1
|
Fuxreiter M. Context-dependent, fuzzy protein interactions: Towards sequence-based insights. Curr Opin Struct Biol 2024; 87:102834. [PMID: 38759297 DOI: 10.1016/j.sbi.2024.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Predicting protein interactions in the cellular environment still remains a challenge in the AlphaFold era. Protein interactions, similarly to their structures, sample a continuum from ordered to disordered states, with specific partners in many bound configurations. A multiplicity of binding modes (MBM) enables transition between these states under different cellular conditions. This review focuses on how the cellular environment affects protein interactions, highlighting the molecular mechanisms, biophysical origin, and sequence-based principles of context-dependent, fuzzy interactions. It summarises experimental and computational approaches to address the challenge of interaction heterogeneity and its contribution to a wide range of biological functions. These insights will help in understanding complex cellular processes, involving conversions between protein assembly states, such as from liquid-like droplet state to the amyloid state.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Physics and Astronomy, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Jensen KT, Nielsen NS, Viana Almeida A, Thøgersen IB, Enghild JJ, Harwood SL. Proteolytic cleavage of the TGFβ co-receptor CD109 changes its conformation, resulting in protease inhibition via activation of its thiol ester, and dissociation from the cell membrane. FEBS J 2024; 291:3169-3190. [PMID: 38587194 DOI: 10.1111/febs.17128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored protein cluster of differentiation 109 (CD109) is expressed on many human cell types and modulates the transforming growth factor β (TGF-β) signaling network. CD109 belongs to the alpha-macroglobulin family of proteins, known for their protease-triggered conformational changes. However, the effect of proteolysis on CD109 and its conformation are unknown. Here, we investigated the interactions of CD109 with proteases. We found that a diverse selection of proteases cleaved peptide bonds within the predicted bait region of CD109, inducing a conformational change that activated the thiol ester of CD109. We show CD109 was able to conjugate proteases with this thiol ester and decrease their activity toward protein substrates, demonstrating that CD109 is a protease inhibitor. We additionally found that CD109 has a unique mechanism whereby its GPI-anchored macroglobulin 8 (MG8) domain dissociates during its conformational change, allowing proteases to release CD109 from the cell surface by a precise mechanism and not unspecific shedding. We conclude that proteolysis of the CD109 bait region affects both its structure and location, and that interactions between CD109 and proteases may be important to understanding its functions, for example, as a TGF-β co-receptor.
Collapse
Affiliation(s)
| | | | - Ana Viana Almeida
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
3
|
Harwood SL, Enghild JJ. Engineering New Protease Inhibitors Using α 2-Macroglobulin. Methods Mol Biol 2024; 2747:279-294. [PMID: 38038947 DOI: 10.1007/978-1-0716-3589-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Protease inhibitors of the alpha-macroglobulin family (αM) have a unique mechanism that allows them to trap proteases that is dependent not on the protease's class, but rather on its cleavage specificity. Proteases trigger a conformational change in the αM protein by cleaving within a "bait region," resulting in the sequestering of the protease inside the αM molecule. This nonspecific inhibitory mechanism appears to have arisen early in the αM family, and the broad protease-trapping capacity that it allows may play a role in pathogen defense.Human α2-macroglobulin (A2M) is a tetrameric αM whose bait region is permissive to cleavage by most proteases, making it a broad-spectrum protease inhibitor. Recent work has demonstrated that the inhibitory capacity of A2M derives directly from its bait region sequence: modifying the bait region sequence to introduce or remove protease cleavage sites will modify A2M's inhibition of the relevant proteases accordingly. Thus, changing the amino acid sequence of the bait region presents an effective avenue for protein engineering of new protease inhibitors if the substrate specificity of the target protease is known. The design of new A2M-based protease inhibitors with tailored inhibitory capacities has potential applications in basic research and the clinic. In this chapter, we describe the general approach and considerations for the bait region engineering of A2M.
