1
|
Wang R, Wang Y, Han J, Wu S, Dong P, Raghavan V, Wang J. Employing conductive porous hydrogen-bonded organic framework for ultrasensitive detection of peanut allergen Ara h1. Food Chem 2024; 460:140777. [PMID: 39128370 DOI: 10.1016/j.foodchem.2024.140777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/13/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Peanut allergy has garnered worldwide attention due to its high incidence rate and severe symptoms, stimulating the demand for the ultrasensitive detection method of peanut allergen. Herein, we successfully developed a novel electrochemical aptasensor for ultrasensitive detection Ara h1, a major allergenic protein present in peanuts. A conductive nickel atoms Anchored Hydrogen-Bonded Organic Frameworks (PFC-73-Ni) were utilized as excellent electrocatalysts toward hydroquinone (HQ) oxidation to generate a readable current signal. The developed electrochemical aptasensor offers wide linear range (1-120 nM) and low detection limit (0.26 nM) for Ara h1. This method demonstrated a recovery rate ranging from 95.00% to 107.42% in standard addition detection of non-peanut food samples. Additionally, the developed electrochemical method was validated with actual samples and demonstrated good consistency with the results obtained from a commercial ELISA kit. This indicates that the established Ara h1 detection method is a promising tool for peanut allergy prevention.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Youfa Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Han
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuang Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Pengfei Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Li Y, Luan D, Lou XWD. Engineering of Single-Atomic Sites for Electro- and Photo-Catalytic H 2O 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412386. [PMID: 39460391 DOI: 10.1002/adma.202412386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Direct electro- and photo-synthesis of H2O2 through the 2e- O2 reduction reaction (ORR) and H2O oxidation reaction (WOR) offer promising alternatives for on-demand and on-site production of this chemical. Exploring robust and selective active sites is crucial for enhancing H2O2 production through these pathways. Single-atom catalysts (SACs), featuring isolated active sites on supports, possess attractive properties for promoting catalysis and unraveling catalytic mechanisms. This review first systematically summarizes significant advancements in atomic engineering of both metal and nonmetal single-atom sites for electro- and photo-catalytic 2e- ORR to H2O2, as well as the dynamic behaviors of active sites during catalytic processes. Next, the progress of single-atom sites in H2O2 production through 2e- WOR is overviewed. The effects of the local physicochemical environments on the electronic structures and catalytic behaviors of isolated sites, along with the atomic catalytic mechanism involved in these H2O2 production pathways, are discussed in detail. This work also discusses the recent applications of H2O2 in advanced chemical transformations. Finally, a perspective on the development of single-atom catalysis is highlighted, aiming to provide insights into future research on SACs for electro- and photo-synthesis of H2O2 and other advanced catalytic applications.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Zheng Z, Liu N, Lu J, Zhou X, Song Z, An Y, Lu L, Zhao P, Tao J. Hydrogen-Bonded Organic Framework Enhanced Antifouling Property for Efficient In Situ Electrochemical Assay of Cerebral Ascorbic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407101. [PMID: 39396376 DOI: 10.1002/smll.202407101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Accurate determination of cerebral ascorbic acid (AA) is crucial for understanding ischemic stroke (IS) related pathological events. Carbon fiber microelectrodes (CFEs) have proven to be robust tools with high sensitivity toward AA, however, they face ongoing challenges for in situ measurement due to the non-specific adsorption of proteins in brain tissue. In this study, the hydrogen-bonded organic framework PFC-71 is synthesized and modified on CFEs through π-π stacking interactions with carboxylated carbon nanotubes (CNT-COOH). It is found that the gating effect and hydrophilicity of PFC-71 provided the CFE with excellent antibiofouling properties. As a result, AA exhibited a low oxidation potential of -30 mV on the CFE/CNT-COOH/PFC-71, even in the presence of 20 mg mL-1 bovine serum albumin. Given the structural advantages of CFE/CNT-COOH/PFC-71, a ratiometric electrochemical strategy for AA is established, enabling the in situ assay of cerebral AA in a middle cerebral artery occlusion (MCAO) model with high accuracy and stability.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ningxuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zibin Song
