1
|
Rodriguez-Mayorga M, Blase X, Duchemin I, D'Avino G. From Many-Body Ab Initio to Effective Excitonic Models: A Versatile Mapping Approach Including Environmental Embedding Effects. J Chem Theory Comput 2024; 20:8675-8688. [PMID: 39376072 DOI: 10.1021/acs.jctc.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present an original multistate projective diabatization scheme based on Green's function formalisms that allows the systematic mapping of many-body ab initio calculations onto effective excitonic models. This method inherits the ability of the Bethe-Salpeter equation to describe Frenkel molecular excitons and intermolecular charge-transfer states equally well, as well as the possibility for an effective description of environmental effects in a QM/MM framework. The latter is found to be a crucial element in order to obtain accurate model parameters for condensed phases and to ensure their transferability to excitonic models for extended systems. The method is presented through a series of examples illustrating its quality, robustness, and internal consistency.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Mayorga
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| | - Xavier Blase
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| | - Ivan Duchemin
- Grenoble Alpes University, CEA, IRIG-MEM-L Sim, Grenoble 38054, France
| | - Gabriele D'Avino
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| |
Collapse
|
2
|
Ghalami F, Dohmen PM, Krämer M, Elstner M, Xie W. Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network-Based Frenkel Hamiltonian and Gradients. J Chem Theory Comput 2024; 20:6160-6174. [PMID: 38976696 DOI: 10.1021/acs.jctc.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In this study, we present a multiscale method to simulate the propagation of Frenkel singlet excitons in organic semiconductors (OSCs). The approach uses neural network models to train a Frenkel-type Hamiltonian and its gradient, obtained by the long-range correction version of density functional tight-binding with self-consistent charges. Our models accurately predict site energies, excitonic couplings, and corresponding gradients, essential for the nonadiabatic molecular dynamics simulations. Combined with the fewest switches surface hopping algorithm, the method was applied to four representative OSCs: anthracene, pentacene, perylenediimide, and diindenoperylene. The simulated exciton diffusion constants align well with experimental and reported theoretical values and offer valuable insights into exciton dynamics in OSCs.
Collapse
Affiliation(s)
- Farhad Ghalami
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
- Institute of Nano Technology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp M Dohmen
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Mila Krämer
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
- Institute of Nano Technology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Weiwei Xie
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Stojanovic L, Giannini S, Blumberger J. Exciton Transport in the Nonfullerene Acceptor O-IDTBR from Nonadiabatic Molecular Dynamics. J Chem Theory Comput 2024; 20:6241-6252. [PMID: 38967252 PMCID: PMC11270823 DOI: 10.1021/acs.jctc.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Theory, computation, and experiment have given strong evidence that charge carriers in organic molecular crystals form partially delocalized quantum objects that diffuse very efficiently via a mechanism termed transient delocalization. It is currently unclear how prevalent this mechanism is for exciton transport. Here we carry out simulation of singlet Frenkel excitons (FE) in a molecular organic semiconductor that belongs to the class of nonfullerene acceptors, O-IDTBR, using the recently introduced FE surface hopping nonadiabatic molecular dynamics method. We find that FE are, on average, localized on a single molecule in the crystal due to sizable reorganization energy and moderate excitonic couplings. Yet, our simulations suggest that the diffusion mechanism is more complex than simple local hopping; in addition to hopping, we observe frequent transient delocalization events where the exciton wave function expands over 10 or more molecules for a short period of time in response to thermal excitations within the excitonic band, followed by de-excitation and contraction onto a single molecule. The transient delocalization events lead to an increase in the diffusion constant by a factor of 3-4, depending on the crystallographic direction as compared to the situation where only local hopping events are considered. Intriguingly, O-IDTBR appears to be a moderately anisotropic 3D "conductor" for excitons but a highly anisotropic 2D conductor for electrons. Taken together with previous simulation results, two trends seem to emerge for molecular organic crystals: excitons tend to be more localized and slower than charge carriers due to higher internal reorganization energy, while exciton transport tends to be more isotropic than charge transport due to the weaker distance dependence of excitonic versus electronic coupling.
