1
|
Duan H, Li S, Zhao J, Yang H, Tang H, Qi D, Huang Z, Xu X, Shi L, Müller-Buschbaum P, Zhong Q. Microstructure Evolution of Reactive Polyurethane Films During In Situ Polyaddition and Film-Formation Processes. Macromol Rapid Commun 2024; 45:e2400284. [PMID: 38967216 DOI: 10.1002/marc.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.
Collapse
Affiliation(s)
- Huimin Duan
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Keqiao Research Institute of Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Shuli Li
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jinbiao Zhao
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Hao Yang
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Heyang Tang
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Keqiao Research Institute of Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Zhichao Huang
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xinxin Xu
- Zhejiang Hexin Science and Technology Co., Ltd., Jiaxing, 314003, P. R. China
| | - Lei Shi
- Zhejiang Hexin Science and Technology Co., Ltd., Jiaxing, 314003, P. R. China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Qi Zhong
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
2
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Huang ZX, Zhang T, Zhang ZP, Rong MZ, Zhang MQ. Highly Ionic Conductive, Self-Healing, Li 10GeP 2S 12-Filled Composite Solid Electrolytes Based on Reversibly Interlocked Macromolecule Networks for Lithium Metal Batteries with Improved Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42736-42747. [PMID: 39082474 DOI: 10.1021/acsami.4c09099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ceramic-polymer composite solid electrolytes (CSEs) have attracted great attention by combining the advantages of polymer electrolytes and inorganic ceramic electrolytes. Herein, Li10GeP2S12 (LGPS) particles are incorporated into poly(ethylene oxide) (PEO)-based reversibly interlocked polymer networks (RILNs) derived from the topological rearrangement of two PEO networks cross-linked by reversible imine bonds and disulfide linkages. A series of highly ionic conductive, self-healing CSEs are obtained accordingly. The interlocking architecture successfully inhibits PEO crystallization, increasing the amorphous phase for Li ion transportation, and stabilizes the conductive pathways of LGPS particles by its unique confinement effect. Meanwhile, the LGPS particles cooperate with the RILN matrix, forming a filler-polymer interfacial phase for additional Li ion transportation and strengthening and toughening the resultant CSEs via the strong intermolecular Li+-O2- interactions. Furthermore, the dynamic characteristics of the included reversible bonds ensure a multiple intrinsic self-healing capability. Consequently, the CSEs containing 15 wt % LGPS deliver a high ionic conductivity (1.06 × 10-3 S cm-1) and high Li ion transference number (∼0.6) at 25 °C, a wide electrochemical stability window (>4.9 V), good mechanical properties (0.63 MPa, 377%), and a stable CSE/Li anode interface. The integrated Li/CSE/LiFePO4 battery exhibits a specific discharge capacity of 110.8 mAh g-1 at 1 C (25 °C) and a capacity retention of 76.9% after 200 cycles. Thanks to the healability, the damaged CSEs can regain the structural integrity, ion conductive capability, and cycling performance of the assembled cells. The present work provides an effective strategy to fabricate CSEs for lithium metal batteries that are workable at ambient temperature.
Collapse
Affiliation(s)
- Zi Xin Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ting Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
4
|
Chen J, Li L, Luo J, Meng L, Zhao X, Song S, Demchuk Z, Li P, He Y, Sokolov AP, Cao PF. Covalent adaptable polymer networks with CO 2-facilitated recyclability. Nat Commun 2024; 15:6605. [PMID: 39098918 PMCID: PMC11298553 DOI: 10.1038/s41467-024-50738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Cross-linked polymers with covalent adaptable networks (CANs) can be reprocessed under external stimuli owing to the exchangeability of dynamic covalent bonds. Optimization of reprocessing conditions is critical since increasing the reprocessing temperature costs more energy and even deteriorates the materials, while reducing the reprocessing temperature via molecular design usually narrows the service temperature range. Exploiting CO2 gas as an external trigger for lowering the reprocessing barrier shows great promise in low sample contamination and environmental friendliness. Herein, we develop a type of CANs incorporated with ionic clusters that achieve CO2-facilitated recyclability without sacrificing performance. The presence of CO2 can facilitate the rearrangement of ionic clusters, thus promoting the exchange of dynamic bonds. The effective stress relaxation and network rearrangement enable the system with rapid recycling under CO2 while retaining excellent mechanical performance in working conditions. This work opens avenues to design recyclable polymer materials with tunable dynamics and responsive recyclability.