- Neurosurgery Center, Department of Functional Neurosurgery, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yida An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Lu H, Yin H, Harmer J, Xiao M, You J, Chen P, Lin T, Du A, Wang Z, Wang L. Single-Atom Catalysts with p-Block Metals Surpass Transition-Metal Counterparts in the Photocatalytic H 2O 2 Production. Angew Chem Int Ed Engl 2024:e202413769. [PMID: 39313757 DOI: 10.1002/anie.202413769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Growing interest in p-block metal single-atom catalysts (PM-SACs) is driven by their low toxicity, economic viability, and transition metal-like catalytic properties. However, selection criteria for p-block single-atom species and catalytic mechanisms of PM-SACs remain unclear. This study explores the catalytic abilities of PM-SACs and their transition metal counterparts (TM-SACs) based on polymetric carbon nitride (PCN) for photocatalytic hydrogen peroxide (H2O2) production. Using thermodynamic barriers as a key descriptor, it was found that PM-SACs can surpass TM-SACs in H2O2 production due to a lower energy barrier for *OOH intermediate formation resulting from optimized p-p hybridization. Specifically, Sb-SAC based on PCN shows the highest apparent quantum yield of 35.3 % at 400 nm. This study offers a rationale for the utilization of p-block SACs in the context of sustainable chemical synthesis.
Collapse
Affiliation(s)
- Haijiao Lu
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Hanqing Yin
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, 4001, Brisbane, Australia
| | - Jeffrey Harmer
- Centre for Advanced Imaging, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Mu Xiao
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Jiakang You
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Peng Chen
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Tongen Lin
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, 4001, Brisbane, Australia
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Zhang H, Xu H, Yao C, Chen S, Li F, Zhao D. Metal Atom-Support Interaction in Single Atom Catalysts toward Hydrogen Peroxide Electrosynthesis. ACS NANO 2024; 18:21836-21854. [PMID: 39108203 DOI: 10.1021/acsnano.4c07916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Haitao Xu
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Canglang Yao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shanshan Chen
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Sakurai T, Tanabe T, Iguchi H, Li Z, Matsuda W, Tsutsui Y, Seki S, Matsuda R, Shinokubo H. An n-type semiconducting diazaporphyrin-based hydrogen-bonded organic framework. Chem Sci 2024; 15:12922-12927. [PMID: 39148781 PMCID: PMC11323323 DOI: 10.1039/d4sc03455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Significant effort has been devoted to the development of materials that combine high electrical conductivity and permanent porosity. This paper discloses a diazaporphyrin-based hydrogen-bonded organic framework (HOF) with porosity and n-type semiconductivity. A 5,15-diazaporphyrin Ni(ii) complex with carboxyphenyl groups at the meso positions afforded a HOF due to hydrogen-bonding interactions between the carboxy groups and meso-nitrogen atoms. The thermal and chemical stabilities of the HOF were examined using powder X-ray diffraction analysis, and the charge-carrier mobility was determined to be 2.0 × 10-7 m2 V-1 s-1 using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method. An analogous diazaporphyrin, which does not form a HOF, exhibited mobility that was 20 times lower. The results presented herein highlight the crucial role of hydrogen-bonding networks in achieving conductive pathways that can tolerate thermal perturbation.
Collapse
Affiliation(s)
- Takahiro Sakurai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Tappei Tanabe
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroaki Iguchi
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhuowei Li
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryotaro Matsuda
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
7
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
8
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
9
|
Zhai P, Wang C, Li Y, Jin D, Shang B, Chang Y, Liu W, Gao J, Hou J. Molecular Engineering of Hydrogen-Bonded Organic Framework for Enhanced Nitrate Electroreduction to Ammonia. NANO LETTERS 2024; 24:8687-8695. [PMID: 38973752 DOI: 10.1021/acs.nanolett.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Electrocatalytic nitrate reduction is an efficient way to produce ammonia sustainably. Herein, we rationally designed a copper metalloporphyrin-based hydrogen-bonded organic framework (HOF-Cu) through molecular engineering strategies for electrochemical nitrate reduction. As a result, the state-of-the-art HOF-Cu catalyst exhibits high NH3 Faradaic efficiency of 93.8%, and the NH3 production rate achieves a superior activity of 0.65 mmol h-1 cm-2. The in situ electrochemical spectroscopic combined with density functional theory calculations reveals that the dispersed Cu promotes the adsorption of NO3- and the mechanism is followed by deoxidation of NO3- to *NO and accompanied by deep hydrogenation. The generated *H participates in the deep hydrogenation of intermediate with fast kinetics as revealed by operando electrochemical impedance spectroscopy, and the competing hydrogen evolution reaction is suppressed. This research provides a promising approach to the conversion of nitrate to ammonia, maintaining the nitrogen balance in the atmosphere.