Collapse
Affiliation(s)
- Ljiljana Stojanovic
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, U.K.
| | - Samuele Giannini
- Institute
of Chemistry of OrganoMetallic Compounds, National Research Council (ICCOM-CNR), Pisa I-56124, Italy
| | - Jochen Blumberger
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, U.K.
| |
Collapse
|
4
|
Bhat V, Ganapathysubramanian B, Risko C. Rapid Estimation of the Intermolecular Electronic Couplings and Charge-Carrier Mobilities of Crystalline Molecular Organic Semiconductors through a Machine Learning Pipeline. J Phys Chem Lett 2024; 15:7206-7213. [PMID: 38973725 DOI: 10.1021/acs.jpclett.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Organic semiconductors (OSC) offer tremendous potential across a wide range of (opto)electronic applications. OSC development, however, is often limited by trial-and-error design, with computational modeling approaches deployed to evaluate and screen candidates through a suite of molecular and materials descriptors that generally require hours to days of computational time to accumulate. Such bottlenecks slow the pace and limit the exploration of the vast chemical space comprising OSC. When considering charge-carrier transport in OSC, a key parameter of interest is the intermolecular electronic coupling. Here, we introduce a machine learning (ML) model to predict intermolecular electronic couplings in organic crystalline materials from their three-dimensional (3D) molecular geometries. The ML predictions take only a few seconds of computing time compared to hours by density functional theory (DFT) methods. To demonstrate the utility of the ML predictions, we deploy the ML model in conjunction with mathematical formulations to rapidly screen the charge-carrier mobility anisotropy for more than 60,000 molecular crystal structures and compare the ML predictions to DFT benchmarks.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Baskar Ganapathysubramanian
- Department of Mechanical Engineering & Translational AI Center, Iowa State University, Ames, Iowa 50010, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
5
|
Sokolov M, Hoffmann DS, Dohmen PM, Krämer M, Höfener S, Kleinekathöfer U, Elstner M. Non-adiabatic molecular dynamics simulations provide new insights into the exciton transfer in the Fenna-Matthews-Olson complex. Phys Chem Chem Phys 2024; 26:19469-19496. [PMID: 38979564 DOI: 10.1039/d4cp02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A trajectory surface hopping approach, which uses machine learning to speed up the most time-consuming steps, has been adopted to investigate the exciton transfer in light-harvesting systems. The present neural networks achieve high accuracy in predicting both Coulomb couplings and excitation energies. The latter are predicted taking into account the environment of the pigments. Direct simulation of exciton dynamics through light-harvesting complexes on significant time scales is usually challenging due to the coupled motion of nuclear and electronic degrees of freedom in these rather large systems containing several relatively large pigments. In the present approach, however, we are able to evaluate a statistically significant number of non-adiabatic molecular dynamics trajectories with respect to exciton delocalization and exciton paths. The formalism is applied to the Fenna-Matthews-Olson complex of green sulfur bacteria, which transfers energy from the light-harvesting chlorosome to the reaction center with astonishing efficiency. The system has been studied experimentally and theoretically for decades. In total, we were able to simulate non-adiabatically more than 30 ns, sampling also the relevant space of parameters within their uncertainty. Our simulations show that the driving force supplied by the energy landscape resulting from electrostatic tuning is sufficient to funnel the energy towards site 3, from where it can be transferred to the reaction center. However, the high efficiency of transfer within a picosecond timescale can be attributed to the rather unusual properties of the BChl a molecules, resulting in very low inner and outer-sphere reorganization energies, not matched by any other organic molecule, e.g., used in organic electronics. A comparison with electron and exciton transfer in organic materials is particularly illuminating, suggesting a mechanism to explain the comparably high transfer efficiency.
Collapse
Affiliation(s)
- Monja Sokolov
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - David S Hoffmann
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Philipp M Dohmen
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Mila Krämer
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Sebastian Höfener
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | | | - Marcus Elstner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
6
|
Gharbi AM, Biswas DS, Crégut O, Malý P, Didier P, Klymchenko A, Léonard J. Exciton annihilation and diffusion length in disordered multichromophoric nanoparticles. NANOSCALE 2024; 16:11550-11563. [PMID: 38868990 DOI: 10.1039/d4nr00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Efficient exciton transport is the essential property of natural and synthetic light-harvesting (LH) devices. Here we investigate exciton transport properties in LH organic polymer nanoparticles (ONPs) of 40 nm diameter. The ONPs are loaded with a rhodamine B dye derivative and bulky counterion, enabling dye loadings as high as 0.3 M, while preserving fluorescence quantum yields larger than 30%. We use time-resolved fluorescence spectroscopy to monitor exciton-exciton annihilation (EEA) kinetics within the ONPs dispersed in water. We demonstrate that unlike the common practice for photoluminescence investigations of EEA, the non-uniform intensity profile of the excitation light pulse must be taken into account to analyse reliably intensity-dependent population dynamics. Alternatively, a simple confocal detection scheme is demonstrated, which enables (i) retrieving the correct value for the bimolecular EEA rate which would otherwise be underestimated by a typical factor of three, and (ii) revealing minor EEA by-products otherwise unnoticed. Considering the ONPs as homogeneous rigid solutions of weakly interacting dyes, we postulate an incoherent exciton hoping mechanism to infer a diffusion constant exceeding 0.003 cm2 s-1 and a diffusion length as large as 70 nm. This work demonstrates the success of the present ONP design strategy at engineering efficient exciton transport in disordered multichromophoric systems.
