1
|
Maity K, Sau S, Banerjee F, Samanta SK. Heterogenization of Homogeneous Donor-Acceptor Conjugated Polymers for Efficient Photooxidation: An Approach Toward Sustainable and Recyclable Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50834-50845. [PMID: 39284797 DOI: 10.1021/acsami.4c11131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Recovery of homogeneous photocatalysts from reaction mixture is challenging, affecting the cost-effectiveness, and masks their advantages, including 4-8 fold higher catalytic activity than corresponding heterogeneous counterparts. Incorporation of long alkyl chains within the rigid π-conjugated backbone of conjugated polymers can augment their solubility in particular organic solvents; accordingly, they can function as homogeneous photocatalysts. Consequently, these polymers facilitate the recovery of catalysts through the reverse dissolution process, thus creating a well-suited platform to meet certain advantages of both homo- and heterogeneous photocatalysts. This work exemplifies the unprecedented perks of donor-acceptor conjugated polymers from benzodithiophene and substituted dibenzothiophene sulfone moieties for their homogeneous phase photoredox activities along with their heterogeneous recovery and reuse up to five runs. The potential intermediate singlet oxygen (1O2) and superoxide (O2•-) as reactive oxygen species generated by these photostable conjugated polymers efficiently catalyze the visible-light-driven oxidation of aryl sulfides (up to 92% yield) and oxidative hydroxylation of phenylboronic acids (up to 93% yield), respectively. Therefore, to actualize the heightened catalytic performance and formulate a design strategy for polymeric photoredox catalyst, our work introduces an alternative approach to the advancement of photocatalysis with diverse catalytic activities.
Collapse
Affiliation(s)
- Krishnendu Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumitra Sau
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Flora Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Wang J, Liang J, Hou H, Liu W, Wu H, Sun H, Ou W, Su C, Liu B. Heterogeneous organophotocatalytic HBr oxidation coupled with oxygen reduction for boosting bromination of arenes. Nat Commun 2024; 15:4744. [PMID: 38834549 DOI: 10.1038/s41467-024-48349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/28/2024] [Indexed: 06/06/2024] Open
Abstract
Developing mild photocatalytic bromination strategies using sustainable bromo source has been attracting intense interests, but there is still much room for improvement. Full utilization of redox centers of photocatalysts for efficient generation of Br+ species is the key. Herein we report heterogenous organophotocatalytic HBr oxidation coupled with oxygen reduction to furnish Br2 and H2O2 for effective bromination of arenes over Al2O3 supported perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). Mechanism studies suggest that O-vacancy in Al2O3 can provide Lewis-acid-type anchoring sites for O2, enabling unexpected dual-electron transfer from anchored photoexcited PTCDA to chemically bound O2 to produce H2O2. The in-situ generated H2O2 and Br2 over redox centers work together to generate HBrO for bromination of arenes. This work provides new insights that heterogenization of organophotocatalysts can not only help to improve their stability and recyclability, but also endow them with the ability to trigger unusual reaction mode via cooperative catalysis with supports.
Collapse
Affiliation(s)
- Jie Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Liang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wei Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongru Wu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongli Sun
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR 999007, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR 999007, China.
| |
Collapse
|
3
|
Cai B, Huang P, Fang Y, Tian H. Recyclable and Stable Porphyrin-Based Self-Assemblies by Electrostatic Force for Efficient Photocatalytic Organic Transformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308469. [PMID: 38460154 DOI: 10.1002/advs.202308469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Indexed: 03/11/2024]
Abstract
Development of efficient, stable, and recyclable photocatalysts for organic synthesis is vital for transformation of traditional thermal organic chemistry into green sustainable organic chemistry. In this work, the study reports an electrostatic approach to assemble meso-tetra (4-sulfonate phenyl) porphyrin (TPPS)tetra (4-sulfonate phenyl) porphyrin (TPPS) as a donor and benzyl viologen (BV) as an acceptor into stable and recyclable photocatalyst for an efficient organic transformation reaction - aryl sulfide oxidation. By use of the electrostatic TPPS-BV photocatalysts, 0.1 mmol aryl sulfide with electron-donating group can be completely transformed into aryl sulfoxide in 60 min without overoxidation into sulfone, rendering near 100% yield and selectivity. The photocatalyst can be recycled up to 95% when 10 mg amount is used. Mechanistic study reveals that efficient charge separation between TPPS and BV results in sufficient formation of superoxide which further reacts with the oxidized sulfide by the photocatalyst to produce the sulfoxide. This mechanistic pathway differs significantly from the previously proposed singlet oxygen-dominated process in homogeneous TPPS photocatalysis.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| | - Ping Huang
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| | - Yuan Fang
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30-36, Stockholm, SE 100 44, Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| |
Collapse
|
4
|
Di Carmine G, D’Agostino C, Bortolini O, Poletti L, De Risi C, Ragno D, Massi A. Heterogeneous Organocatalysts for Light-Driven Reactions in Continuous Flow. Molecules 2024; 29:2166. [PMID: 38792028 PMCID: PMC11124298 DOI: 10.3390/molecules29102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Within the realm of organic synthesis, photocatalysis has blossomed since the beginning of the last decade. A plethora of classical reactivities, such as selective oxidation of alcohol and amines, redox radical formation of reactive species in situ, and indirect activation of an organic substrate for cycloaddition by EnT, have been revised in a milder and more sustainable fashion via photocatalysis. However, even though the spark of creativity leads scientists to explore new reactions and reactivities, the urgency of replacing the toxic and critical metals that are involved as catalysts has encouraged chemists to find alternatives in the branch of science called organocatalysis. Unfortunately, replacing metal catalysts with organic analogues can be too expensive sometimes; however, this drawback can be solved by the reutilization of the catalyst if it is heterogeneous. The aim of this review is to present the recent works in the field of heterogeneous photocatalysis, applied to organic synthesis, enabled by continuous flow. In detail, among the heterogeneous catalysts, g-CN, polymeric photoactive materials, and supported molecular catalysts have been discussed within their specific sections, rather than focusing on the types of reactions.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Carmine D’Agostino
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum—University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Olga Bortolini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Lorenzo Poletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Carmela De Risi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| |
Collapse
|
5
|
Feld LG, Boehme SC, Morad V, Sahin Y, Kaul CJ, Dirin DN, Rainò G, Kovalenko MV. Quantifying Förster Resonance Energy Transfer from Single Perovskite Quantum Dots to Organic Dyes. ACS NANO 2024; 18:9997-10007. [PMID: 38547379 PMCID: PMC11008358 DOI: 10.1021/acsnano.3c11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.