Collapse
Affiliation(s)
- Panlong Zhai
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yaning Li
- The Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dingfeng Jin
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bing Shang
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuan Chang
- The Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Liu
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junfeng Gao
- The Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
10
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
11
|
Yin H, Pan R, Zou M, Ge X, Shi C, Yuan J, Huang C, Xie H. Recent Advances in Carbon-Based Single-Atom Catalysts for Electrochemical Oxygen Reduction to Hydrogen Peroxide in Acidic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:835. [PMID: 38786791 PMCID: PMC11124143 DOI: 10.3390/nano14100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical oxygen reduction reaction (ORR) via the 2e- pathway in an acidic media shows great techno-economic potential for the production of hydrogen peroxide. Currently, carbon-based single-atom catalysts (C-SACs) have attracted extensive attention due to their tunable electronic structures, low cost, and sufficient stability in acidic media. This review summarizes recent advances in metal centers and their coordination environment in C-SACs for 2e--ORR. Firstly, the reaction mechanism of 2e--ORR on the active sites of C-SACs is systematically presented. Secondly, the structural regulation strategies for the active sites of 2e--ORR are further summarized, including the metal active center, its species and configurations of nitrogen coordination or heteroatom coordination, and their near functional groups or substitute groups, which would provide available and proper ideas for developing superior acidic 2e--ORR electrocatalysts of C-SACs. Finally, we propose the current challenges and future opportunities regarding the acidic 2e--ORR pathway on C-SACs, which will eventually accelerate the development of the distributed H2O2 electrosynthesis process.
Collapse
Affiliation(s)
| | | | | | | | | | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China; (H.Y.); (R.P.); (M.Z.); (X.G.); (C.S.)
| | - Caijuan Huang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China; (H.Y.); (R.P.); (M.Z.); (X.G.); (C.S.)
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China; (H.Y.); (R.P.); (M.Z.); (X.G.); (C.S.)
| |
Collapse
|
12
|
He Y, Wei Y, Huang R, Xia T, Wang J, Yu Z, Wang Z, Yu R. Interfaces Engineering of Ultrafine Ni@Ni 2P/C Core-Shell Heterostructure for High Yield Hydrogen Peroxide Electrosynthesis. SMALL METHODS 2024:e2301560. [PMID: 38678510 DOI: 10.1002/smtd.202301560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Developing cost-effective and sustainable catalysts with exceptional activity and selectivity is essential for the practical implementation of on-site H2O2 electrosynthesis, yet it remains a formidable challenge. Metal phosphide core-shell heterostructures anchored in carbon nanosheets (denoted as Ni@Ni2P/C NSs) are designed and synthesized via carbonization and phosphidation of the 2D Ni-BDC precursor. This core-shell nanostructure provides more accessible active sites and enhanced durability, while the 2D carbon nanosheet substrate prevents heterostructure aggregation and facilitates mass transfer. Theoretical calculations further reveal that the Ni/Ni2P heterostructure-induced optimization of geometric and electronic structures enables the favored adsorption of OOH* intermediate. All these features endow the Ni@Ni2P/C NSs with remarkable performance in 2e ORR for H2O2 synthesis, achieving a top yield rate of 95.6 mg L-1 h-1 with both selectivity and Faradaic efficiency exceeding 90% under a wide range of applied potentials. Furthermore, when utilized as the anode of an assembled gas diffusion electrode (GDE) device, the Ni@Ni2P/C NSs achieve in situ H2O2 production with excellent long-term durability (>32 h). Evidently, this work provides a unique insight into the origin of 2e ORR and proposes optimization of H2O2 production through nano-interface manipulation.