Collapse
Affiliation(s)
- Jiayao Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Lingyao Meng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Xiao Zhao
- GCP Applied Technologies, Wilmington, MA, 01887, USA
| | - Shenghan Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Pei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Huang Y, Yu Y, Hu R, Tang BZ. Multicomponent Polymerizations of Elemental Sulfur, CH 2Cl 2, and Aromatic Amines toward Chemically Recyclable Functional Aromatic Polythioureas. J Am Chem Soc 2024; 146:14685-14696. [PMID: 38717074 DOI: 10.1021/jacs.4c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The exploration of new polymer materials required the development of efficient, economic, robust, and scalable synthetic routes, taking energy consumption, environmental benefit, and sustainability into overall consideration. Herein, through retro-polymerization analysis of functional aromatic polythioureas, a multicomponent reaction of elemental sulfur, CH2Cl2, and aromatic amines was designed with the assistance of fluoride, and efficient, economic, and robust multicomponent polymerizations (MCPs) of these three abundantly available cheap monomers, elemental sulfur, CH2Cl2, and aromatic diamines, were developed to realize scalable conversion directly from sulfur to a series of functional aromatic polythioureas with high molecular weights (Mn up to 50,800 g/mol) in excellent yields (up to 98%). The synergistic cooperation of the strong and selective coordination of thiourea with gold ions and the redox property of aromatic polythiourea enable in situ reduction of Au3+ to elemental gold under a normal bench condition. Furthermore, the functional aromatic polythiourea could be chemically recycled through aminolysis with NH3·H2O to afford a diamine monomer in 83% isolated yield. The development of elemental sulfur-based MCP has brought the opportunity to access cost-effective and sustainable sulfur-containing functional polymer materials, which is anticipated to provide a solution for the utilization of sulfur waste and making profitable polymer materials.
Collapse
Affiliation(s)
- Yuzhang Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yongjiang Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
6
|
Jia Y, Qian J, Hao S, Zhang S, Wei F, Zheng H, Li Y, Song J, Zhao Z. New Prospects Arising from Dynamically Crosslinked Polymers: Reprogramming Their Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313164. [PMID: 38577834 DOI: 10.1002/adma.202313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Dynamically crosslinked polymers (DCPs) have gained significant attention owing to their applications in fabricating (re)processable, recyclable, and self-healable thermosets, which hold great promise in addressing ecological issues, such as plastic pollution and resource scarcity. However, the current research predominantly focuses on redefining and/or manipulating their geometries while replicating their bulk properties. Given the inherent design flexibility of dynamic covalent networks, DCPs also exhibit a remarkable potential for various novel applications through postsynthesis reprogramming their properties. In this review, the recent advancements in strategies that enable DCPs to transform their bulk properties after synthesis are presented. The underlying mechanisms and associated material properties are overviewed mainly through three distinct strategies, namely latent catalysts, material-growth, and topology isomerizable networks. Furthermore, the mutual relationship and impact of these strategies when integrated within one material system are also discussed. Finally, the application prospects and relevant issues necessitating further investigation, along with the potential solutions are analyzed.