Collapse
Affiliation(s)
- Leon G. Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yesim Sahin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christoph J. Kaul
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N. Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
6
|
Guadalupe Martin M, Lázaro-Martínez JM, Martín SE, Uberman PM, Budén ME. Anthraquinone-Modified Silica Nanoparticles as Heterogeneous Photocatalyst for the Oxidative Hydroxylation of Arylboronic Acids. Chemistry 2023:e202303382. [PMID: 38150600 DOI: 10.1002/chem.202303382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
In this work, the synthesis and characterization of a heterogeneous photocatalyst based on spherical silica nanoparticles superficially modified with anthraquinone 2-carboxylic acid (AQ-COOH) are presented. The nanomaterial was characterized by TEM, SEM, FT-IR, diffuse reflectance, fluorescence, NMR, DLS, XRD and XPS. These analyses confirm the covalent linking of AQ-COOH with the NH2 functionality in the nanomaterial and, more importantly, the photocatalyst retains its photophysical properties once bound. The heterogeneous photocatalyst was successfully employed in the aerobic hydroxylation of arylboronic acids to phenols under sustainable reaction conditions. Phenols were obtained in high yields (up to 100 %) with low catalyst loading (3.5 mol %), reaching TOF values of 3.7 h-1 . Using 2-propanol as solvent at room temperature, the visible light photocatalysis produced H2 O2 as a key intermediate to promote the aerobic hydroxylation of arylboronic acids. The heterogeneous photocatalyst was reused at least 5 times, without modification of the nanomaterial structure and morphology. This simple heterogeneous system showed great catalytic activity under sustainable reaction conditions.
Collapse
Affiliation(s)
- María Guadalupe Martin
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan Manuel Lázaro-Martínez
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Química y Metabolismo del Fármaco IQUIMEFA-UBA-CONICET, Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sandra Elizabeth Martín
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Paula Marina Uberman
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - María Eugenia Budén
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
7
|
Lu RQ, Yuan W, Feng H, Lennon Luo SX, Mason Wu YC, Etkind SI, Kumar M, Swager TM. Porous Polymers Containing Metallocalix[4]arene for the Extraction of Tobacco-Specific Nitrosamines. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10623-10630. [PMID: 37323159 PMCID: PMC10262809 DOI: 10.1021/acs.chemmater.2c02713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We designed porous polymers with a tungsten-calix[4]arene imido complex as the nitrosamine receptor for the efficient extraction of tobacco-specific nitrosamines (TSNAs) from water. The interaction between the metallocalix[4]arene and the TSNA, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) was investigated. We found that the incorporation of the nitrosamine receptor into porous polymers increased their selectivity toward NNK over nicotine. The polymer with an optimal ratio of calixarene-containing and porosity-inducing building blocks showed a high maximum adsorption capacity of up to 203 mg/g toward NNK under sonication, which was among the highest values reported. The adsorbed NNK could be removed from the polymer by soaking it in acetonitrile, enabling the adsorbent to be reused. A similar extraction efficiency to that under sonication could be achieved using the polymer-coated magnetic particles under stirring. We also proved that the material could efficiently extract TSNAs from real tobacco extract. This work not only provides an efficient material for the extraction of TSNAs but also offers a design strategy for efficient adsorbents.
Collapse
Affiliation(s)
- Ru-Qiang Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weize Yuan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Haosheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel I Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohanraja Kumar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Kim S, Landfester K, Ferguson CTJ. Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS NANO 2022; 16:17041-17048. [PMID: 36223132 PMCID: PMC9620398 DOI: 10.1021/acsnano.2c07156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Substrate accessibility is a key limiting factor for the efficiency of heterogeneous photoredox catalysis. Recently, a high photoactive surface area of conjugated microporous polymer nanoparticles (CMP NPs) has made them promising candidates for overcoming the mass transfer limitation to achieve high photocatalytic efficiency. However, this potential has not been realized due to limited dispersibility of CMP NPs in many solvents, particularly in water. Here, we report a polymer grafting strategy that furnishes versatile hairy CMP NPs with enhanced solvent-specific dispersibility. The method associates hundreds of solvent-miscible repeating units with one chain end of the photocatalyst surface, allowing minimal modification to the CMP network that preserves its photocatalytic activity. Therefore, the enhanced dispersibility of hairy CMP NPs in organic solvents or aqueous solutions affords high efficiency in various photocatalytic organic transformations.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United
Kingdom
| |
Collapse
|