1
|
Abramsson ML, Persson LJ, Sobott F, Marklund EG, Landreh M. Charging of DNA Complexes in Positive-Mode Native Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39417657 DOI: 10.1021/jasms.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Native mass spectrometry (nMS) provides insights into the structures and dynamics of biomacromolecules in their native-like states by preserving noncovalent interactions through "soft" electrospray ionization (ESI). For native proteins, the number of charges that are acquired scales with the surface area and mass. Here, we explore the effect of highly negatively charged DNA on the ESI charge of protein complexes and find a reduction of the mass-to-charge ratio as well as a greater variation. The charge state distributions of pure DNA assemblies show a lower mass-to-charge ratio than proteins due to their greater density in the gas phase, whereas the charge of protein-DNA complexes can additionally be influenced by the distribution of the ESI charges, ion pairing events, and collapse of the DNA components. Our findings suggest that structural features of protein-DNA complexes can result in lower charge states than expected for proteins.
Collapse
Affiliation(s)
- Mia L Abramsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Louise J Persson
- Department of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
- Department for Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Chai H, Shi J, Zhuang Y, Miao P. Assembly of ligation chain reaction and DNA triangular prism for miRNA diagnostics. Biosens Bioelectron 2024; 262:116551. [PMID: 38971039 DOI: 10.1016/j.bios.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Controllable assembly of DNA nanostructure provides a powerful way for quantitative analysis of various targets including nucleic acid molecules. In this study, we have designed detachable DNA nanostructures at electrochemical sensing interface and constructed a ligation chain reaction (LCR) strategy for amplified detection of miRNA. A three-dimensional DNA triangular prism nanostructure is fabricated to provide suitable molecule recognition environment, which can be further regenerated for additional tests via convenient pH adjustment. Target triggered LCR is highly efficient and specific towards target miRNA. Under optimal experimental conditions, this approach enables ultrasensitive exploration in a wide linear range with a single-base resolution. Moreover, it shows excellent performances for the analysis of cell samples and clinical serum samples.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jiayue Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yuan Zhuang
- Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
3
|
Le Huray KI, Wörner TP, Moreira T, Dembek M, Reinhardt-Szyba M, Devine PWA, Bond NJ, Fort KL, Makarov AA, Sobott F. To 200,000 m/ z and Beyond: Native Electron Capture Charge Reduction Mass Spectrometry Deconvolves Heterogeneous Signals in Large Biopharmaceutical Analytes. ACS CENTRAL SCIENCE 2024; 10:1548-1561. [PMID: 39220705 PMCID: PMC11363327 DOI: 10.1021/acscentsci.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Great progress has been made in the detection of large biomolecular analytes by native mass spectrometry; however, characterizing highly heterogeneous samples remains challenging due to the presence of many overlapping signals from complex ion distributions. Electron-capture charge reduction (ECCR), in which a protein cation captures free electrons without apparent dissociation, can separate overlapping signals by shifting the ions to lower charge states. The concomitant shift to higher m/z also facilitates the exploration of instrument upper m/z limits if large complexes are used. Here we perform native ECCR on the bacterial chaperonin GroEL and megadalton scale adeno-associated virus (AAV) capsid assemblies on a Q Exactive UHMR mass spectrometer. Charge reduction of AAV8 capsids by up to 90% pushes signals well above 100,000 m/z and enables charge state resolution and mean mass determination of these highly heterogeneous samples, even for capsids loaded with genetic cargo. With minor instrument modifications, the UHMR instrument can detect charge-reduced ion signals beyond 200,000 m/z. This work demonstrates the utility of ECCR for deconvolving heterogeneous signals in native mass spectrometry and presents the highest m/z signals ever recorded on an Orbitrap instrument, opening up the use of Orbitrap native mass spectrometry for heavier analytes than ever before.
Collapse
Affiliation(s)
- Kyle I.
