1
|
George K, Ahmad M. Input-specific properties of excitatory synapses on oxytocin receptor-expressing neurons in the lateral septum. J Neurophysiol 2024; 132:1867-1876. [PMID: 39541198 DOI: 10.1152/jn.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Oxytocin receptor (OXTR) is expressed in a distinct population of neurons in the lateral septum (LS), among other brain regions, and is responsible for regulating various social and nonsocial behaviors, including reward processing, feeding, social memory, anxiety, and fear. The LS serves as a key link between the cortical and subcortical regions, yet the synaptic inputs that drive the OXTR-expressing LS neurons have not been characterized. Here, we established retrograde and anterograde viral tracing in the mouse brain to map the input connections of the intermediate part of the LS where OXTR neurons are concentrated. Utilizing pathway-specific optogenetic activation, we identified that the strongest cortical inputs to LS OXTR neurons are from the posteromedial amygdala cortex (PMCo) and the ventral hippocampus (vHipp). We further determined that these excitatory inputs exhibit distinct presynaptic and postsynaptic properties, with PMCo synapses displaying a lower release probability and smaller α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-to-N-methyl-d-aspartate (NMDA) receptor-mediated excitatory postsynaptic current (EPSC) ratio compared to vHipp synapses. Our results also demonstrated that both vHipp and PMCo inputs establish a direct excitatory and a disynaptic inhibitory circuit on LS OXTR neurons. These findings deepen our understanding of the synaptic control of LS OXTR neurons by cortical regions, carrying significant implications for the affective behaviors in which these neurons are involved.NEW & NOTEWORTHY This is the first identification and characterization of the cortical synaptic inputs that drive the oxytocin receptor (OXTR)-expressing neurons in the lateral septum (LS), which are involved in diverse affective behavior. The strongest cortical inputs to LS OXTR neurons are from the posteromedial amygdala cortex, an understudied cortical region that is beginning to gain prominence for its role in social behavior. The synapses from these projections show differences in properties compared to inputs from the ventral hippocampus.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Mohiuddin Ahmad
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
2
|
Borie AM, Dromard Y, Chakraborty P, Fontanaud P, Andre EM, François A, Colson P, Muscatelli F, Guillon G, Desarménien MG, Jeanneteau F. Neuropeptide therapeutics to repress lateral septum neurons that disable sociability in an autism mouse model. Cell Rep Med 2024; 5:101781. [PMID: 39423809 PMCID: PMC11604546 DOI: 10.1016/j.xcrm.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Confronting oxytocin and vasopressin deficits in autism spectrum disorders and rare syndromes brought promises and disappointments for the treatment of social disabilities. We searched downstream of oxytocin and vasopressin for targets alleviating social deficits in a mouse model of Prader-Willi syndrome and Schaaf-Yang syndrome, both associated with high prevalence of autism. We found a population of neurons in the lateral septum-activated on termination of social contacts-which oxytocin and vasopressin inhibit as per degree of peer affiliation. These are somatostatin neurons expressing oxytocin receptors coupled to GABA-B signaling, which are inhibited via GABA-A channels by vasopressin-excited GABA neurons. Loss of oxytocin or vasopressin signaling recapitulated the disease phenotype. By contrast, deactivation of somatostatin neurons or receptor signaling alleviated social deficits of disease models by increasing the duration of contacts with mates and strangers. These findings provide new insights into the treatment framework of social disabilities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Amélie M Borie
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Yann Dromard
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Prabahan Chakraborty
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Emilie M Andre
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France; Département de Maieutique, University of Montpellier, 34090 Montpellier, France
| | - Amaury François
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Pascal Colson
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France; Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Academic Hospital, Montpellier 34090 Montpellier, France
| | - Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée, INSERM, University of Aix-Marseille, 13273 Marseille, France
| | - Gilles Guillon
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Michel G Desarménien
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France.