Collapse
Affiliation(s)
- Yilei He
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Ruiyi Huang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Tian Xia
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ji Wang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zijian Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zumin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
13
|
Lee Y, Lee C, Back S, Sa YJ. Electronic structure modification of metal phthalocyanines by a carbon nanotube support for efficient oxygen reduction to hydrogen peroxide. NANOSCALE 2024. [PMID: 38660774 DOI: 10.1039/d4nr00250d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An active and selective two-electron oxygen reduction reaction (2e- ORR) is required for efficient electrosynthesis of H2O2. This reaction can be promoted by metal phthalocyanines (MPcs), which serve as model catalysts with well-defined structures. MPc molecules have mostly been evaluated on conductive carbon-based substrates, including glassy carbon (GC) and carbon nanotubes (CNTs), yet their influence on the electrocatalytic properties is not well understood. This study demonstrated that the ORR activity per surface area was improved by up to 4-fold with MPc molecules supported on CNTs (MPc/CNTs, M = Co, Mn, and Fe) compared to MPc loaded directly on GC. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that the CNTs modified the electronic structure of the MPc molecules to optimize the *OOH binding energy and boost the heterogeneous electron transfer rates. Detailed kinetic analysis enabled multiple reaction pathways to be decoupled to extract the metal-dependent intrinsic 2e-/4e- ORR activities. Finally, MPc/CNT catalysts were employed in an H2O2 electrosynthesis flow cell, which delivered an industrial-scale current density of -200 mA cm-2 and an H2O2 faradaic efficiency of 88.7 ± 0.6% with the CoPc/CNT catalyst in a neutral electrolyte.
Collapse
Affiliation(s)
- Yesol Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
14
|
Ni B, Shen P, Zhang G, Zhao J, Ding H, Ye Y, Yue Z, Yang H, Wei H, Jiang K. Second-Shell N Dopants Regulate Acidic O 2 Reduction Pathways on Isolated Pt Sites. J Am Chem Soc 2024. [PMID: 38608251 DOI: 10.1021/jacs.3c14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standing controversy due to their complex local coordination environment and diverse site density over substrates. Herein, using a set of carbon nanotube supported Pt-N-C single-atom catalysts, we demonstrate how the neighboring N dopants regulate the electronic structure of the Pt central atom and thus steer the ORR selectivity; that is, the O2-to-H2O2 conversion selectivity can be tailored from 10% to 85% at 0.3 V versus reversible hydrogen electrode. Moreover, via a comprehensive X-ray-radiated spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy analysis coupled with theoretical modeling, we reveal that a dominant pyridinic- and pyrrolic-N coordination within the first shell of Pt-N-C motifs favors the 4e- ORR, whereas the introduction of a second-shell graphitic-N dopant weakens *OOH binding on neighboring Pt sites and gives rise to a dominant 2e- ORR. These findings underscore the importance of the chemical environment effect for steering the electrochemical performance of single-atom catalysts.
Collapse
Affiliation(s)
- Baoxin Ni
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Shen
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guiru Zhang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajun Zhao
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hao Wei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO 2 Conversion and Two-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311163. [PMID: 38308114 DOI: 10.1002/smll.202311163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.
Collapse
Affiliation(s)
- Yuying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
16
|
Lee JH, Park H, Kim Y, Yim D, Kim T, Choi J, Lee Y, Jang WD. Retention of Intrinsic Photophysical Properties of Porphyrin Building Blocks in 3D Organic Frameworks through Magic Angle Alignment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38014872 DOI: 10.1021/acsami.3c13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Construction of three-dimensional (3D) frameworks maintaining intrinsic photophysical properties of monomeric building blocks is difficult and challenging due to the existence of various molecular interactions, such as metal-organic and π-π interactions. A 3D hydrogen-bonded organic framework (YSH-1Zn) with permanent porosity was constructed using a porphyrin having six carboxylic acid groups (1Zn). Brunauer-Emmett-Teller surface area measurement indicated that YSH-1Zn has a porous structure with a surface area of 392 m2/g. Single-crystal X-ray diffraction analysis revealed that 1Zn creates a 5-fold interwoven 3D network structure adopting a monoclinic system with a space group of P21/c. Each 1Zn within a single crystal exhibits parallel alignment with a slip-stack angle of 54.6°, in good agreement with the magic angle. Although the center-to-center distance of the nearest zinc atoms in YSH-1Zn is only 5.181 Å, the UV/vis absorption and fluorescence emission of YSH-1Zn are not different from those of 1Zn, indicating the absence of an interaction between excitons. Due to the magic angle alignment of 1Zn, the fluorescence lifetime, decay profiles, and quantum yield remained uniform even in the solid state.
