1
|
Kwaaitaal M, Lourens DG, Davies CS, Kirilyuk A. Disentangling thermal birefringence and strain in the all-optical switching of ferroelectric polarization. Sci Rep 2024; 14:24956. [PMID: 39438556 PMCID: PMC11496713 DOI: 10.1038/s41598-024-75670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Recent works have demonstrated that the optical excitation of crystalline materials with intense narrow-band infrared pulses, tailored to match the frequencies at which the crystal's permittivity approaches close to zero, can drive a permanent reversal of magnetic and ferroelectric ordering. However, the physical mechanism that microscopically underpins this effect remains unclear, as well as the precise role of laser-induced heating and macroscopic strains. Here, we explore how infrared pulses can simultaneously give rise to strong temperature-dependent birefringence and strain in ferroelectric barium titanate. We develop a model of these two coexisting effects, allowing us to use polarization microscopy to disentangle them through their spatial distributions, temporal evolutions and spectral dependencies. We experimentally observe strain-induced patterns that are an order of magnitude larger than that which can be accounted for by laser-induced heating alone, suggesting that non-thermal effects must also play a role. Our results reveal the distinct fingerprints of heat- and strain-induced birefringence, shedding new light on the process of all-optical switching of order parameters in the epsilon-near-zero regime.
Collapse
Affiliation(s)
- Maarten Kwaaitaal
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Daniel G Lourens
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Carl S Davies
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Andrei Kirilyuk
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Yang Q, Meng S. Light-Induced Complete Reversal of Ferroelectric Polarization in Sliding Ferroelectrics. PHYSICAL REVIEW LETTERS 2024; 133:136902. [PMID: 39392997 DOI: 10.1103/physrevlett.133.136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/23/2024] [Indexed: 10/13/2024]
Abstract
Previous experiments have provided evidence of sliding ferroelectricity and photoexcited interlayer shear displacement in two-dimensional materials, respectively. Herein, we find that a complete reversal of vertical ferroelectric polarization can be achieved within an astonishing 0.5 ps in h-BN bilayer by laser illumination. Comprehensive analysis suggests that ferroelectric polarization switching originates from laser-induced interlayer sliding triggered by selective excitation of multiple phonons. The interlayer electron excitation from the p_{z} orbitals of the upper layer N atoms to the p_{z} orbitals of the lower layer B atoms produces desirable and directional interlayer forces activating the in-plane optical TO-1 and LO-1 phonon modes. The atomic motions driven by the coupling of TO-1 and LO-1 modes are coherent with ferroelectric soft mode, thus modulating the dynamical potential energy surface and resulting in ultrafast ferroelectric polarization reversal. Our work provides a novel microscopic insight into ultrafast polarization switching in sliding ferroelectrics.
Collapse
|
3
|
Kahana T, Bustamante Lopez DA, Juraschek DM. Light-induced magnetization from magnonic rectification. SCIENCE ADVANCES 2024; 10:eado0722. [PMID: 39321285 PMCID: PMC11423882 DOI: 10.1126/sciadv.ado0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
Rectification describes the conversion of an oscillating field or current into a quasi-static one and the most basic example of a rectifier is an AC/DC converter in electronics. This principle can be translated to nonlinear light-matter interactions, where optical rectification converts the oscillating electric field component of light into a quasi-static polarization and phononic rectification converts a lattice vibration into a quasi-static structural distortion. Here, we present a rectification mechanism for magnetism that we call magnonic rectification, where a spin precession is converted into a quasi-static magnetization through the force exerted by a coupled chiral phonon mode. The transiently induced magnetic state resembles that of a canted antiferromagnet, opening an avenue toward creating dynamical spin configurations that are not accessible in equilibrium.