| |
Collapse
|
3
|
Payant MA, Shankhatheertha A, Chee MJ. Melanin-concentrating hormone promotes feeding through the lateral septum. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111163. [PMID: 39389251 DOI: 10.1016/j.pnpbp.2024.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Feeding is necessary for survival but can be hindered by anxiety or fear, thus neural systems that can regulate anxiety states are key to elucidating the expression of food-related behaviors. Melanin-concentrating hormone (MCH) is a neuropeptide produced in the lateral hypothalamus and zona incerta that promotes feeding and anxiogenesis. The orexigenic actions of MCH that prolong ongoing homeostatic or hedonic feeding are context-dependent and more prominent in male than female rodents, but it is not clear where MCH acts to initiate feeding. The lateral septum (LS) promotes feeding and suppresses anxiogenesis when inhibited, and it comprises the densest projections from MCH neurons. However, it is not known whether the LS is a major contributor to MCH-mediated feeding. As MCH inhibits LS cells by MCH receptor (MCHR1) activation, MCH may promote feeding via the LS. We bilaterally infused MCH into the LS and found that MCH elicited a rapid and long-lasting increase in the consumption of standard chow and a palatable, high sugar diet in male and female mice; these MCH effects were blocked by the co-administration of a MCHR1 antagonist TC- MCH 7c. Interestingly, the orexigenic effect of MCH was abolished in a novel, anxiogenic environment even when presented with a food reward, but MCH did not induce anxiety-like behaviors. These findings indicated the LS as a novel region underlying orexigenic MCH actions, which stimulated and enhanced feeding in both sexes in a context -dependent manner that was most prominent in the homecage.
Collapse
Affiliation(s)
- Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
4
|
Goode TD, Alipio JB, Besnard A, Pathak D, Kritzer-Cheren MD, Chung A, Duan X, Sahay A. A dorsal hippocampus-prodynorphinergic dorsolateral septum-to-lateral hypothalamus circuit mediates contextual gating of feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606427. [PMID: 39149322 PMCID: PMC11326193 DOI: 10.1101/2024.08.02.606427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive regulation of feeding depends on linkage of internal states and food outcomes with contextual cues. Human brain imaging has identified dysregulation of a hippocampal-lateral hypothalamic area (LHA) network in binge eating, but mechanistic instantiation of underlying cell-types and circuitry is lacking. Here, we identify an evolutionary conserved and discrete Prodynorphin (Pdyn)-expressing subpopulation of Somatostatin (Sst)-expressing inhibitory neurons in the dorsolateral septum (DLS) that receives primarily dorsal, but not ventral, hippocampal inputs. DLS(Pdyn) neurons inhibit LHA GABAergic neurons and confer context- and internal state-dependent calibration of feeding. Viral deletion of Pdyn in the DLS mimicked effects seen with optogenetic silencing of DLS Pdyn INs, suggesting a potential role for DYNORPHIN-KAPPA OPIOID RECEPTOR signaling in contextual regulation of food-seeking. Together, our findings illustrate how the dorsal hippocampus has evolved to recruit an ancient LHA feeding circuit module through Pdyn DLS inhibitory neurons to link contextual information with regulation of food consumption.
Collapse
Affiliation(s)
- Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Devesh Pathak
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Michael D Kritzer-Cheren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
5
|
Wang D, Zhao D, Wang W, Hu F, Cui M, Liu J, Meng F, Liu C, Qiu C, Liu D, Xu Z, Wang Y, Zhang Y, Li W, Li C. How do lateral septum projections to the ventral CA1 influence sociability? Neural Regen Res 2024; 19:1789-1801. [PMID: 38103246 PMCID: PMC10960288 DOI: 10.4103/1673-5374.389304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00033/figure1/v/2023-12-16T180322Z/r/image-tiff Social dysfunction is a risk factor for several neuropsychiatric illnesses. Previous studies have shown that the lateral septum (LS)-related pathway plays a critical role in mediating social behaviors. However, the role of the connections between the LS and its downstream brain regions in social behaviors remains unclear. In this study, we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1 (vCA1) influence sociability. Our results showed that gamma-aminobutyric acid (GABA)-ergic neurons were activated following social experience, and that social behaviors were enhanced by chemogenetic modulation of these neurons. Moreover, LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons, and regulating LSGABA→vCA1Glu neural projections affected social behaviors, which were impeded by suppressing LS-projecting vCA1 neuronal activity or inhibiting GABAA receptors in vCA1. These findings support the hypothesis that LS inputs to the vCA1 can control social preferences and social novelty behaviors. These findings provide new insights regarding the neural circuits that regulate sociability.
Collapse
Affiliation(s)
- Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Fengai Hu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Minghu Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Changyun Qiu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Zhicheng Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yameng Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- College of Nursing, Binzhou Medical University, Binzhou, Shandong Province, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| |
Collapse
|
6
|
Volitaki E, Forro T, Li K, Nevian T, Ciocchi S. Activity of ventral hippocampal parvalbumin interneurons during anxiety. Cell Rep 2024; 43:114295. [PMID: 38796850 DOI: 10.1016/j.celrep.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Anxiety plays a key role in guiding behavior in response to potential threats. Anxiety is mediated by the activation of pyramidal neurons in the ventral hippocampus (vH), whose activity is controlled by GABAergic inhibitory interneurons. However, how different vH interneurons might contribute to anxiety-related processes is unclear. Here, we investigate the role of vH parvalbumin (PV)-expressing interneurons while mice transition from safe to more anxiogenic compartments of the elevated plus maze (EPM). We find that vH PV interneurons increase their activity in anxiogenic EPM compartments concomitant with dynamic changes in inhibitory interactions between PV interneurons and pyramidal neurons. By optogenetically inhibiting PV interneurons, we induce an increase in the activity of vH pyramidal neurons and persistent anxiety. Collectively, our results suggest that vH inhibitory microcircuits may act as a trigger for enduring anxiety states.
