properties has not yet been well explored. In this study, we applied D. melanogaster to investigate the absorption and excretion of the orally administered phytoestrogens daidzein, glycitein, genistein, and their glycosides. Therefore, we established a quick, noninvasive method to quantify compound retention in D. melanogaster, suitable for the investigation of a broad variety of potentially bioactive substances. We showed that fruit fly sex plays a key role in the metabolization, transportation, and excretion of phytoestrogenic isoflavones. In particular, female fruit flies retained significantly more isoflavones than male fruit flies, which was reflected in the greater metabolic impact of isoflavones on females. Male fruit flies excreted more isoflavones than females did, which was linked to the upregulation of the xenobiotic transporter gene Mdr50. We also demonstrated that micellized isoflavones were more bioavailable than powdered isoflavones, independent of sex, age or the addition of dietary fibers.
Collapse
Affiliation(s)
- Nadiia Sadova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria
| | - Bernhard Blank-Landeshammer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - David Curic
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria
| | - Marcus Iken
- PM International AG, Schengen, Luxembourg 5445, Luxembourg
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| |
Collapse
|
12
|
Oliveira JIN, Corradi N. Strain-specific evolution and host-specific regulation of transposable elements in the model plant symbiont Rhizophagus irregularis. G3 (BETHESDA, MD.) 2024; 14:jkae055. [PMID: 38507600 PMCID: PMC11075540 DOI: 10.1093/g3journal/jkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Transposable elements (TEs) are repetitive DNA that can create genome structure and regulation variability. The genome of Rhizophagus irregularis, a widely studied arbuscular mycorrhizal fungus (AMF), comprises ∼50% repetitive sequences that include TEs. Despite their abundance, two-thirds of TEs remain unclassified, and their regulation among AMF life stages remains unknown. Here, we aimed to improve our understanding of TE diversity and regulation in this model species by curating repeat datasets obtained from chromosome-level assemblies and by investigating their expression across multiple conditions. Our analyses uncovered new TE superfamilies and families in this model symbiont and revealed significant differences in how these sequences evolve both within and between R. irregularis strains. With this curated TE annotation, we also found that the number of upregulated TE families in colonized roots is 4 times higher than in the extraradical mycelium, and their overall expression differs depending on the plant host. This work provides a fine-scale view of TE diversity and evolution in model plant symbionts and highlights their transcriptional dynamism and specificity during host-microbe interactions. We also provide Hidden Markov Model profiles of TE domains for future manual curation of uncharacterized sequences (https://github.com/jordana-olive/TE-manual-curation/tree/main).
Collapse
Affiliation(s)
| | - Nicolas Corradi
- Department of Biology, Faculty of Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
13
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
14
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Lesack KJ, Wasmuth JD. The impact of FASTQ and alignment read order on structural variant calling from long-read sequencing data. PeerJ 2024; 12:e17101. [PMID: 38500526 PMCID: PMC10946394 DOI: 10.7717/peerj.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Background Structural variant (SV) calling from DNA sequencing data has been challenging due to several factors, including the ambiguity of short-read alignments, multiple complex SVs in the same genomic region, and the lack of "truth" datasets for benchmarking. Additionally, caller choice, parameter settings, and alignment method are known to affect SV calling. However, the impact of FASTQ read order on SV calling has not been explored for long-read data. Results Here, we used PacBio DNA sequencing data from 15 Caenorhabditis elegans strains and four Arabidopsis thaliana ecotypes to evaluate the sensitivity of different SV callers on FASTQ read order. Comparisons of variant call format files generated from the original and permutated FASTQ files demonstrated that the order of input data affected the SVs predicted by each caller. In particular, pbsv was highly sensitive to the order of the input data, especially at the highest depths where over 70% of the SV calls generated from pairs of differently ordered FASTQ files were in disagreement. These demonstrate that read order sensitivity is a complex, multifactorial process, as the differences observed both within and between species varied considerably according to the specific combination of aligner, SV caller, and sequencing depth. In addition to the SV callers being sensitive to the input data order, the SAMtools alignment sorting algorithm was identified as a source of variability following read order randomization. Conclusion The results of this study highlight the sensitivity of SV calling on the order of reads encoded in FASTQ files, which has not been recognized in long-read approaches. These findings have implications for the replication of SV studies and the development of consistent SV calling protocols. Our study suggests that researchers should pay attention to the input order sensitivity of read alignment sorting methods when analyzing long-read sequencing data for SV calling, as mitigating a source of variability could facilitate future replication work. These results also raise important questions surrounding the relationship between SV caller read order sensitivity and tool performance. Therefore, tool developers should also consider input order sensitivity as a potential source of variability during the development and benchmarking of new and improved methods for SV calling.