Collapse
Affiliation(s)
| | | | - Olivier Crégut
- IPCMS, Université de Strasbourg - CNRS, Strasbourg, France.
| | - Pavel Malý
- Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
7
|
Jindal V, Aldahdooh MKR, Gomez ED, Janik MJ, Milner ST. Tight-binding model predicts exciton energetics and structure for photovoltaic molecules. Phys Chem Chem Phys 2024; 26:15472-15483. [PMID: 38751347 DOI: 10.1039/d4cp00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Conjugated molecules and polymers are being designed as acceptor and donor materials for organic photovoltaic (OPV) cells. OPV performance depends on generation of free charge carriers through dissociation of excitons, which are electron-hole pairs created when a photon is absorbed. Here, we develop a tight-binding model to describe excitons on homo-oligomers, alternating co-oligomers, and a non-fullerene acceptor - IDTBR. We parameterize our model using density functional theory (DFT) energies of neutral, anion, cation, and excited states of constituent moieties. A symmetric molecule like IDTBR has two ends where an exciton can sit; but the product wavefunction approximation for the exciton breaks symmetry. So, we introduce a tight-binding model with full correlation between electron and hole, which allows the exciton to coherently explore both ends of the molecule. Our approach predicts optical singlet excitation energies for oligomers of varying length as well as IDTBR in good agreement with time-dependent DFT and spectroscopic results.
Collapse
Affiliation(s)
- Vishal Jindal
- Department of Chemical Engineering, The Pennsylvania State University, USA.
| | | | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, USA.
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Janik
- Department of Chemical Engineering, The Pennsylvania State University, USA.
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, USA.
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Shakiba M, Akimov AV. Machine-Learned Kohn-Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics. J Chem Theory Comput 2024; 20:2992-3007. [PMID: 38581699 DOI: 10.1021/acs.jctc.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
In this work, we report a simple, efficient, and scalable machine-learning (ML) approach for mapping non-self-consistent Kohn-Sham Hamiltonians constructed with one kind of density functional to the nearly self-consistent Hamiltonians constructed with another kind of density functional. This approach is designed as a fast surrogate Hamiltonian calculator for use in long nonadiabatic dynamics simulations of large atomistic systems. In this approach, the input and output features are Hamiltonian matrices computed from different levels of theory. We demonstrate that the developed ML-based Hamiltonian mapping method (1) speeds up the calculations by several orders of magnitude, (2) is conceptually simpler than alternative ML approaches, (3) is applicable to different systems and sizes and can be used for mapping Hamiltonians constructed with arbitrary density functionals, (4) requires a modest training data, learns fast, and generates molecular orbitals and their energies with the accuracy nearly matching that of conventional calculations, and (5) when applied to nonadiabatic dynamics simulation of excitation energy relaxation in large systems yields the corresponding time scales within the margin of error of the conventional calculations. Using this approach, we explore the excitation energy relaxation in C60 fullerene and Si75H64 quantum dot structures and derive qualitative and quantitative insights into dynamics in these systems.
Collapse
Affiliation(s)
- Mohammad Shakiba
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Brey D, Burghardt I. Coherent Transient Localization Mechanism of Interchain Exciton Transport in Regioregular P3HT: A Quantum-Dynamical Study. J Phys Chem Lett 2024; 15:1836-1845. [PMID: 38334949 DOI: 10.1021/acs.jpclett.3c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transient localization has been proposed as a transport mechanism in organic materials, for both charge carriers and excitons. Here, we characterize a quantum coherent transient localization mechanism using full quantum simulations of an H-aggregated model system representative of regioregular poly(3-hexylthiophene) (rrP3HT). A Frenkel-Holstein Hamiltonian parametrized from first principles is considered, including local high-frequency modes and anharmonic, site-correlated interchain modes. Quantum-dynamical calculations are carried out using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for a 13-site system with 195 vibrational modes, under periodic boundary conditions. It is shown that temporary localization of exciton polarons alternates with resonant transfer driven by interchain modes. While the transport process is mainly determined by exciton-polarons at the low-energy band edge, persistent coupling with the excitonic manifold is observed, giving rise to a nonadiabatic excitonic flux. This elementary transport mechanism remains preserved for limited static disorder and gives way to Anderson localization when the static disorder becomes dominant.