Collapse
Affiliation(s)
- Emmanouela Volitaki
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
Cheung H, Yu TZ, Yi X, Wu YJ, Wang Q, Gu X, Xu M, Cai M, Wen W, Li XN, Liu YX, Sun Y, Zheng J, Xu TL, Luo Y, Zhang MZ, Li WG. An ultra-short-acting benzodiazepine in thalamic nucleus reuniens undermines fear extinction via intermediation of hippocamposeptal circuits. Commun Biol 2024; 7:728. [PMID: 38877285 PMCID: PMC11178775 DOI: 10.1038/s42003-024-06417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Benzodiazepines, commonly used for anxiolytics, hinder conditioned fear extinction, and the underlying circuit mechanisms are unclear. Utilizing remimazolam, an ultra-short-acting benzodiazepine, here we reveal its impact on the thalamic nucleus reuniens (RE) and interconnected hippocamposeptal circuits during fear extinction. Systemic or RE-specific administration of remimazolam impedes fear extinction by reducing RE activation through A type GABA receptors. Remimazolam enhances long-range GABAergic inhibition from lateral septum (LS) to RE, underlying the compromised fear extinction. RE projects to ventral hippocampus (vHPC), which in turn sends projections characterized by feed-forward inhibition to the GABAergic neurons of the LS. This is coupled with long-range GABAergic projections from the LS to RE, collectively constituting an overall positive feedback circuit construct that promotes fear extinction. RE-specific remimazolam negates the facilitation of fear extinction by disrupting this circuit. Thus, remimazolam in RE disrupts fear extinction caused by hippocamposeptal intermediation, offering mechanistic insights for the dilemma of combining anxiolytics with extinction-based exposure therapy.
Collapse
Affiliation(s)
- Hoiyin Cheung
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong-Zhou Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin Yi
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan-Jiao Wu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Wang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue Gu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Meihua Cai
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wen Wen
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying-Xiao Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Sun
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jijian Zheng
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian-Le Xu
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ma-Zhong Zhang
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei-Guang Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
8
|
Sun S, Xu J, Lin L, Jia M, Xue X, Wang Q, Chen D, Huang Z, Wang Y. Chemotherapeutic drug elemene induces pain and anxiety-like behaviors by activating GABAergic neurons in the lateral septum of mice. Biochem Biophys Res Commun 2024; 699:149548. [PMID: 38281329 DOI: 10.1016/j.bbrc.2024.149548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Most chemotherapeutic drugs are potent and have a very narrow range of dose safety and efficacy, most of which can cause many side effects. Chemotherapy-induced peripheral neuropathy (CIPN) is the most common and serious side effect of chemotherapy for cancer treatment. However, its mechanism of action is yet to be fully elucidated. In the present study, we found that the treatment of the chemotherapy drug elemene induced hyperalgesia accompanied by anxiety-like emotions in mice based on several pain behavioral assays, such as mechanical allodynia and thermal hyperalgesia tests. Second, immunostaining for c-fos (a marker of activated neurons) further showed that elemene treatment activated several brain regions, including the lateral septum (LS), cingulate cortex (ACC), paraventricular nucleus of the thalamus (PVT), and dorsomedial hypothalamic nucleus (DMH), most notably in the GABAergic neurons of the lateral septum (LS). Finally, we found that both chemogenetic inhibition and apoptosis of LS neurons significantly reduced pain- and anxiety-like behaviors in mice treated with elemene. Taken together, these findings suggest that LS is involved in the regulation of elemene-induced chemotherapy pain and anxiety-like behaviors, providing a new target for the treatment of chemotherapy pain induced by elemene.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
9
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
10
|
Bakoyiannis I, Ducourneau EG, Parkes SL, Ferreira G. Pathway specific interventions reveal the multiple roles of ventral hippocampus projections in cognitive functions. Rev Neurosci 2023; 34:825-838. [PMID: 37192533 DOI: 10.1515/revneuro-2023-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Since the 1950s study of Scoville and Milner on the case H.M., the hippocampus has attracted neuroscientists' attention. The hippocampus has been traditionally divided into dorsal and ventral parts, each of which projects to different brain structures and mediates various functions. Despite a predominant interest in its dorsal part in animal models, especially regarding episodic-like and spatial cognition, recent data highlight the role of the ventral hippocampus (vHPC), as the main hippocampal output, in cognitive processes. Here, we review recent studies conducted in rodents that have used advanced in vivo functional techniques to specifically monitor and manipulate vHPC efferent pathways and delineate the roles of these specific projections in learning and memory processes. Results highlight that vHPC projections to basal amygdala are implicated in emotional memory, to nucleus accumbens in social memory and instrumental actions and to prefrontal cortex in all the above as well as in object-based memory. Some of these hippocampal projections also modulate feeding and anxiety-like behaviours providing further evidence that the "one pathway-one function" view is outdated and future directions are proposed to better understand the role of hippocampal pathways and shed further light on its connectivity and function.