Collapse
Affiliation(s)
- Kyle J. Lesack
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Pianezza R, Scarpa A, Narayanan P, Signor S, Kofler R. Spoink, a LTR retrotransposon, invaded D. melanogaster populations in the 1990s. PLoS Genet 2024; 20:e1011201. [PMID: 38530818 DOI: 10.1371/journal.pgen.1011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
During the last few centuries D. melanogaster populations were invaded by several transposable elements, the most recent of which was thought to be the P-element between 1950 and 1980. Here we describe a novel TE, which we named Spoink, that has invaded D. melanogaster. It is a 5216nt LTR retrotransposon of the Ty3/gypsy superfamily. Relying on strains sampled at different times during the last century we show that Spoink invaded worldwide D. melanogaster populations after the P-element between 1983 and 1993. This invasion was likely triggered by a horizontal transfer from the D. willistoni group, much as the P-element. Spoink is probably silenced by the piRNA pathway in natural populations and about 1/3 of the examined strains have an insertion into a canonical piRNA cluster such as 42AB. Given the degree of genetic investigation of D. melanogaster it is perhaps surprising that Spoink was able to invade unnoticed.
Collapse
Affiliation(s)
- Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Prakash Narayanan
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
17
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
18
|
Hénault M, Marsit S, Charron G, Landry CR. The genomic landscape of transposable elements in yeast hybrids is shaped by structural variation and genotype-specific modulation of transposition rate. eLife 2024; 12:RP89277. [PMID: 38411604 PMCID: PMC10911583 DOI: 10.7554/elife.89277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Transposable elements (TEs) are major contributors to structural genomic variation by creating interspersed duplications of themselves. In return, structural variants (SVs) can affect the genomic distribution of TE copies and shape their load. One long-standing hypothesis states that hybridization could trigger TE mobilization and thus increase TE load in hybrids. We previously tested this hypothesis (Hénault et al., 2020) by performing a large-scale evolution experiment by mutation accumulation (MA) on multiple hybrid genotypes within and between wild populations of the yeasts Saccharomyces paradoxus and Saccharomyces cerevisiae. Using aggregate measures of TE load with short-read sequencing, we found no evidence for TE load increase in hybrid MA lines. Here, we resolve the genomes of the hybrid MA lines with long-read phasing and assembly to precisely characterize the role of SVs in shaping the TE landscape. Highly contiguous phased assemblies of 127 MA lines revealed that SV types like polyploidy, aneuploidy, and loss of heterozygosity have large impacts on the TE load. We characterized 18 de novo TE insertions, indicating that transposition only has a minor role in shaping the TE landscape in MA lines. Because the scarcity of TE mobilization in MA lines provided insufficient resolution to confidently dissect transposition rate variation in hybrids, we adapted an in vivo assay to measure transposition rates in various S. paradoxus hybrid backgrounds. We found that transposition rates are not increased by hybridization, but are modulated by many genotype-specific factors including initial TE load, TE sequence variants, and mitochondrial DNA inheritance. Our results show the multiple scales at which TE load is shaped in hybrid genomes, being highly impacted by SV dynamics and finely modulated by genotype-specific variation in transposition rates.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
19
|
Mandal AK. Recent insights into crosstalk between genetic parasites and their host genome. Brief Funct Genomics 2024; 23:15-23. [PMID: 36307128 PMCID: PMC10799329 DOI: 10.1093/bfgp/elac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2024] Open
Abstract
The bulk of higher order organismal genomes is comprised of transposable element (TE) copies, i.e. genetic parasites. The host-parasite relation is multi-faceted, varying across genomic region (genic versus intergenic), life-cycle stages, tissue-type and of course in health versus pathological state. The reach of functional genomics though, in investigating genotype-to-phenotype relations, has been limited when TEs are involved. The aim of this review is to highlight recent progress made in understanding how TE origin biochemical activity interacts with the central dogma stages of the host genome. Such interaction can also bring about modulation of the immune context and this could have important repercussions in disease state where immunity has a role to play. Thus, the review is to instigate ideas and action points around identifying evolutionary adaptations that the host genome and the genetic parasite have evolved and why they could be relevant.
Collapse
Affiliation(s)
- Amit K Mandal
- Corresponding author: A.K. Mandal, Nuffield Department of Surgical Sciences (NDS), University of Oxford, Old Road Campus Research building (ORCRB), Oxford OX3 7DQ, UK. Tel: +44 (0)1865 617123; Fax: +44 (0)1865 768876; E-mail:
| |
Collapse
|
20
|
Nakamoto AA, Joubert PM, Krasileva KV. Intraspecific Variation of Transposable Elements Reveals Differences in the Evolutionary History of Fungal Phytopathogen Pathotypes. Genome Biol Evol 2023; 15:evad206. [PMID: 37975814 PMCID: PMC10691877 DOI: 10.1093/gbe/evad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Transposable elements (TEs) contribute to intraspecific variation and play important roles in the evolution of fungal genomes. However, our understanding of the processes that shape TE landscapes is limited, as is our understanding of the relationship between TE content, population structure, and evolutionary history of fungal species. Fungal plant pathogens, which often have host-specific populations, are useful systems in which to study intraspecific TE content diversity. Here, we describe TE dynamics in five lineages of Magnaporthe oryzae, the fungus that causes blast disease of rice, wheat, and many other grasses. We identified differences in TE content across these lineages and showed that recent lineage-specific expansions of certain TEs have contributed to overall greater TE content in rice-infecting and Setaria-infecting lineages. We reconstructed the evolutionary histories of long terminal repeat-retrotransposon expansions and found that in some cases they were caused by complex proliferation dynamics of one element and in others by multiple elements from an older population of TEs multiplying in parallel. Additionally, we found evidence suggesting the recent transfer of a DNA transposon between rice- and wheat-infecting M. oryzae lineages and a region showing evidence of homologous recombination between those lineages, which could have facilitated such a transfer. By investigating intraspecific TE content variation, we uncovered key differences in the proliferation dynamics of TEs in various pathotypes of a fungal plant pathogen, giving us a better understanding of the evolutionary history of the pathogen itself.