Collapse
Affiliation(s)
- Tom Kahana
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | |
Collapse
|
4
|
Wang J, Li X, Ma X, Chen L, Liu JM, Duan CG, Íñiguez-González J, Wu D, Yang Y. Ultrafast Switching of Sliding Polarization and Dynamical Magnetic Field in van der Waals Bilayers Induced by Light. PHYSICAL REVIEW LETTERS 2024; 133:126801. [PMID: 39373442 DOI: 10.1103/physrevlett.133.126801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/03/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
Sliding ferroelectricity is a unique type of polarity recently observed in van der Waals bilayers with a suitable stacking. However, electric-field control of sliding ferroelectricity is hard and could induce large coercive electric fields and serious leakage currents that corrode the ferroelectricity and electronic properties, which are essential for modern two-dimensional electronics and optoelectronics. Here, we proposed laser-pulse deterministic control of sliding polarization in bilayer hexagonal boron nitride by first principles and molecular dynamics simulation with machine-learned force fields. The laser pulses excite shear modes that exhibit certain directional movements of lateral sliding between bilayers. The vibration of excited modes under laser pulses is predicted to overcome the energy barrier and achieve the switching of sliding polarization. Furthermore, it is found that three possible sliding transitions-between AB (BA) and BA (AB) stacking-can lead to the occurrence of dynamical magnetic fields along three different directions. Remarkably, the magnetic fields are generated by the simple linear motion of nonmagnetic species, without any need for more exotic (circular, spiral) pathways. Such predictions of deterministic control of sliding polarization and multistates of dynamical magnetic field thus expand the potential applications of sliding ferroelectricity in memory and electronic devices.
Collapse
Affiliation(s)
- Jian Wang
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xu Li
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xingyue Ma
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | | | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | | | | | - Di Wu
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Li Z, Varrassi L, Yang Y, Franchini C, Bellaiche L, He J. Ultrastrong Coupling between Polar Distortion and Optical Properties in Ferroelectric MoBr 2O 2. J Am Chem Soc 2024; 146:15411-15419. [PMID: 38780106 DOI: 10.1021/jacs.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tuning the properties of materials by using external stimuli is crucial for developing versatile smart materials. Strong coupling among the order parameters within a single-phase material constitutes a potent foundation for achieving precise property control. However, cross-coupling is fairly weak in most single materials. Leveraging first-principles calculations, we demonstrate a layered mixed anion compound MoBr2O2 that exhibits electric-field switchable spontaneous polarization and ultrastrong coupling between polar distortion and electronic structures as well as optical properties. It offers feasible avenues of achieving tunable Rashba spin-splitting, electrochromism, thermochromism, photochromism, and nonlinear optics by applying an external electric field to a single domain sample and heating, as well as intense light illumination. Additionally, it exhibits an exceptionally large photostrictive effect. These findings not only showcase the feasibility of achieving multiple order parameter coupling within a single material but also pave the way for comprehensive applications based on property control, such as energy harvesting, information processing, and ultrafast control.
Collapse
Affiliation(s)
- Zhaojun Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lorenzo Varrassi
- Department of Physics and Astronomy "Augusto Righi", Alma Mater Studiorum, Università di Bologna, Bologna 40127, Italy
| | - Yali Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Cesare Franchini
- Department of Physics and Astronomy "Augusto Righi", Alma Mater Studiorum, Università di Bologna, Bologna 40127, Italy
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria
| | - Laurent Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jiangang He
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Yang Y, Hong L, Bellaiche L, Xiang H. Toward Ultimate Memory with Single-Molecule Multiferroics. J Am Chem Soc 2023; 145:25357-25364. [PMID: 37948323 DOI: 10.1021/jacs.3c09294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The demand for high-density storage is urgent in the current era of data explosion. Recently, several single-molecule (-atom) magnets and ferroelectrics have been reported to be promising candidates for high-density storage. As another promising candidate, single-molecule multiferroics are not only small in size but also possess ferroelectric and magnetic orderings, which can sometimes be strongly coupled and used as data storage to realize the combination of electric writing and magnetic reading. However, they have been rarely proposed and have never been experimentally reported. Here, by building Hamiltonian models, we propose a new model of single-molecule multiferroics in which electric dipoles and magnetic moments are parallel and can rotate with the rotation of the single molecule. Furthermore, by performing spin-lattice dynamics simulations, we reveal the conditions (e.g., large enough single-ion anisotropy and an appropriate electric field) under which the new single-molecule multiferroic can arise. Based on this model, as well as first-principles calculations, a realistic example of Co(NH3)4N@SWCNT is constructed and numerically confirmed to demonstrate the feasibility of the new single-molecule multiferroic model. Our work not only sheds light on the discovery of single-molecule multiferroics but also provides a new guideline to design multifunctional materials for ultimate memory devices.