Collapse
Affiliation(s)
- Jeong Heon Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dajeong Yim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Taehee Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jinhyuk Choi
- Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yongjae Lee
- Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
17
|
Jeong DS, Lee HJ, Park YJ, Hwang H, Ma KY, Kim M, Lim JS, Joo SH, Yang J, Shin HS. Langmuir-Blodgett Monolayer of Cobalt Phthalocyanine as Ultralow Loading Single-Atom Catalyst for Highly Efficient H 2O 2 Production. ACS NANO 2023. [PMID: 37991883 DOI: 10.1021/acsnano.3c08424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The electrochemical production of H2O2 via the two-electron oxygen-reduction reaction (2e- ORR) has been actively studied using systems with atomically dispersed metal-nitrogen-carbon (M-N-C) structures. However, the development of well-defined M-N-C structures that restrict the migration and agglomeration of single-metal sites remains elusive. Herein, we demonstrate a Langmuir-Blodgett (LB) monolayer of cobalt phthalocyanine (CoPc) on monolayer graphene (LB CoPc/G) as a single-metal catalyst for the 2e- ORR. The as-prepared CoPc LB monolayer has a β-form crystalline structure with a lattice space for the facile adsorption of oxygen molecules on the cobalt active sites. The CoPc LB monolayer system provides highly exposed Co atoms in a well-defined structure without agglomeration, resulting in significantly improved catalytic activity, which is manifested by a very high H2O2 production rate per catalyst (31.04 mol gcat-1 h-1) and TOF (36.5 s-1) with constant production stability for 24 hours. To the best of our knowledge, the CoPc LB monolayer system exhibits the highest H2O2 production rate per active site. This fundamental study suggests that an LB monolayer of molecules with single-metal atoms as a well-defined structure works for single-atom catalysts.
Collapse
Affiliation(s)
- Da Sol Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hoon Ju Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Young Jin Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyuntae Hwang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kyung Yeol Ma
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jieun Yang
- Department of Chemistry, College of Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Shen X, Wang Z, Guo H, Lei Z, Liu Z, Wang L. Solvent Engineering of Oxygen-Enriched Carbon Dots for Efficient Electrochemical Hydrogen Peroxide Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303156. [PMID: 37376814 DOI: 10.1002/smll.202303156] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The development of cost-effective and reliable metal-free carbon-based electrocatalysts has gained significant attention for electrochemical hydrogen peroxide (H2 O2 ) generation through a two-electron oxygen reduction reaction. In this study, a scalable solvent engineering strategy is employed to fabricate oxygen-doped carbon dots (O-CDs) that exhibit excellent performance as electrocatalysts. By adjusting the ratio of ethanol and acetone solvents during the synthesis, the surface electronic structure of the resulting O-CDs can be systematically tuned. The amount of edge active CO group was strongly correlated with the selectivity and activity of the O-CDs. The optimum O-CDs-3 exhibited extraordinary H2 O2 selectivity of up to 96.55% (n = 2.06) at 0.65 V (vs RHE) and achieved a remarkably low Tafel plot of 64.8 mV dec-1 . Furthermore, the realistic H2 O2 productivity yield of flow cell is measured to be as high as 111.18 mg h-1 cm-2 for a duration of 10 h. The findings highlight the potential of universal solvent engineering approach for enabling the development of carbon-based electrocatalytic materials with improved performance. Further studies will be undertaken to explore the practical implications of the findings for advancing the field of carbon-based electrocatalysis.