Collapse
Affiliation(s)
- Anne A Nakamoto
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Pierre M Joubert
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
21
|
Wierzbicki F, Kofler R. The composition of piRNA clusters in Drosophila melanogaster deviates from expectations under the trap model. BMC Biol 2023; 21:224. [PMID: 37858221 PMCID: PMC10588112 DOI: 10.1186/s12915-023-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND It is widely assumed that the invasion of a transposable element (TE) in mammals and invertebrates is stopped when a copy of the TE jumps into a piRNA cluster (i.e., the trap model). However, recent works, which for example showed that deletion of three major piRNA clusters has no effect on TE activity, cast doubt on the trap model. RESULTS Here, we test the trap model from a population genetics perspective. Our simulations show that the composition of regions that act as transposon traps (i.e., potentially piRNA clusters) ought to deviate from regions that have no effect on TE activity. We investigated TEs in five Drosophila melanogaster strains using three complementary approaches to test whether the composition of piRNA clusters matches these expectations. We found that the abundance of TE families inside and outside of piRNA clusters is highly correlated, although this is not expected under the trap model. Furthermore, the distribution of the number of TE insertions in piRNA clusters is also much broader than expected. CONCLUSIONS We found that the observed composition of piRNA clusters is not in agreement with expectations under the simple trap model. Dispersed piRNA producing TE insertions and temporal as well as spatial heterogeneity of piRNA clusters may account for these deviations.
Collapse
Affiliation(s)
- Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Oliveira DS, Fablet M, Larue A, Vallier A, Carareto CA, Rebollo R, Vieira C. ChimeraTE: a pipeline to detect chimeric transcripts derived from genes and transposable elements. Nucleic Acids Res 2023; 51:9764-9784. [PMID: 37615575 PMCID: PMC10570057 DOI: 10.1093/nar/gkad671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Transposable elements (TEs) produce structural variants and are considered an important source of genetic diversity. Notably, TE-gene fusion transcripts, i.e. chimeric transcripts, have been associated with adaptation in several species. However, the identification of these chimeras remains hindered due to the lack of detection tools at a transcriptome-wide scale, and to the reliance on a reference genome, even though different individuals/cells/strains have different TE insertions. Therefore, we developed ChimeraTE, a pipeline that uses paired-end RNA-seq reads to identify chimeric transcripts through two different modes. Mode 1 is the reference-guided approach that employs canonical genome alignment, and Mode 2 identifies chimeras derived from fixed or insertionally polymorphic TEs without any reference genome. We have validated both modes using RNA-seq data from four Drosophila melanogaster wild-type strains. We found ∼1.12% of all genes generating chimeric transcripts, most of them from TE-exonized sequences. Approximately ∼23% of all detected chimeras were absent from the reference genome, indicating that TEs belonging to chimeric transcripts may be recent, polymorphic insertions. ChimeraTE is the first pipeline able to automatically uncover chimeric transcripts without a reference genome, consisting of two running Modes that can be used as a tool to investigate the contribution of TEs to transcriptome plasticity.
Collapse
Affiliation(s)
- Daniel S Oliveira
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Institut Universitaire de France (IUF), Paris, Île-de-FranceF-75231, France
| | - Anaïs Larue
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Claudia M A Carareto
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| |
Collapse
|
23
|
Baril T, Pym A, Bass C, Hayward A. Transposon accumulation at xenobiotic gene family loci in aphids. Genome Res 2023; 33:1718-1733. [PMID: 37852781 PMCID: PMC10691553 DOI: 10.1101/gr.277820.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
The evolution of resistance is a major challenge for the sustainable control of pests and pathogens. Thus, a deeper understanding of the evolutionary and genomic mechanisms underpinning resistance evolution is required to safeguard health and food production. Several studies have implicated transposable elements (TEs) in xenobiotic-resistance evolution in insects. However, analyses are generally restricted to one insect species and/or one or a few xenobiotic gene families (XGFs). We examine evidence for TE accumulation at XGFs by performing a comparative genomic analysis across 20 aphid genomes, considering major subsets of XGFs involved in metabolic resistance to insecticides: cytochrome P450s, glutathione S-transferases, esterases, UDP-glucuronosyltransferases, and ABC transporters. We find that TEs are significantly enriched at XGFs compared with other genes. XGFs show similar levels of TE enrichment to those of housekeeping genes. But unlike housekeeping genes, XGFs are not constitutively expressed in germline cells, supporting the selective enrichment of TEs at XGFs rather than enrichment owing to chromatin availability. Hotspots of extreme TE enrichment occur around certain XGFs. We find, in aphids of agricultural importance, particular enrichment of TEs around cytochrome P450 genes with known functions in the detoxification of synthetic insecticides. Our results provide evidence supporting a general role for TEs as a source of genomic variation at host XGFs and highlight the existence of considerable variability in TE content across XGFs and host species. These findings show the need for detailed functional verification analyses to clarify the significance of individual TE insertions and elucidate underlying mechanisms at TE-XGF hotspots.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Adam Pym
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
24
|
Shpak M, Ghanavi HR, Lange JD, Pool JE, Stensmyr MC. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol 2023; 21:e3002333. [PMID: 37824452 PMCID: PMC10569592 DOI: 10.1371/journal.pbio.3002333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Jeremy D. Lange
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Marcus C. Stensmyr
- Department of Biology, Lund University, Lund, Scania, Sweden
- Max Planck Center on Next Generation Insect Chemical Ecology, Lund, Sweden
| |
Collapse
|
25
|
Sun C, Zhang A, Chen J, Schaack S. 'Junk' that matters: the role of transposable elements in bumblebee genome evolution. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101103. [PMID: 37604302 DOI: 10.1016/j.cois.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Transposable elements (TEs) are mobile DNA sequences that are widely distributed in eukaryotic genomes, where they are known to serve as a major force in genome evolution. The phenotypic impacts of TEs, while less well-studied, have also been discovered. Bumblebees are globally important pollinators in natural ecosystems and agriculture. Although TEs comprise a small fraction of bumblebee genomes, emerging evidence suggests that TEs are the major contributor of genome size variation across species and are involved in the formation of new coding and regulatory sequences. We review recent discoveries related to TEs in bumblebees, as well as outlining three key questions for the future of the field. In the future, we argue long-read sequencing technologies and genome editing techniques will help us identify TEs in bumblebees, unveil mechanisms that could account for their silencing and limited abundance, and uncover their contributions to phenotypic diversification, ecological adaptation, and speciation.