Collapse
Affiliation(s)
- Dominik Brey
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Moritaka SS, Lebedev VS. Orientational effects in the polarized absorption spectra of molecular aggregates. J Chem Phys 2024; 160:074901. [PMID: 38364011 DOI: 10.1063/5.0188128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
We present a detailed theoretical analysis of polarized absorption spectra and linear dichroism of cyanine dye aggregates whose unit cells contain two molecules. The studied threadlike ordered system with a molecular exciton delocalized along its axis can be treated as two chains of conventional molecular aggregates, rotated relative to each other at a certain angle around the aggregate axis. Our approach is based on the general formulas for the effective cross section of light absorption by a molecular aggregate and key points of the molecular exciton theory. We have developed a self-consistent theory for describing the orientational effects in the absorption and dichroic spectra of such supramolecular structures with nonplanar unit cell. It is shown that the spectral behavior of such systems exhibits considerable distinctions from that of conventional cyanine dye aggregates. They consist in the strong dependence of the relative intensities of the J- and H-type spectral bands of the aggregate with a nonplanar unit cell on the angles determining the mutual orientations of the transition dipole moments of constituting molecules and the aggregate axis as well as on the polarization direction of incident light. The derived formulas are reduced to the well-known analytical expressions in the particular case of aggregates with one molecule in the unit cell. The calculations performed within the framework of our excitonic theory combined with available vibronic theory allow us to quite reasonably explain the experimental data for the pseudoisocyanine bromide dye aggregate.
Collapse
Affiliation(s)
- S S Moritaka
- P. N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy Prosp., 119991 Moscow, Russian Federation
| | - V S Lebedev
- P. N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy Prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
11
|
Leppert L. Excitons in metal-halide perovskites from first-principles many-body perturbation theory. J Chem Phys 2024; 160:050902. [PMID: 38341699 DOI: 10.1063/5.0187213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 02/13/2024] Open
Abstract
Metal-halide perovskites are a structurally, chemically, and electronically diverse class of semiconductors with applications ranging from photovoltaics to radiation detectors and sensors. Understanding neutral electron-hole excitations (excitons) is key for predicting and improving the efficiency of energy-conversion processes in these materials. First-principles calculations have played an important role in this context, allowing for a detailed insight into the formation of excitons in many different types of perovskites. Such calculations have demonstrated that excitons in some perovskites significantly deviate from canonical models due to the chemical and structural heterogeneity of these materials. In this Perspective, I provide an overview of calculations of excitons in metal-halide perovskites using Green's function-based many-body perturbation theory in the GW + Bethe-Salpeter equation approach, the prevalent method for calculating excitons in extended solids. This approach readily considers anisotropic electronic structures and dielectric screening present in many perovskites and important effects, such as spin-orbit coupling. I will show that despite this progress, the complex and diverse electronic structure of these materials and its intricate coupling to pronounced and anharmonic structural dynamics pose challenges that are currently not fully addressed within the GW + Bethe-Salpeter equation approach. I hope that this Perspective serves as an inspiration for further exploring the rich landscape of excitons in metal-halide perovskites and other complex semiconductors and for method development addressing unresolved challenges in the field.
Collapse
Affiliation(s)
- Linn Leppert
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Carey RL, Giannini S, Schott S, Lemaur V, Xiao M, Prodhan S, Wang L, Bovoloni M, Quarti C, Beljonne D, Sirringhaus H. Spin relaxation of electron and hole polarons in ambipolar conjugated polymers. Nat Commun 2024; 15:288. [PMID: 38177094 PMCID: PMC10767019 DOI: 10.1038/s41467-023-43505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The charge-transport properties of conjugated polymers have been studied extensively for opto-electronic device applications. Some polymer semiconductors not only support the ambipolar transport of electrons and holes, but do so with comparable carrier mobilities. This opens the possibility of gaining deeper insight into the charge-transport physics of these complex materials via comparison between electron and hole dynamics while keeping other factors, such as polymer microstructure, equal. Here, we use field-induced electron spin resonance spectroscopy to compare the spin relaxation behavior of electron and hole polarons in three ambipolar conjugated polymers. Our experiments show unique relaxation regimes as a function of temperature for electrons and holes, whereby at lower temperatures electrons relax slower than holes, but at higher temperatures, in the so-called spin-shuttling regime, the trend is reversed. On the basis of theoretical simulations, we attribute this to differences in the delocalization of electron and hole wavefunctions and show that spin relaxation in the spin shuttling regimes provides a sensitive probe of the intimate coupling between charge and structural dynamics.