Collapse
Affiliation(s)
- Xiaoyu Shen
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan, Shanghai, 200444, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan, Shanghai, 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan, Shanghai, 200444, P. R. China
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan, Shanghai, 200444, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Ouyang S, Chen C, Lin P, Wu W, Chen G, Li P, Sun M, Chen H, Zheng Z, You Y, Lv S, Zhao P, Lin B, Tao J. Hydrogen-Bonded Organic Frameworks Chelated Manganese for Precise Magnetic Resonance Imaging Diagnosis of Cancers. NANO LETTERS 2023; 23:8628-8636. [PMID: 37694968 DOI: 10.1021/acs.nanolett.3c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Magnetic resonance imaging (MRI) is an important tool in the diagnosis of many cancers. However, clinical gadolinium (Gd)-based MRI contrast agents have limitations, such as large doses and potential side effects. To address these issues, we developed a hydrogen-bonded organic framework-based MRI contrast agent (PFC-73-Mn). Due to the hydrogen-bonded interaction of water molecules and the restricted rotation of manganese ions, PFC-73-Mn exhibits high longitudinal relaxation r1 (5.03 mM-1 s-1) under a 3.0 T clinical MRI scanner. A smaller intravenous dose (8 μmol of Mn/kg) of PFC-73-Mn can provide strong contrast and accurate diagnosis in multiple kinds of cancers, including breast tumor and ultrasmall orthotopic glioma. PFC-73-Mn represents a prospective new approach in tumor imaging, especially in early-stage cancer.
Collapse
Affiliation(s)
- Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Wanjia Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Guanjun Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Pengfei Li
- Cancer Center, MD TCM-integrated Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Sike Lv
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
20
|
Luo D, Xiao H, Zhang MY, Li SD, He L, Lv H, Li CS, Lin QP, Fang WH, Zhang J. Accurate binding of porous aluminum molecular ring catalysts with the substrate. Chem Sci 2023; 14:5396-5404. [PMID: 37234899 PMCID: PMC10208054 DOI: 10.1039/d3sc01260c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Metal molecular rings are a class of compounds with aesthetically pleasing symmetry and fundamentally useful properties. The reported work generally focuses on the ring center cavity, and there is little known about those on the ring waist. Herein, we report the discovery of porous aluminum molecular rings and their performance and contribution to the cyanosilylation reaction. We develop a facile ligand induced aggregation and solvent regulation strategy towards AlOC-58NC and AlOC-59NT with high purity, high yield (75% and 70%, respectively) and gram-level scale-up. These molecular rings exhibit a "two-tier" pore feature involving the general central cavity and newly observed equatorial semi-open cavities. AlOC-59NT with two types of one-dimensional channels showed good catalytic activity. The interaction of the aluminum molecular ring catalyst with the substrate has been crystallographically characterized and theoretically confirmed, showing a ring adaptability process that involves the capture and binding of the substrate. This work provides new ideas for the assembly of porous metal molecular rings and to understand the overall reaction pathway involving aldehydes and is expected to inspire the design of low-cost catalysts through structural modifications.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Min-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Shang-Da Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Hong Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Chun-Sen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Xiamen Fujian 361005 China
| | - Qi-Pu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| |
Collapse
|
21
|
Huang X, Song M, Zhang J, Shen T, Luo G, Wang D. Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. NANO-MICRO LETTERS 2023; 15:86. [PMID: 37029260 PMCID: PMC10082148 DOI: 10.1007/s40820-023-01044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical synthesis of H2O2 via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on electrocatalysts for H2O2 generation, including noble metal, transition metal-based, and carbon-based materials, is summarized. At first, the design strategies employed to obtain electrocatalysts with high electroactivity and high selectivity are highlighted. Then, the critical roles of the geometry of the electrodes and the type of reactor in striking a balance to boost the H2O2 selectivity and reaction rate are systematically discussed. After that, a potential strategy to combine the complementary properties of the catalysts and the reactor for optimal selectivity and overall yield is illustrated. Finally, the remaining challenges and promising opportunities for high-efficient H2O2 electrochemical production are highlighted for future studies.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People's Republic of China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Guanyu Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|