Collapse
Affiliation(s)
- Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Aibing Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinfeng Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
26
|
Li Z, Liu X, Wang C, Li Z, Jiang B, Zhang R, Tong L, Qu Y, He S, Chen H, Mao Y, Li Q, Pook T, Wu Y, Zan Y, Zhang H, Li L, Wen K, Chen Y. The pig pangenome provides insights into the roles of coding structural variations in genetic diversity and adaptation. Genome Res 2023; 33:1833-1847. [PMID: 37914227 PMCID: PMC10691484 DOI: 10.1101/gr.277638.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/12/2023] [Indexed: 11/03/2023]
Abstract
Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.
Collapse
Affiliation(s)
- Zhengcao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Chen Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Bo Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ruifeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Youping Qu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Haifan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yafei Mao
- Bio-X Institutes, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qingnan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Torsten Pook
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6700 AH, The Netherlands
| | - Yu Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yanjun Zan
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| |
Collapse
|
27
|
Sproul JS, Hotaling S, Heckenhauer J, Powell A, Marshall D, Larracuente AM, Kelley JL, Pauls SU, Frandsen PB. Analyses of 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. Genome Res 2023; 33:1708-1717. [PMID: 37739812 PMCID: PMC10691545 DOI: 10.1101/gr.277387.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Repetitive elements (REs) are integral to the composition, structure, and function of eukaryotic genomes, yet remain understudied in most taxonomic groups. We investigated REs across 601 insect species and report wide variation in RE dynamics across groups. Analysis of associations between REs and protein-coding genes revealed dynamic evolution at the interface between REs and coding regions across insects, including notably elevated RE-gene associations in lineages with abundant long interspersed nuclear elements (LINEs). We leveraged this large, empirical data set to quantify impacts of long-read technology on RE detection and investigate fundamental challenges to RE annotation in diverse groups. In long-read assemblies, we detected ∼36% more REs than short-read assemblies, with long terminal repeats (LTRs) showing 162% increased detection, whereas DNA transposons and LINEs showed less respective technology-related bias. In most insect lineages, 25%-85% of repetitive sequences were "unclassified" following automated annotation, compared with only ∼13% in Drosophila species. Although the diversity of available insect genomes has rapidly expanded, we show the rate of community contributions to RE databases has not kept pace, preventing efficient annotation and high-resolution study of REs in most groups. We highlight the tremendous opportunity and need for the biodiversity genomics field to embrace REs and suggest collective steps for making progress toward this goal.
Collapse
Affiliation(s)
- John S Sproul
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA;
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Watershed Sciences, Utah State University, Logan, Utah 84322, USA
| | - Jacqueline Heckenhauer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | - Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
| | - Dez Marshall
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Steffen U Pauls
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
- Department of Insect Biotechnology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Paul B Frandsen
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, District of Columbia 20560, USA
| |
Collapse
|
28
|
Coronado-Zamora M, González J. Transposons contribute to the functional diversification of the head, gut, and ovary transcriptomes across Drosophila natural strains. Genome Res 2023; 33:1541-1553. [PMID: 37793782 PMCID: PMC10620055 DOI: 10.1101/gr.277565.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Transcriptomes are dynamic, with cells, tissues, and body parts expressing particular sets of transcripts. Transposable elements (TEs) are a known source of transcriptome diversity; however, studies often focus on a particular type of chimeric transcript, analyze single body parts or cell types, or are based on incomplete TE annotations from a single reference genome. In this work, we have implemented a method based on de novo transcriptome assembly that minimizes the potential sources of errors while identifying a comprehensive set of gene-TE chimeras. We applied this method to the head, gut, and ovary dissected from five Drosophila melanogaster natural strains, with individual reference genomes available. We found that ∼19% of body part-specific transcripts are gene-TE chimeras. Overall, chimeric transcripts contribute a mean of 43% to the total gene expression, and they provide protein domains for DNA binding, catalytic activity, and DNA polymerase activity. Our comprehensive data set is a rich resource for follow-up analysis. Moreover, because TEs are present in virtually all species sequenced to date, their role in spatially restricted transcript expression is likely not exclusive to the species analyzed in this work.