Collapse
Affiliation(s)
- Remington L Carey
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Samuele Giannini
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
- Institute of Chemistry of OrganoMetallic Compounds, National Research Council (ICCOM-CNR), I-56124, Pisa, Italy
| | - Sam Schott
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Mingfei Xiao
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Suryoday Prodhan
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX, UK
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Michelangelo Bovoloni
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | | |
Collapse
|
13
|
Lei Y, Xie X, Ma H, Ma J. Vitality of Intralayer Vibration in hBN for Effective Long-Range Interlayer Hole Transfer across High Barriers in MoSe 2/hBN/WSe 2 Heterostructures. J Phys Chem Lett 2023:11190-11199. [PMID: 38055859 DOI: 10.1021/acs.jpclett.3c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Introducing the two-dimensional (2D) hexagonal boron nitride (hBN) between 2D transition metal dichalcogenide (TMD) layers promises convenient manipulation of the interlayer exciton (IX) and interlayer charge transfer in TMD/hBN/TMD heterostructures, while the role of inserted hBN layers during IX formation is controversial. Employing ab initio nonadiabatic molecular dynamics (NAMD) simulations and the electron-phonon coupling model, we systematically investigate interlayer hole transfer in MoSe2/WSe2 bilayers intercalated by hBN layers with various thicknesses. The conventional direct hole transfer from MoSe2 to WSe2 is decelerated by 2-3 orders of magnitude after the hBN insertion. Meanwhile, a novel channel intermediated by a deeper hole of WSe2 becomes dominant, where the intralayer shear mode of hBN plays a crucial role by reducing the energy barriers for this new channel. The unique role of hBN layers is revealed for the first time, enriching the knowledge of the underlying microscopic mechanisms and providing instructive guidance to practical van der Waals optoelectronic devices.
Collapse
Affiliation(s)
- Yuli Lei
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Baxter JM, Koay CS, Xu D, Cheng SW, Tulyagankhodjaev JA, Shih P, Roy X, Delor M. Coexistence of Incoherent and Ultrafast Coherent Exciton Transport in a Two-Dimensional Superatomic Semiconductor. J Phys Chem Lett 2023; 14:10249-10256. [PMID: 37938804 DOI: 10.1021/acs.jpclett.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Fully leveraging the remarkable properties of low-dimensional semiconductors requires developing a deep understanding of how their structure and disorder affect the flow of electronic energy. Here, we study exciton transport in single crystals of the two-dimensional superatomic semiconductor CsRe6Se8I3, which straddles a photophysically rich yet elusive intermediate electronic-coupling regime. Using femtosecond scattering microscopy to directly image exciton transport in CsRe6Se8I3, we reveal the rare coexistence of coherent and incoherent exciton transport, leading to either persistent or transient electronic delocalization depending on temperature. Notably, coherent excitons exhibit ballistic transport at speeds approaching an extraordinary 1600 km/s over 300 fs. Such fast transport is mediated by J-aggregate-like superradiance, owing to the anisotropic structure and long-range order of CsRe6Se8I3. Our results establish superatomic crystals as ideal platforms for studying the intermediate electronic-coupling regime in highly ordered environments, in this case displaying long-range electronic delocalization, ultrafast energy flow, and a tunable dual transport regime.
Collapse
Affiliation(s)
- James M Baxter
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christie S Koay
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Petra Shih
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
15
|
Shuai Z. Faster holes by delocalization. NATURE MATERIALS 2023; 22:1277-1278. [PMID: 37891261 DOI: 10.1038/s41563-023-01675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Affiliation(s)
- Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
16
|
Giannini S, Di Virgilio L, Bardini M, Hausch J, Geuchies JJ, Zheng W, Volpi M, Elsner J, Broch K, Geerts YH, Schreiber F, Schweicher G, Wang HI, Blumberger J, Bonn M, Beljonne D. Transiently delocalized states enhance hole mobility in organic molecular semiconductors. NATURE MATERIALS 2023; 22:1361-1369. [PMID: 37709929 DOI: 10.1038/s41563-023-01664-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Evidence shows that charge carriers in organic semiconductors self-localize because of dynamic disorder. Nevertheless, some organic semiconductors feature reduced mobility at increasing temperature, a hallmark for delocalized band transport. Here we present the temperature-dependent mobility in two record-mobility organic semiconductors: dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]-thiophene (DNTT) and its alkylated derivative, C8-DNTT-C8. By combining terahertz photoconductivity measurements with atomistic non-adiabatic molecular dynamics simulations, we show that while both crystals display a power-law decrease of the mobility (μ) with temperature (T) following μ ∝ T -n, the exponent n differs substantially. Modelling reveals that the differences between the two chemically similar semiconductors can be traced to the delocalization of the different states that are thermally accessible by charge carriers, which in turn depends on their specific electronic band structure. The emerging picture is that of holes surfing on a dynamic manifold of vibrationally dressed extended states with a temperature-dependent mobility that provides a sensitive fingerprint for the underlying density of states.