Collapse
Affiliation(s)
- Yunchao Jia
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingjing Qian
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Senyuan Hao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Shijie Zhang
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Fengchun Wei
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Hongjuan Zheng
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Yilong Li
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingwen Song
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Ave., Zhengzhou, 450001, P. R. China
| | - Zhiwei Zhao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Sun Y, Liu Z, Zhang C, Zhang X. Sustainable Polymers with High Performance and Infinite Scalability. Angew Chem Int Ed Engl 2024; 63:e202400142. [PMID: 38421200 DOI: 10.1002/anie.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Our society has been pursuing high-performance biodegradable polymers made from facile methods and readily available monomers. Here, we demonstrate a library of enzyme-degradable polymers with desirable properties from the first reported step polyaddition of diamines, COS, and diacrylates. The polymers contain in-chain ester and thiourethane groups, which can serve as lipase-degradation and hydrogen-bonding physical crosslinking points, respectively, resulting in possible biodegradability as well as upgraded mechanical and thermal properties. Also, the properties of the polymers are scalable due to the versatile method and the wide variety of monomers. We obtain 46 polymers with tunable performance covering high-Tm crystalline plastics, thermoplastic elastomers, and amorphous plastics by regulating polymer structure. Additionally, the polymerization method is highly efficient, atom-economical, quantitatively yield, metal- and even catalyst-free. Overall, the polymers are promising green materials given their degradability, simple and modular synthesis, remarkable and tunable properties, and readily available monomers.
Collapse
Affiliation(s)
- Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ziheng Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
8
|
Niu W, Li Z, Liang F, Zhang H, Liu X. Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318434. [PMID: 38234012 DOI: 10.1002/anie.202318434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Supramolecular polymer networks (SPNs), crosslinked by noncovalent bonds, have emerged as reorganizable and recyclable polymeric materials with unique functionality. However, poor stability is an imperative challenge faced by SPNs, because SPNs are susceptible to heat, water, and/or solvents due to the dynamic and reversible nature of noncovalent bonds. Herein, the design of a noncovalent cooperative network (NCoN) to simultaneously stabilize and reinforce SPNs is reported, resulting in an ultrastable, superrobust, and recyclable SPN. The NCoN is constructed by multiplying the H-bonding sites and tuning the conformation/geometry of the H-bonding segment to optimize the multivalence cooperativity of H-bonds. The rationally designed H-bonding segment with high conformational compliance favors the formation of tightly packed H-bond arrays comprising higher-density and stronger H-bonds. Consequently, the H-bonded crosslinks in the NCoN display a covalent crosslinking effect but retain on-demand dynamics and reversibility. The resultant ultrastable SPN not only displays remarkable resistance to heat up to 120 °C, water soaking, and a broad spectrum of solvents, but also possesses a superhigh true stress at break (1.1 GPa) and an ultrahigh toughness (406 MJ m-3 ). Despite the covalent-network-like stability, the SPN is recyclable through activating its reversibility in a high-polarity solvent heated to a threshold temperature.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fengli Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Li YM, Zhang ZP, Rong MZ, Zhang MQ. Sunlight Stimulated Photochemical Self-Healing Polymers Capable of Re-Bonding Damages up to a Centimeter Below the Surface Even Out of the Reach of the Illumination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211009. [PMID: 36660910 DOI: 10.1002/adma.202211009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The development of photochemical self-healing polymers faces the the following bottlenecks: i) only the surface cracks can be restored and ii) materials' mechanical properties are lower. To break these bottlenecks, cross-linked poly(urethane-dithiocarbamate)s carrying photo-reversible dithiocarbamate bonds covalently linked to indole chromophores and benzyl groups are designed. The conjugated structure of the chromophore and benzyl enhances the addition reactivity of thiocarbonyl moiety and facilitates photo-cleavage of CS bond, so that transfer of the created radicals among dithiocarbamate linkages is promoted. Accordingly, reshuffling of the reversibly cross-linked networks via dynamic exchange between the activated dithiocarbamates is enabled in both surface layer and the interior upon exposure to the low-intensity ultraviolet (UV) light from the sun. It is found that the damages up to a centimeter below the surface can be effectively recovered in the sunshine, which greatly exceeds the maximum penetration distance of UV light (hundreds of microns). Besides, tensile strength and failure strain of the poly(urethane-dithiocarbamate) are superior to the reported photo-reversible polymers, achieving the record-high 33.8 MPa and 782.0% owing to the wide selectivity of soft/hard blocks, multiple interactions, and appropriate cross-linking architecture. The present work provides a novel paradigm of photo self-healing polymers capable of re-bonding cracks even out of the reach of the illumination.