Collapse
Affiliation(s)
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona 08003, Spain
| |
Collapse
|
29
|
O'Donnell S, Yue JX, Saada OA, Agier N, Caradec C, Cokelaer T, De Chiara M, Delmas S, Dutreux F, Fournier T, Friedrich A, Kornobis E, Li J, Miao Z, Tattini L, Schacherer J, Liti G, Fischer G. Telomere-to-telomere assemblies of 142 strains characterize the genome structural landscape in Saccharomyces cerevisiae. Nat Genet 2023; 55:1390-1399. [PMID: 37524789 PMCID: PMC10412453 DOI: 10.1038/s41588-023-01459-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Pangenomes provide access to an accurate representation of the genetic diversity of species, both in terms of sequence polymorphisms and structural variants (SVs). Here we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising reference-quality genomes for 142 strains representing the species' phylogenetic and ecological diversity. The ScRAP includes phased haplotype assemblies for several heterozygous diploid and polyploid isolates. We identified circa (ca.) 4,800 nonredundant SVs that provide a broad view of the genomic diversity, including the dynamics of telomere length and transposable elements. We uncovered frequent cases of complex aneuploidies where large chromosomes underwent large deletions and translocations. We found that SVs can impact gene expression near the breakpoints and substantially contribute to gene repertoire evolution. We also discovered that horizontally acquired regions insert at chromosome ends and can generate new telomeres. Overall, the ScRAP demonstrates the benefit of a pangenome in understanding genome evolution at population scale.
Collapse
Affiliation(s)
- Samuel O'Donnell
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Nicolas Agier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Thomas Cokelaer
- Biomics Technological Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, Paris, France
| | | | - Stéphane Delmas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Téo Fournier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Etienne Kornobis
- Biomics Technological Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, Paris, France
| | - Jing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Zepu Miao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | | | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| | - Gilles Fischer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France.
| |
Collapse
|
30
|
Gable SM, Mendez JM, Bushroe NA, Wilson A, Byars MI, Tollis M. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Genes (Basel) 2023; 14:1387. [PMID: 37510292 PMCID: PMC10379679 DOI: 10.3390/genes14071387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
31
|
Jiang W, Nasir M, Zhao C. Variation of insulin-related peptides accompanying the differentiation of Aphis gossypii biotypes and their expression profiles. Ecol Evol 2023; 13:e10306. [PMID: 37456079 PMCID: PMC10349280 DOI: 10.1002/ece3.10306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Insulin signaling plays a critical role in regulating various aspects of insect biology, including development, reproduction, and the formation of wing polyphenism. This leads to differentiation among insect populations at different levels. The insulin family exhibits functional variation, resulting in diverse functional pathways. Aphis gossypii Glover, commonly known as the cotton-melon aphid, is a highly adaptable aphid species that has evolved into multiple biotypes. To understand the genetic structure of the insulin family and its evolutionary diversification and expression patterns in A. gossypii, we conducted studies using genome annotation files and RNA-sequencing data. Consequently, we identified 11 insulin receptor protein (IRP) genes in the genomes of the examined biotypes. Among these, eight AgosIRPs were dispersed across the X chromosome, while two were found in tandem on the A1 chromosome. Notably, AgosIRP2 exhibited alternative splicing, resulting in the formation of two isoforms. The AgosIRP genes displayed a high degree of conservation between Hap1 and Hap3, although some variations were observed between their genomes. For instance, a transposon was present in the coding regions of AgosIRP3 and AgosIRP9 in the Hap3 genome but not in the Hap1 genome. RNA-sequencing data revealed that four AgosIRPs were expressed ubiquitously across different morphs of A. gossypii, while others showed specific expression patterns in adult gynopara and adult males. Furthermore, the expression levels of most AgosIRPs decreased upon treatment with the pesticide acetamiprid. These findings demonstrate the evolutionary diversification of AgosIRPs between the genomes of the two biotypes and provide insights into their expression profiles across different morphs, developmental stages, and biotypes. Overall, this study contributes valuable information for investigating aphid genome evolution and the functions of insulin receptor proteins.