Collapse
Affiliation(s)
- Samuele Giannini
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium.
| | | | - Marco Bardini
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Julian Hausch
- Institut für Angewandte Physik, Universität Tübingen, Tübingen, Germany
| | | | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Martina Volpi
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Jan Elsner
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK
| | - Katharina Broch
- Institut für Angewandte Physik, Universität Tübingen, Tübingen, Germany
| | - Yves H Geerts
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- International Solvay Institutes for Physics and Chemistry, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Tübingen, Germany
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Mainz, Germany.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium.
| |
Collapse
|
17
|
Müller K, Schellhammer KS, Gräßler N, Debnath B, Liu F, Krupskaya Y, Leo K, Knupfer M, Ortmann F. Directed exciton transport highways in organic semiconductors. Nat Commun 2023; 14:5599. [PMID: 37699907 PMCID: PMC10497625 DOI: 10.1038/s41467-023-41044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor-acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.
Collapse
Affiliation(s)
- Kai Müller
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl S Schellhammer
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nico Gräßler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Bipasha Debnath
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Yulia Krupskaya
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Martin Knupfer
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Frank Ortmann
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany.
| |
Collapse
|
18
|
Mayorgas A, Guerrero J, Calixto M. Localization measures of parity adapted U(D)-spin coherent states applied to the phase space analysis of the D-level Lipkin-Meshkov-Glick model. Phys Rev E 2023; 108:024107. [PMID: 37723708 DOI: 10.1103/physreve.108.024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023]
Abstract
We study phase space properties of critical, parity symmetric, N-qudit systems undergoing a quantum phase transition (QPT) in the thermodynamic N→∞ limit. The D=3 level (qutrit) Lipkin-Meshkov-Glick model is eventually examined as a particular example. For this purpose, we consider U(D)-spin coherent states (DSCS), generalizing the standard D=2 atomic coherent states, to define the coherent state representation Q_{ψ} (Husimi function) of a symmetric N-qudit state |ψ〉 in the phase space CP^{D-1} (complex projective manifold). DSCS are good variational approximations to the ground state of an N-qudit system, especially in the N→∞ limit, where the discrete parity symmetry Z_{2}^{D-1} is spontaneously broken. For finite N, parity can be restored by projecting DSCS onto 2^{D-1} different parity invariant subspaces, which define generalized "Schrödinger cat states" reproducing quite faithfully low-lying Hamiltonian eigenstates obtained by numerical diagonalization. Precursors of the QPT are then visualized for finite N by plotting the Husimi function of these parity projected DSCS in phase space, together with their Husimi moments and Wehrl entropy, in the neighborhood of the critical points. These are good localization measures and markers of the QPT.