Collapse
Affiliation(s)
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Santos-Cortez RLP, Ong KMC, Carlos-Hiceta A, Tantoco MLC, Yarza TKL, San Agustin ML, Pedro M, Cruz TLG, Cutiongco-de la Paz EM, Abes GT, Llanes EGD, Chan AL, Chiong CM, Reyes-Quintos MRT. Audiologic Measures in an Indigenous Community with A2ML1- and FUT2-Related Otitis Media. Genet Test Mol Biomarkers 2023; 27:12-17. [PMID: 36719978 PMCID: PMC9902046 DOI: 10.1089/gtmb.2022.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background: Many indigenous peoples are at elevated risk for otitis media, however there is limited information on hearing loss due to OM in these communities. An Indigenous Filipino community that has previously been described with an elevated prevalence of OM that is due to rare A2ML1 variants and a common FUT2 variant underwent additional phenological testing. In this study, we describe the audiologic profiles in A2ML1- and FUT2-related otitis media and the validity of otoscopy and genotyping for A2ML1 and FUT2 variants in screening for otitis media and hearing loss. Method: We analyzed A2ML1 and FUT2 genotypes together with demographic, otologic and audiologic data from tympanometry and hearing level assessments of 109 indigenous individuals. Results: We confirmed previous findings of a spectrum of nonsyndromic otitis media as associated with A2ML1 variants. A2ML1 and FUT2 variants were associated with high-frequency hearing loss at 4000 Hz. As expected, young age was associated with flat tympanograms, and eardrum perforations due to chronic otitis media were associated with severe-to-profound hearing loss across frequencies. Adding A2ML1 or FUT2 genotypes improved the validity of otoscopy as a screening test to rule out moderate-to-profound hearing loss. Conclusion: Continued multi-disciplinary management and audiologic follow-up using tympanometry and screening audiometry are needed to document and treat otitis media and prevent permanent hearing loss in the indigenous community.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Kimberly Mae C. Ong
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Angeli Carlos-Hiceta
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Ma. Leah C. Tantoco
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Talitha Karisse L. Yarza
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Ma. Luz San Agustin
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Melquiadesa Pedro
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Teresa Luisa G. Cruz
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Eva Maria Cutiongco-de la Paz
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Philippine Genome Center, University of the Philippines Diliman, Quezon City, Philippines
| | - Generoso T. Abes
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Erasmo Gonzalo d.V. Llanes
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Abner L. Chan
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Charlotte M. Chiong
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| | - Maria Rina T. Reyes-Quintos
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Department of Otorhinolaryngology, University of the Philippines College of Medicine–Philippine General Hospital, Manila, Philippines
| |
Collapse
|
6
|
Harwood SL, Diep K, Nielsen NS, Jensen KT, Enghild JJ. The conformational change of the protease inhibitor α 2-macroglobulin is triggered by the retraction of the cleaved bait region from a central channel. J Biol Chem 2022; 298:102230. [PMID: 35787371 PMCID: PMC9352918 DOI: 10.1016/j.jbc.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022] Open
Abstract
The protease inhibitor α2-macroglobulin (A2M) is a member of the ancient α2-macroglobulin superfamily (A2MF), which also includes structurally related proteins, such as complement factor C3. A2M and other A2MF proteins undergo an extensive conformational change upon cleavage of their bait region by proteases. However, the mechanism whereby cleavage triggers the change has not yet been determined. We have previously shown that A2M remains functional after completely replacing its bait region with glycine and serine residues. Here, we use this tabula rasa bait region to investigate several hypotheses for the triggering mechanism. When tabula rasa bait regions containing disulfide loops were elongated by reducing the disulfides, we found that A2M remained in its native conformation. In addition, cleavage within a disulfide loop did not trigger the conformational change until after the disulfide was reduced, indicating that the introduction of discontinuity into the bait region is essential to the trigger. Previously, A2MF structures have shown that the C-terminal end of the bait region (a.k.a. the N-terminal region of the truncated α chain) threads through a central channel in native A2MF proteins. Bait region cleavage abolishes this plug-in-channel arrangement, as the bait region retracts from the channel and the channel itself collapses. We found that mutagenesis of conserved plug-in-channel residues disrupted the formation of native A2M. These results provide experimental evidence for a structural hypothesis in which retraction of the bait region from this channel following cleavage and the channel’s subsequent collapse triggers the conformational change of A2M and other A2MF proteins.
Collapse
Affiliation(s)
| | - Khang Diep
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|