Collapse
Affiliation(s)
- Weili Jiang
- Basic Experimental Teaching Center of Life SciencesYangzhou UniversityYangzhouChina
| | - Muhammad Nasir
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute (AARI)FaisalabadPakistan
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control/College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
32
|
Srivastav S, Feschotte C, Clark AG. Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539910. [PMID: 37214865 PMCID: PMC10197564 DOI: 10.1101/2023.05.08.539910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animal genomes are parasitized by a horde of transposable elements (TEs) whose mutagenic activity can have catastrophic consequences. The piRNA pathway is a conserved mechanism to repress TE activity in the germline via a specialized class of small RNAs associated with effector Piwi proteins called piwi-associated RNAs (piRNAs). piRNAs are produced from discrete genomic regions called piRNA clusters (piCs). While piCs are generally enriched for TE sequences and the molecular processes by which they are transcribed and regulated are relatively well understood in Drosophila melanogaster, much less is known about the origin and evolution of piCs in this or any other species. To investigate piC evolution, we use a population genomics approach to compare piC activity and sequence composition across 8 geographically distant strains of D. melanogaster with high quality long-read genome assemblies. We perform extensive annotations of ovary piCs and TE content in each strain and test predictions of two proposed models of piC evolution. The 'de novo' model posits that individual TE insertions can spontaneously attain the status of a small piC to generate piRNAs silencing the entire TE family. The 'trap' model envisions large and evolutionary stable genomic clusters where TEs tend to accumulate and serves as a long-term "memory" of ancient TE invasions and produce a great variety of piRNAs protecting against related TEs entering the genome. It remains unclear which model best describes the evolution of piCs. Our analysis uncovers extensive variation in piC activity across strains and signatures of rapid birth and death of piCs in natural populations. Most TE families inferred to be recently or currently active show an enrichment of strain-specific insertions into large piCs, consistent with the trap model. By contrast, only a small subset of active LTR retrotransposon families is enriched for the formation of strain-specific piCs, suggesting that these families have an inherent proclivity to form de novo piCs. Thus, our findings support aspects of both 'de novo' and 'trap' models of piC evolution. We propose that these two models represent two extreme stages along an evolutionary continuum, which begins with the emergence of piCs de novo from a few specific LTR retrotransposon insertions that subsequently expand by accretion of other TE insertions during evolution to form larger 'trap' clusters. Our study shows that piCs are evolutionarily labile and that TEs themselves are the major force driving the formation and evolution of piCs.
Collapse
Affiliation(s)
- Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| |
Collapse
|
33
|
Mohamed M, Sabot F, Varoqui M, Mugat B, Audouin K, Pélisson A, Fiston-Lavier AS, Chambeyron S. TrEMOLO: accurate transposable element allele frequency estimation using long-read sequencing data combining assembly and mapping-based approaches. Genome Biol 2023; 24:63. [PMID: 37013657 PMCID: PMC10069131 DOI: 10.1186/s13059-023-02911-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Transposable Element MOnitoring with LOng-reads (TrEMOLO) is a new software that combines assembly- and mapping-based approaches to robustly detect genetic elements called transposable elements (TEs). Using high- or low-quality genome assemblies, TrEMOLO can detect most TE insertions and deletions and estimate their allele frequency in populations. Benchmarking with simulated data revealed that TrEMOLO outperforms other state-of-the-art computational tools. TE detection and frequency estimation by TrEMOLO were validated using simulated and experimental datasets. Therefore, TrEMOLO is a comprehensive and suitable tool to accurately study TE dynamics. TrEMOLO is available under GNU GPL3.0 at https://github.com/DrosophilaGenomeEvolution/TrEMOLO .
Collapse
Affiliation(s)
- Mourdas Mohamed
- Institute of Human Genetics, UMR9002, CNRS and Université de Montpellier, Montpellier, France
| | - François Sabot
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- IFB - Southgreen Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Marion Varoqui
- Institute of Human Genetics, UMR9002, CNRS and Université de Montpellier, Montpellier, France
| | - Bruno Mugat
- Institute of Human Genetics, UMR9002, CNRS and Université de Montpellier, Montpellier, France
| | | | - Alain Pélisson
- Institute of Human Genetics, UMR9002, CNRS and Université de Montpellier, Montpellier, France
| | - Anna-Sophie Fiston-Lavier
- ISEM, Université Montpellier, CNRS, IRD, CIRAD, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Séverine Chambeyron
- Institute of Human Genetics, UMR9002, CNRS and Université de Montpellier, Montpellier, France
| |
Collapse
|
34
|
Su C, Ding C, Zhao Y, He B, Nie R, Hao J. Diapause-Linked Gene Expression Pattern and Related Candidate Duplicated Genes of the Mountain Butterfly Parnassius glacialis (Lepidoptera: Papilionidae) Revealed by Comprehensive Transcriptome Profiling. Int J Mol Sci 2023; 24:5577. [PMID: 36982649 PMCID: PMC10058462 DOI: 10.3390/ijms24065577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The mountain butterfly Parnassius glacialis is a representative species of the genus Parnassius, which probably originated in the high-altitude Qinhai-Tibet Plateau in the Miocene and later dispersed eastward into relatively low-altitude regions of central to eastern China. However, little is known about the molecular mechanisms underlying the long-term evolutionary adaptation to heterogeneous environmental conditions of this butterfly species. In this study, we obtained the high-throughput RNA-Seq data from twenty-four adult individuals in eight localities, covering nearly all known distributional areas in China, and firstly identified the diapause-linked gene expression pattern that is likely to correlate with local adaptation in adult P. glacialis populations. Secondly, we found a series of pathways responsible for hormone biosynthesis, energy metabolism and immune defense that also exhibited unique enrichment patterns in each group that are probably related to habitat-specific adaptability. Furthermore, we also identified a suite of duplicated genes (including two transposable elements) that are mostly co-expressed to promote the plastic responses to different environmental conditions. Together, these findings can help us to better understand this species' successful colonization to distinct geographic areas from the western to eastern areas of China, and also provide us with some insights into the evolution of diapause in mountain Parnassius butterfly species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