Collapse
Affiliation(s)
- Alberto Mayorgas
- Department of Applied Mathematics, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Julio Guerrero
- Department of Mathematics, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain
- Institute Carlos I of Theoretical and Computational Physics (iC1), University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Manuel Calixto
- Department of Applied Mathematics, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Institute Carlos I of Theoretical and Computational Physics (iC1), University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
19
|
Xie X, Troisi A. Identification via Virtual Screening of Emissive Molecules with a Small Exciton-Vibration Coupling for High Color Purity and Potential Large Exciton Delocalization. J Phys Chem Lett 2023; 14:4119-4126. [PMID: 37129191 PMCID: PMC10165648 DOI: 10.1021/acs.jpclett.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A sequence of quantum chemical computations of increasing accuracy was used in this work to identify molecules with small exciton reorganization energy (exciton-vibration coupling), of interest for light emitting devices and coherent exciton transport, starting from a set of ∼4500 known molecules. We validated an approximate computational approach based on single-point calculations of the force in the excited state, which was shown to be very efficient in identifying the most promising candidates. We showed that a simple descriptor based on the bond order could be used to find molecules with potentially small exciton reorganization energies without performing excited state calculations. A small set of chemically diverse molecules with a small exciton reorganization energy was analyzed in greater detail to identify common features leading to this property. Many such molecules display an A-B-A structure where the bonding/antibonding patterns in the fragments A are similar in HOMO and LUMO. Another group of molecules with small reorganization energy displays instead HOMO and LUMO with a strong nonbonding character.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Chemistry, University of Liverpool Liverpool L69 3BX, U.K
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX, U.K
| |
Collapse
|
20
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
21
|
Balzer D, Kassal I. Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors. J Phys Chem Lett 2023; 14:2155-2162. [PMID: 36802583 DOI: 10.1021/acs.jpclett.2c03886] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Large exciton diffusion lengths generally improve the performance of organic semiconductor devices, because they enable energy to be transported farther during the exciton lifetime. However, the physics of exciton motion in disordered organic materials is not fully understood, and modeling the transport of quantum-mechanically delocalized excitons in disordered organic semiconductors is a computational challenge. Here, we describe delocalized kinetic Monte Carlo (dKMC), the first model of three-dimensional exciton transport in organic semiconductors that includes delocalization, disorder, and polaron formation. We find that delocalization can dramatically increase exciton transport; for example, delocalization across less than two molecules in each direction can increase the exciton diffusion coefficient by over an order of magnitude. The mechanism for the enhancement is 2-fold: delocalization enables excitons to hop both more frequently and further in each hop. We also quantify the effect of transient delocalization (short-lived periods where excitons become highly delocalized) and show that it depends strongly upon the disorder and transition dipole moments.
Collapse
Affiliation(s)
- Daniel Balzer
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ivan Kassal
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
22
|
Alvertis AM, Haber JB, Engel EA, Sharifzadeh S, Neaton JB. Phonon-Induced Localization of Excitons in Molecular Crystals from First Principles. PHYSICAL REVIEW LETTERS 2023; 130:086401. [PMID: 36898125 DOI: 10.1103/physrevlett.130.086401] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The spatial extent of excitons in molecular systems underpins their photophysics and utility for optoelectronic applications. Phonons are reported to lead to both exciton localization and delocalization. However, a microscopic understanding of phonon-induced (de)localization is lacking, in particular, how localized states form, the role of specific vibrations, and the relative importance of quantum and thermal nuclear fluctuations. Here, we present a first-principles study of these phenomena in solid pentacene, a prototypical molecular crystal, capturing the formation of bound excitons, exciton-phonon coupling to all orders, and phonon anharmonicity, using density functional theory, the ab initio GW-Bethe-Salpeter equation approach, finite-difference, and path integral techniques. We find that for pentacene zero-point nuclear motion causes uniformly strong localization, with thermal motion providing additional localization only for Wannier-Mott-like excitons. Anharmonic effects drive temperature-dependent localization, and, while such effects prevent the emergence of highly delocalized excitons, we explore the conditions under which these might be realized.
Collapse
Affiliation(s)
- Antonios M Alvertis
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, 94720 California, USA
| | - Jonah B Haber
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, 94720 California, USA
| | - Edgar A Engel
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, 02215 Massachusetts, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, 02215 Massachusetts, USA
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, 94720 California, USA
- Kavli Energy NanoScience Institute at Berkeley, Berkeley, 94720 California, USA
| |
Collapse
|
23
|
Mavrommati S, Skourtis SS. Molecular Wires for Efficient Long-Distance Triplet Energy Transfer. J Phys Chem Lett 2022; 13:9679-9687. [PMID: 36215956 PMCID: PMC9589895 DOI: 10.1021/acs.jpclett.2c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
We propose design rules for building organic molecular bridges that enable coherent long-distance triplet-exciton transfer. Using these rules, we describe example polychromophoric structures with low inner-sphere exciton reorganization energies, low static and dynamic disorder, and enhanced π-stacking interactions between nearest-neighbor chromophores. These features lead to triplet-exciton eigenstates that are delocalized over several units at room temperature. The use of such bridges in donor-bridge-acceptor assemblies enables fast triplet-exciton transport over very long distances that is rate-limited by the donor-bridge injection and bridge-acceptor trapping rates.