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| |
Collapse
|
11
|
Zhao Y, Hong Y, Li Y, Qi F, Qing H, Su H, Yin J. Physically intelligent autonomous soft robotic maze escaper. SCIENCE ADVANCES 2023; 9:eadi3254. [PMID: 37682998 PMCID: PMC10491293 DOI: 10.1126/sciadv.adi3254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Autonomous maze navigation is appealing yet challenging in soft robotics for exploring priori unknown unstructured environments, as it often requires human-like brain that integrates onboard power, sensors, and control for computational intelligence. Here, we report harnessing both geometric and materials intelligence in liquid crystal elastomer-based self-rolling robots for autonomous escaping from complex multichannel mazes without the need for human-like brain. The soft robot powered by environmental thermal energy has asymmetric geometry with hybrid twisted and helical shapes on two ends. Such geometric asymmetry enables built-in active and sustained self-turning capabilities, unlike its symmetric counterparts in either twisted or helical shapes that only demonstrate transient self-turning through untwisting. Combining self-snapping for motion reflection, it shows unique curved zigzag paths to avoid entrapment in its counterparts, which allows for successful self-escaping from various challenging mazes, including mazes on granular terrains, mazes with narrow gaps, and even mazes with in situ changing layouts.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Fangjie Qi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Haitao Qing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint NCSU/UNC Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Hashimoto M, Brito SI, Venner A, Pasqualini AL, Yang TL, Allen D, Fuller PM, Anthony TE. Lateral septum modulates cortical state to tune responsivity to threat stimuli. Cell Rep 2022; 41:111521. [PMID: 36288710 PMCID: PMC9645245 DOI: 10.1016/j.celrep.2022.111521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Sudden unexpected environmental changes capture attention and, when perceived as potentially dangerous, evoke defensive behavioral states. Perturbations of the lateral septum (LS) can produce extreme hyperdefensiveness even to innocuous stimuli, but how this structure influences stimulus-evoked defensive responses and threat perception remains unclear. Here, we show that Crhr2-expressing neurons in mouse LS exhibit phasic activation upon detection of threatening but not rewarding stimuli. Threat-stimulus-driven activity predicts the probability but not vigor or type of defensive behavior evoked. Although necessary for and sufficient to potentiate stimulus-triggered defensive responses, LSCrhr2 neurons do not promote specific behaviors. Rather, their stimulation elicits negative valence and physiological arousal. Moreover, LSCrhr2 activity tracks brain state fluctuations and drives cortical activation and rapid awakening in the absence of threat. Together, our findings suggest that LS directs bottom-up modulation of cortical function to evoke preparatory defensive internal states and selectively enhance responsivity to threat-related stimuli.
Collapse
Affiliation(s)
- Mariko Hashimoto
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Ignacio Brito
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Loren Pasqualini
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tracy Lulu Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David Allen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Michael Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Todd Erryl Anthony
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Departments of Psychiatry and Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Décarie-Spain L, Liu CM, Lauer LT, Subramanian K, Bashaw AG, Klug ME, Gianatiempo IH, Suarez AN, Noble EE, Donohue KN, Cortella AM, Hahn JD, Davis EA, Kanoski SE. Ventral hippocampus-lateral septum circuitry promotes foraging-related memory. Cell Rep 2022; 40:111402. [PMID: 36170832 PMCID: PMC9605732 DOI: 10.1016/j.celrep.2022.111402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Keshav Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Alexander G Bashaw
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Isabella H Gianatiempo
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Kristen N Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Alyssa M Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Elizabeth A Davis
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|