Collapse
Affiliation(s)
- Yan Mei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Zhao C, Yue H, Huang M, He S, Liu H, Liu W, Zhu C, Jiang L. Thermal/Near-Infrared Light Dual-Responsive Reconfigurable and Recyclable Polythiourethane/CNT Composite with Simultaneously Enhanced Strength and Toughness. Macromol Rapid Commun 2022; 44:e2200806. [PMID: 36444920 DOI: 10.1002/marc.202200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Thermoset polymers cross-linked by dynamic covalent bonds are recyclable and reconfigurable based on solid-state plasticity, resulting in less waste and environmental pollution. However, most thermoset polymers previously reported show thermal-responsive solid-state plasticity, depending much on external conditions and not allowing for local shape modulation. Here, the isocyanate modified carbon nanotubes (CNTs-NCO) are introduced into the polythiourethane (PCTU) network with multiple dynamic covalent bonds by in situ polymerization to prepare the composite with thermal/light dual-responsive solid-state plasticity, reconfigurability, and recyclability. The introduction of CNTs-NCO simultaneously strengthens and toughens the PCTU composite. Moreover, based on the photothermal properties and light-responsive solid-state plasticity, the PCTU/CNTs composite or bilayer sample could achieve complex permanent shape by locally precise shape regulation without affecting other parts. This work provides a simple and reliable method for preparing high-performance polymer composite with light-responsive solid-state plasticity, which may be applied in the fields of sensing and flexible electronics.
Collapse
Affiliation(s)
- Chunrui Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lei Jiang
- High &New Technology Research Center of Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| |
Collapse
|
11
|
Wang H, Yang Y, Nishiura M, Hong Y, Nishiyama Y, Higaki Y, Hou Z. Making Polyisoprene Self‐Healable through Microstructure Regulation by Rare‐Earth Catalysts. Angew Chem Int Ed Engl 2022; 61:e202210023. [DOI: 10.1002/anie.202210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haobing Wang
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yang Yang
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - You‐lee Hong
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
- Nano-Crystallography Unit RIKEN-JEOL Collaboration Center Tsurumi, Yokohama Kanagawa 230-0045 Japan
| | - Yusuke Nishiyama
- Nano-Crystallography Unit RIKEN-JEOL Collaboration Center Tsurumi, Yokohama Kanagawa 230-0045 Japan
- JEOL RESONANCE Inc. Akishima Tokyo 196-8558 Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University 700 Dannoharu Oita 870-1192 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
12
|
Haobing W, Yang Y, Nishiura M, Hong YL, Nishiyama Y, Higaki Y, Hou Z. Making Polyisoprene Self‐Healable through Microstructure Regulation by Rare‐Earth Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wang Haobing
- RIKEN: Rikagaku Kenkyujo CSRS 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 351-0198 Wakoshi JAPAN
| | | | | | - You-lee Hong
- Kyoto University: Kyoto Daigaku Institute for Advanced Study JAPAN
| | - Yusuke Nishiyama
- RIKEN Yokohama Branch: Rikagaku Kenkyujo Yokohama Campus Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center JAPAN
| | - Yuji Higaki
- Oita University: Oita Daigaku Faculty of Science and Technology JAPAN
| | - Zhaomin Hou
- RIKEN Organometallic Chemistry Laboratory 2-1 Hirosawa 351-0198 Wako, Saitama JAPAN
| |
Collapse
|
13
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|