Collapse
Affiliation(s)
- Yali Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Liangliang Hong
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| |
Collapse
|
7
|
Gao L, Prokhorenko S, Nahas Y, Bellaiche L. Dynamical Multiferroicity and Magnetic Topological Structures Induced by the Orbital Angular Momentum of Light in a Nonmagnetic Material. PHYSICAL REVIEW LETTERS 2023; 131:196801. [PMID: 38000422 DOI: 10.1103/physrevlett.131.196801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/19/2023] [Indexed: 11/26/2023]
Abstract
Recent studies have revealed that chiral phonons resonantly excited by ultrafast laser pulses carry magnetic moments and can enhance the magnetization of materials. In this work, using first-principles-based simulations, we present a real-space scenario where circular motions of electric dipoles in ultrathin two-dimensional ferroelectric and nonmagnetic films are driven by orbital angular momentum of light via strong coupling between electric dipoles and optical field. Rotations of these dipoles follow the evolving pattern of the optical field and create strong on-site orbital magnetic moments of ions. By characterizing topology of orbital magnetic moments in each 2D layer, we identify the vortex type of topological texture-magnetic merons with a one-half topological charge and robust stability. Our study thus provides alternative approaches for generating magnetic fields and topological textures from light-matter interaction and dynamical multiferroicity in nonmagnetic materials.
Collapse
Affiliation(s)
- Lingyuan Gao
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Sergei Prokhorenko
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yousra Nahas
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
8
|
Du Y, Liao WQ, Li Y, Huang CR, Gan T, Chen XG, Lv HP, Song XJ, Xiong RG, Wang ZX. A Homochiral Fulgide Organic Ferroelectric Crystal with Photoinduced Molecular Orbital Breaking. Angew Chem Int Ed Engl 2023:e202315189. [PMID: 37919233 DOI: 10.1002/anie.202315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization. Significantly, 1 shows a photoinduced reversible change in its molecular orbitals from the 3 π molecular orbitals in the open-ring isomer to 2 π and 1 σ molecular orbitals in the closed-ring isomer, which enables reversible ferroelectric domain switching by optical manipulation. To our knowledge, this is the first report revealing the manipulation of ferroelectric polarization in homochiral ferroelectric crystal by photoinduced breaking of molecular orbitals. This finding sheds light on the exploration of molecular orbital breaking in ferroelectrics for optical manipulation of ferroelectricity.
Collapse
Affiliation(s)
- Ye Du
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Chao-Ran Huang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| |
Collapse
|
9
|
Brekhov K, Bilyk V, Ovchinnikov A, Chefonov O, Mukhortov V, Mishina E. Resonant Excitation of the Ferroelectric Soft Mode by a Narrow-Band THz Pulse. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1961. [PMID: 37446477 DOI: 10.3390/nano13131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
This study investigates the impact of narrow-band terahertz pulses on the ferroelectric order parameter in Ba0.8Sr0.2TiO3 films on various substrates. THz radiation in the range of 1-2 THz with the pulse width of about 0.15 THz was separated from a broadband pulse with the interference technique. The 375 nm thick BST film on a MgO (001) substrate exhibits enhanced THz-induced second harmonic generation when excited by THz pulses with a central frequency of 1.6 THz, due to the resonant excitation of the soft phonon mode. Conversely, the BST film on a Si (001) substrate shows no enhancement, due to its polycrystalline state. The 800 nm thick BST film on a MgO (111) substrate demonstrates the maximum of a second harmonic generation signal when excited by THz pulses at 1.8 THz, which is close to the soft mode frequency for the (111) orientation. Notably, the frequency spectrum of the BST/MgO (111) film reveals peaks at both the fundamental and doubled frequencies, and their intensities depend, respectively, linearly and quadratically on the THz pulse electric field strength.