Collapse
|
24
|
Ashoka A, Gauriot N, Girija AV, Sawhney N, Sneyd AJ, Watanabe K, Taniguchi T, Sung J, Schnedermann C, Rao A. Direct observation of ultrafast singlet exciton fission in three dimensions. Nat Commun 2022; 13:5963. [PMID: 36216826 PMCID: PMC9551063 DOI: 10.1038/s41467-022-33647-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
We present quantitative ultrafast interferometric pump-probe microscopy capable of tracking of photoexcitations with sub-10 nm spatial precision in three dimensions with 15 fs temporal resolution, through retrieval of the full transient photoinduced complex refractive index. We use this methodology to study the spatiotemporal dynamics of the quantum coherent photophysical process of ultrafast singlet exciton fission. Measurements on microcrystalline pentacene films grown on glass (SiO2) and boron nitride (hBN) reveal a 25 nm, 70 fs expansion of the joint-density-of-states along the crystal a,c-axes accompanied by a 6 nm, 115 fs change in the exciton density along the crystal b-axis. We propose that photogenerated singlet excitons expand along the direction of maximal orbital π-overlap in the crystal a,c-plane to form correlated triplet pairs, which subsequently electronically decouples into free triplets along the crystal b-axis due to molecular sliding motion of neighbouring pentacene molecules. Our methodology lays the foundation for the study of three dimensional transport on ultrafast timescales.
Collapse
Affiliation(s)
- Arjun Ashoka
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| | - Nicolas Gauriot
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| | - Aswathy V. Girija
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| | - Nipun Sawhney
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| | - Alexander J. Sneyd
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| | - Kenji Watanabe
- grid.21941.3f0000 0001 0789 6880Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - Takashi Taniguchi
- grid.21941.3f0000 0001 0789 6880International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - Jooyoung Sung
- grid.417736.00000 0004 0438 6721Department of Emerging Materials Science, DGIST, Daegu, 42988 Republic of Korea
| | - Christoph Schnedermann
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| | - Akshay Rao
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE UK
| |
Collapse
|
25
|
Peng WT, Brey D, Giannini S, Dell’Angelo D, Burghardt I, Blumberger J. Exciton Dissociation in a Model Organic Interface: Excitonic State-Based Surface Hopping versus Multiconfigurational Time-Dependent Hartree. J Phys Chem Lett 2022; 13:7105-7112. [PMID: 35900333 PMCID: PMC9376959 DOI: 10.1021/acs.jpclett.2c01928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 05/20/2023]
Abstract
Quantum dynamical simulations are essential for a molecular-level understanding of light-induced processes in optoelectronic materials, but they tend to be computationally demanding. We introduce an efficient mixed quantum-classical nonadiabatic molecular dynamics method termed eXcitonic state-based Surface Hopping (X-SH), which propagates the electronic Schrödinger equation in the space of local excitonic and charge-transfer electronic states, coupled to the thermal motion of the nuclear degrees of freedom. The method is applied to exciton decay in a 1D model of a fullerene-oligothiophene junction, and the results are compared to the ones from a fully quantum dynamical treatment at the level of the Multilayer Multiconfigurational Time-Dependent Hartree (ML-MCTDH) approach. Both methods predict that charge-separated states are formed on the 10-100 fs time scale via multiple "hot-exciton dissociation" pathways. The results demonstrate that X-SH is a promising tool advancing the simulation of photoexcited processes from the molecular to the true nanomaterials scale.
Collapse
Affiliation(s)
- Wei-Tao Peng
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Dominik Brey
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Samuele Giannini
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - David Dell’Angelo
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Irene Burghardt
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Jochen Blumberger
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Sneyd A, Beljonne D, Rao A. A New Frontier in Exciton Transport: Transient Delocalization. J Phys Chem Lett 2022; 13:6820-6830. [PMID: 35857739 PMCID: PMC9340810 DOI: 10.1021/acs.jpclett.2c01133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 05/20/2023]
Abstract
Efficient exciton transport is crucial to the application of organic semiconductors (OSCs) in light-harvesting devices. While the physics of exciton transport in highly disordered media is well-explored, the description of transport in structurally and energetically ordered OSCs is less established, despite such materials being favorable for devices. In this Perspective we describe and highlight recent research pointing toward a highly efficient exciton transport mechanism which occurs in ordered OSCs, transient delocalization. Here, exciton-phonon couplings play a critical role in allowing localized exciton states to temporarily access higher-energy delocalized states whereupon they move large distances. The mechanism shows great promise for facilitating long-range exciton transport and may allow for improved device efficiencies and new device architectures. However, many fundamental questions on transient delocalization remain to be answered. These questions and suggested next steps are summarized.
Collapse
Affiliation(s)
- Alexander
J. Sneyd
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, University
of Mons, Mons 7000, Belgium
| | - Akshay Rao
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|