35
|
Eugénio AT, Marialva MSP, Beldade P. Effects of Wolbachia on Transposable Element Expression Vary Between Drosophila melanogaster Host Genotypes. Genome Biol Evol 2023; 15:evad036. [PMID: 36929176 PMCID: PMC10025071 DOI: 10.1093/gbe/evad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/18/2023] Open
Abstract
Transposable elements (TEs) are repetitive DNA sequences capable of changing position in host genomes, thereby causing mutations. TE insertions typically have deleterious effects but they can also be beneficial. Increasing evidence of the contribution of TEs to adaptive evolution further raises interest in understanding what factors impact TE activity. Based on previous studies associating the bacterial endosymbiont Wolbachia with changes in the abundance of piRNAs, a mechanism for TE repression, and to transposition of specific TEs, we hypothesized that Wolbachia infection would interfere with TE activity. We tested this hypothesis by studying the expression of 14 TEs in a panel of 25 Drosophila melanogaster host genotypes, naturally infected with Wolbachia and annotated for TE insertions. The host genotypes differed significantly in Wolbachia titers inside individual flies, with broad-sense heritability around 20%, and in the number of TE insertions, which depended greatly on TE identity. By removing Wolbachia from the target host genotypes, we generated a panel of 25 pairs of Wolbachia-positive and Wolbachia-negative lines in which we quantified transcription levels for our target TEs. We found variation in TE expression that was dependent on Wolbachia status, TE identity, and host genotype. Comparing between pairs of Wolbachia-positive and Wolbachia-negative flies, we found that Wolbachia removal affected TE expression in 21.1% of the TE-genotype combinations tested, with up to 2.3 times differences in the median level of transcript. Our data show that Wolbachia can impact TE activity in host genomes, underscoring the importance this endosymbiont can have in the generation of genetic novelty in hosts.
Collapse
Affiliation(s)
| | | | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- cE3c (Center for Ecology, Evolution and Environmental Changes) and CHANGE (Global Change and Sustainability Institute), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
36
|
Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, Rodeghiero M, Anfora G, González J. Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biol 2023; 21:35. [PMID: 36797754 PMCID: PMC9933328 DOI: 10.1186/s12915-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Climate change is one of the main factors shaping the distribution and biodiversity of organisms, among others by greatly altering water availability, thus exposing species and ecosystems to harsh desiccation conditions. However, most of the studies so far have focused on the effects of increased temperature. Integrating transcriptomics and physiology is key to advancing our knowledge on how species cope with desiccation stress, and these studies are still best accomplished in model organisms. RESULTS Here, we characterized the natural variation of European D. melanogaster populations across climate zones and found that strains from arid regions were similar or more tolerant to desiccation compared with strains from temperate regions. Tolerant and sensitive strains differed not only in their transcriptomic response to stress but also in their basal expression levels. We further showed that gene expression changes in tolerant strains correlated with their physiological response to desiccation stress and with their cuticular hydrocarbon composition, and functionally validated three of the candidate genes identified. Transposable elements, which are known to influence stress response across organisms, were not found to be enriched nearby differentially expressed genes. Finally, we identified several tRNA-derived small RNA fragments that differentially targeted genes in response to desiccation stress. CONCLUSIONS Overall, our results showed that basal gene expression differences across individuals should be analyzed if we are to understand the genetic basis of differential stress survival. Moreover, tRNA-derived small RNA fragments appear to be relevant across stress responses and allow for the identification of stress-response genes not detected at the transcriptional level.
Collapse
Affiliation(s)
- Vivien Horváth
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | | | | | - Gabriel E Rech
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Eugenio Aprea
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Mirco Rodeghiero
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Gianfranco Anfora
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
| |
Collapse
|
37
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
38
|
Green L, Coronado-Zamora M, Radío S, Rech GE, Salces-Ortiz J, González J. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biol 2022; 20:275. [PMID: 36482348 PMCID: PMC9733279 DOI: 10.1186/s12915-022-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Escalation in industrialization and anthropogenic activity have resulted in an increase of pollutants released into the environment. Of these pollutants, heavy metals such as copper are particularly concerning due to their bio-accumulative nature. Due to its highly heterogeneous distribution and its dual nature as an essential micronutrient and toxic element, the genetic basis of copper tolerance is likely shaped by a complex interplay of genetic and environmental factors. RESULTS In this study, we utilized the natural variation present in multiple populations of Drosophila melanogaster collected across Europe to screen for variation in copper tolerance. We found that latitude and the degree of urbanization at the collection sites, rather than any other combination of environmental factors, were linked to copper tolerance. While previously identified copper-related genes were not differentially expressed in tolerant vs. sensitive strains, genes involved in metabolism, reproduction, and protease induction contributed to the differential stress response. Additionally, the greatest transcriptomic and physiological responses to copper toxicity were seen in the midgut, where we found that preservation of gut acidity is strongly linked to greater tolerance. Finally, we identified transposable element insertions likely to play a role in copper stress response. CONCLUSIONS Overall, by combining genome-wide approaches with environmental association analysis, and functional analysis of candidate genes, our study provides a unique perspective on the genetic and environmental factors that shape copper tolerance in natural D. melanogaster populations and identifies new genes, transposable elements, and physiological traits involved in this complex phenotype.