P. Le Huray
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Tobias P. Wörner
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
| | - Tiago Moreira
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Marcin Dembek
- Purification
Process Sciences, Biopharmaceutical Development, Biopharmaceuticals
R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | | | - Paul W. A. Devine
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Nicholas J. Bond
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Kyle L. Fort
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexander A. Makarov
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Chubarov AS, Endeward B, Kanarskaya MA, Polienko YF, Prisner TF, Lomzov AA. Pulsed Dipolar EPR for Self-Limited Complexes of Oligonucleotides Studies. Biomolecules 2024; 14:887. [PMID: 39199275 PMCID: PMC11351890 DOI: 10.3390/biom14080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Pulsed electron-electron double resonance (PELDOR) spectroscopy is a powerful method for determining nucleic acid (NA) structure and conformational dynamics. PELDOR with molecular dynamics (MD) simulations opens up unique possibilities for defining the conformational ensembles of flexible, three-dimensional, self-assembled complexes of NA. Understanding the diversity and structure of these complexes is vital for uncovering matrix and regulative biological processes in the human body and artificially influencing them for therapeutic purposes. To explore the reliability of PELDOR and MD simulations, we site-specifically attached nitroxide spin labels to oligonucleotides, which form self-assembled complexes between NA chains and exhibit significant conformational flexibility. The DNA complexes assembled from a pair of oligonucleotides with different linker sizes showed excellent agreement between the distance distributions obtained from PELDOR and calculated from MD simulations, both for the mean inter-spin distance and the distance distribution width. These results prove that PELDOR with MD simulations has significant potential for studying the structure and dynamics of conformational flexible complexes of NA.
Collapse
Affiliation(s)
- Alexey S. Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany; (B.E.); (T.F.P.)
| | - Maria A. Kanarskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Yuliya F. Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany; (B.E.); (T.F.P.)
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
5
|
Neyra K, Everson HR, Mathur D. Dominant Analytical Techniques in DNA Nanotechnology for Various Applications. Anal Chem 2024; 96:3687-3697. [PMID: 38353660 PMCID: PMC11261746 DOI: 10.1021/acs.analchem.3c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA nanotechnology is rapidly gaining traction in numerous applications, each bearing varying degrees of tolerance to the quality and quantity necessary for viable nanostructure function. Despite the distinct objectives of each application, they are united in their reliance on essential analytical techniques, such as purification and characterization. This tutorial aims to guide the reader through the current state of DNA nanotechnology analytical chemistry, outlining important factors to consider when designing, assembling, purifying, and characterizing a DNA nanostructure for downstream applications.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Heather R Everson
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| |
Collapse
|
6
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
7
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
8
|
Paulikat M, Aranda J, Ippoliti E, Orozco M, Carloni P. Proton Transfers to DNA in Native Electrospray Ionization Mass Spectrometry: A Quantum Mechanics/Molecular Mechanics Study. J Phys Chem Lett 2022; 13:12004-12010. [PMID: 36540944 PMCID: PMC9806827 DOI: 10.1021/acs.jpclett.2c03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Native electrospray ionization-ion mobility mass spectrometry (N-ESI/IM-MS) is a powerful approach for low-resolution structural studies of DNAs in the free state and in complex with ligands. Solvent vaporization is coupled with proton transfers from ammonium ions to the DNA, resulting in a reduction of the DNA charge. Here we provide insight into these processes by classical molecular dynamics and quantum mechanics/molecular mechanics free energy calculations on the d(GpCpGpApApGpC) heptamer, for which a wealth of experiments is available. Our multiscale simulations, consistent with experimental data, reveal a highly complex scenario. The proton either sits on one of the molecules or is fully delocalized on both, depending on the level of hydration of the analytes and the size of the droplets formed during the electrospray experiments. This work complements our previous study of the intramolecular proton transfer on the same heptamer occurring after the processes studied here, and together, they provide a first molecular view of proton transfer in N-ESI/IM-MS.
Collapse
Affiliation(s)
- Mirko Paulikat
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Juan Aranda
- Institute
for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Emiliano Ippoliti
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department
of Biochemistry and Biomedicine, University
of Barcelona, Avinguda
Diagonal 645, 08028 Barcelona, Spain
| | - Paolo Carloni
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, Otto-Blumenthal-Straße, 52062 Aachen, Germany
| |
Collapse
|