Collapse
Affiliation(s)
- Kirill Brekhov
- Department of Nanoelectronics, MIREA-Russian Technological University, Moscow 119454, Russia
| | - Vladislav Bilyk
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Andrey Ovchinnikov
- Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT), Moscow 125412, Russia
| | - Oleg Chefonov
- Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT), Moscow 125412, Russia
| | - Vladimir Mukhortov
- Southern Scientific Center of Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Elena Mishina
- Department of Nanoelectronics, MIREA-Russian Technological University, Moscow 119454, Russia
| |
Collapse
|
10
|
Song C, Yang Q, Liu X, Zhao H, Zhang C, Meng S. Electronic Origin of Laser-Induced Ferroelectricity in SrTiO 3. J Phys Chem Lett 2023; 14:576-583. [PMID: 36633437 DOI: 10.1021/acs.jpclett.2c03078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although ultrafast control of the nonthermally driven ferroelectric transition of paraelectric SrTiO3 was achieved under laser excitation, the underlying mechanism and dynamics of the photoinduced phase transition remain ambiguous. Here, the determinant formation mechanism of ultrafast ferroelectricity in SrTiO3 is traced by nonadiabatic dynamics simulations. That is, the selective excitation of multiple phonons, induced by photoexcited electrons through the strong correlation between electronic excitation and lattice distortion, results in the breaking of the crystal central symmetry and the onset of ferroelectricity. The accompanying population transition between 3dz2 and 3dx2-y2 orbitals excites multiple phonon branches, including the two high-energy longitudinal optical modes, so as to drive the titanium ion away from the center of the oxygen octahedron and generate a metastable ferroelectric phase. Our findings reveal a cooperative electronic and ionic driving mechanism for the laser-induced ferroelectricity that provides new schemes for the optical control of ultrafast quantum states.
Collapse
Affiliation(s)
- Chenchen Song
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qing Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Xinbao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Hui Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- Songshan Lake Materials Laboratory, Dongguan523808, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Songshan Lake Materials Laboratory, Dongguan523808, China
| |
Collapse
|
11
|
Kudryashov S, Rupasov A, Kosobokov M, Akhmatkhanov A, Krasin G, Danilov P, Lisjikh B, Turygin A, Greshnyakov E, Kovalev M, Efimov A, Shur V. Ferroelectric Nanodomain Engineering in Bulk Lithium Niobate Crystals in Ultrashort-Pulse Laser Nanopatterning Regime. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234147. [PMID: 36500768 PMCID: PMC9739993 DOI: 10.3390/nano12234147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
Ferroelectric nanodomains were formed in bulk lithium niobate single crystals near nanostructured microtracks laser-inscribed by 1030-nm 0.3-ps ultrashort laser pulses at variable pulse energies in sub- and weakly filamentary laser nanopatterning regimes. The microtracks and related nanodomains were characterized by optical, scanning probe and confocal second-harmonic generation microscopy methods. The nanoscale material sub-structure in the microtracks was visualized in the sample cross-sections by atomic force microscopy (AFM), appearing weakly birefringent in polarimetric microscope images. The piezoresponce force microscopy (PFM) revealed sub-100 nm ferroelectric domains formed in the vicinity of the embedded microtrack seeds, indicating a promising opportunity to arrange nanodomains in the bulk ferroelectric crystal in on-demand positions. These findings open a new modality in direct laser writing technology, which is related to nanoscale writing of ferroelectric nanodomains and prospective three-dimensional micro-electrooptical and nanophotonic devices in nonlinear-optical ferroelectrics.
Collapse
Affiliation(s)
- Sergey Kudryashov
- Lebedev Physical Institute, 119991 Moscow, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
- Correspondence:
| | | | - Mikhail Kosobokov
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Andrey Akhmatkhanov
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | | | - Pavel Danilov
- Lebedev Physical Institute, 119991 Moscow, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Boris Lisjikh
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Anton Turygin
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Evgeny Greshnyakov
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Michael Kovalev
- Lebedev Physical Institute, 119991 Moscow, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Artem Efimov
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Vladimir Shur
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| |
Collapse
|