Collapse
Affiliation(s)
- Llewellyn Green
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Coronado-Zamora
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Radío
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E. Rech
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Judit Salces-Ortiz
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
39
|
Botto JM, Faulkner GJ. Endogenous retrovirus expression during fruitfly metamorphosis enhances adult viral immunity. Nat Genet 2022; 54:1765-1767. [PMID: 36396708 DOI: 10.1038/s41588-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Juan M Botto
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia. .,Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
40
|
Pokrovac I, Pezer Ž. Recent advances and current challenges in population genomics of structural variation in animals and plants. Front Genet 2022; 13:1060898. [PMID: 36523759 PMCID: PMC9745067 DOI: 10.3389/fgene.2022.1060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 05/02/2024] Open
Abstract
The field of population genomics has seen a surge of studies on genomic structural variation over the past two decades. These studies witnessed that structural variation is taxonomically ubiquitous and represent a dominant form of genetic variation within species. Recent advances in technology, especially the development of long-read sequencing platforms, have enabled the discovery of structural variants (SVs) in previously inaccessible genomic regions which unlocked additional structural variation for population studies and revealed that more SVs contribute to evolution than previously perceived. An increasing number of studies suggest that SVs of all types and sizes may have a large effect on phenotype and consequently major impact on rapid adaptation, population divergence, and speciation. However, the functional effect of the vast majority of SVs is unknown and the field generally lacks evidence on the phenotypic consequences of most SVs that are suggested to have adaptive potential. Non-human genomes are heavily under-represented in population-scale studies of SVs. We argue that more research on other species is needed to objectively estimate the contribution of SVs to evolution. We discuss technical challenges associated with SV detection and outline the most recent advances towards more representative reference genomes, which opens a new era in population-scale studies of structural variation.
Collapse
Affiliation(s)
| | - Željka Pezer
- Laboratory for Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
41
|
ONT-Based Alternative Assemblies Impact on the Annotations of Unique versus Repetitive Features in the Genome of a Romanian Strain of Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms232314892. [PMID: 36499217 PMCID: PMC9741293 DOI: 10.3390/ijms232314892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
To date, different strategies of whole-genome sequencing (WGS) have been developed in order to understand the genome structure and functions. However, the analysis of genomic sequences obtained from natural populations is challenging and the biological interpretation of sequencing data remains the main issue. The MinION device developed by Oxford Nanopore Technologies (ONT) is able to generate long reads with minimal costs and time requirements. These valuable assets qualify it as a suitable method for performing WGS, especially in small laboratories. The long reads resulted using this sequencing approach can cover large structural variants and repetitive sequences commonly present in the genomes of eukaryotes. Using MinION, we performed two WGS assessments of a Romanian local strain of Drosophila melanogaster, referred to as Horezu_LaPeri (Horezu). In total, 1,317,857 reads with a size of 8.9 gigabytes (Gb) were generated. Canu and Flye de novo assembly tools were employed to obtain four distinct assemblies with both unfiltered and filtered reads, achieving maximum reference genome coverages of 94.8% (Canu) and 91.4% (Flye). In order to test the quality of these assemblies, we performed a two-step evaluation. Firstly, we considered the BUSCO scores and inquired for a supplemental set of genes using BLAST. Subsequently, we appraised the total content of natural transposons (NTs) relative to the reference genome (ISO1 strain) and mapped the mdg1 retroelement as a resolution assayer. Our results reveal that filtered data provide only slightly enhanced results when considering genes identification, but the use of unfiltered data had a consistent positive impact on the global evaluation of the NTs content. Our comparative studies also revealed differences between Flye and Canu assemblies regarding the annotation of unique versus repetitive genomic features. In our hands, Flye proved to be moderately better for gene identification, while Canu clearly outperformed Flye for NTs analysis. Data concerning the NTs content were compared to those obtained with ONT for the D. melanogaster ISO1 strain, revealing that our strategy conducted to better results. Additionally, the parameters of our ONT reads and assemblies are similar to those reported for ONT experiments performed on various model organisms, revealing that our assembly data are appropriate for a proficient annotation of the Horezu genome.
Collapse
|
42
|
Abstract
Transposable elements are known by many names, including 'transposons', 'interspersed repeats', 'selfish genetic elements', 'jumping genes', and 'parasitic DNA', but here we will refer to them simply as transposable elements. Many biologists will have heard of transposable elements and their ability to transpose (change position) within the genome. But fewer may be aware of their varied influences on host biology, including contributions to the evolution of diverse host traits such as internal gestation, memory, colouration, and adaptive immunity. Transposable elements are a near ubiquitous feature of eukaryotic genomes, and they often comprise a substantial proportion of total genomic content. Consequently, transposable element genes are considered among the most abundant coding sequences in nature. Recent advances in genome sequencing have ushered in a golden age for transposable-element research, providing opportunities to greatly improve our understanding of the effects of transposable elements on host evolution and disease. However, our ability to detect and analyse transposable elements still faces significant challenges, impairing efforts to decipher their evolution, characterise their diversity, and elucidate their myriad host influences. Below, we summarise key aspects of transposable element biology in eukaryotes and discuss major outstanding research questions.
Collapse
Affiliation(s)
- Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall TR10 9FE, UK.
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette 91198, France.
| |
Collapse
|
43
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
44
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|