1
|
Ma Y, Park J, Huang L, Sen C, Burri S, Bruschini C, Yang X, Cui Q, Cameron RB, Fishbein GA, Gomperts BN, Ozcan A, Charbon E, Gao L. Light-field tomographic fluorescence lifetime imaging microscopy. Proc Natl Acad Sci U S A 2024; 121:e2402556121. [PMID: 39320920 PMCID: PMC11459138 DOI: 10.1073/pnas.2402556121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that enables the visualization of biological samples at the molecular level by measuring the fluorescence decay rate of fluorescent probes. This provides critical information about molecular interactions, environmental changes, and localization within biological systems. However, creating high-resolution lifetime maps using conventional FLIM systems can be challenging, as it often requires extensive scanning that can significantly lengthen acquisition times. This issue is further compounded in three-dimensional (3D) imaging because it demands additional scanning along the depth axis. To tackle this challenge, we developed a computational imaging technique called light-field tomographic FLIM (LIFT-FLIM). Our approach allows for the acquisition of volumetric fluorescence lifetime images in a highly data-efficient manner, significantly reducing the number of scanning steps required compared to conventional point-scanning or line-scanning FLIM imagers. Moreover, LIFT-FLIM enables the measurement of high-dimensional data using low-dimensional detectors, which are typically low cost and feature a higher temporal bandwidth. We demonstrated LIFT-FLIM using a linear single-photon avalanche diode array on various biological systems, showcasing unparalleled single-photon detection sensitivity. Additionally, we expanded the functionality of our method to spectral FLIM and demonstrated its application in high-content multiplexed imaging of lung organoids. LIFT-FLIM has the potential to open up broad avenues in both basic and translational biomedical research.
Collapse
Affiliation(s)
- Yayao Ma
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Luzhe Huang
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Samuel Burri
- Advanced Quantum Architecture Laboratory, School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-2002Neuchâtel, Switzerland
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-2002Neuchâtel, Switzerland
| | - Xilin Yang
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
| | - Qi Cui
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Robert B. Cameron
- Department of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA90095
| | - Brigitte N. Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Aydogan Ozcan
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-2002Neuchâtel, Switzerland
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA90095
- California Nano Systems Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Li Y, Li P, Zheng X, Liu H, Zhao Y, Sun X, Liu W, Zhou S. Design of a Novel Microlens Array and Imaging System for Light Fields. MICROMACHINES 2024; 15:1166. [PMID: 39337826 PMCID: PMC11434186 DOI: 10.3390/mi15091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Light field cameras are unsuitable for further acquisition of high-quality images due to their small depth of field, insufficient spatial resolution, and poor imaging quality. To address these issues, we proposed a novel four-focal-square microlens and light field system. A square aspheric microlens array with four orthogonal focal lengths was designed, in which the aperture of a single lens was 100 μm. The square arrangement improves pixel utilization, the four focal lengths increase the depth of field, and the aspheric improves image quality. The simulations demonstrate pixel utilization rates exceeding 90%, depth-of-field ranges 6.57 times that of a single focal length, and image quality is significantly improved. We have provided a potential solution for improving the depth of field and image quality of the light field imaging system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shun Zhou
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.L.); (P.L.); (X.Z.); (H.L.); (Y.Z.); (X.S.); (W.L.)
| |
Collapse
|
3
|
Huang CT, Lin CN, Chen ST, Kuo HY, Sun HY. An Innovative Virtual Reality System for Measuring Refractive Error. Diagnostics (Basel) 2024; 14:1633. [PMID: 39125509 PMCID: PMC11311498 DOI: 10.3390/diagnostics14151633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we aimed to validate a novel light field virtual reality (LFVR) system for estimating refractive errors in the human eye. Fifty participants with an average age of 22.12 ± 2.2 years (range 20-30 years) were enrolled. The present study compared spherical equivalent (SE) and focal line measurements (F1 and F2) obtained by the LFVR system with those obtained by established methods, including closed-field and open-field autorefractors, retinoscopy, and subjective refraction. The results showed substantial agreement between the LFVR system and the traditional methods, with intraclass correlation coefficients (ICC) for SE ranging from 82.7% to 86.7% (p < 0.01), and for F1 and F2 from 80.7% to 86.4% (p < 0.01). Intra-repeatability for F1 and F2 demonstrated strong agreement, with ICC values of 88.8% and 97.5%, respectively. These findings suggest that the LFVR system holds potential as a primary tool for refractive error measurement in optical care, offering high agreement and repeatability compared to conventional methods.
Collapse
Affiliation(s)
- Chin-Te Huang
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Optometry, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Nien Lin
- Department of Optometry, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shyan-Tarng Chen
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Optometry, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hui-Ying Kuo
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Optometry, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Han-Yin Sun
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Optometry, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
4
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
5
|
Teshima Y, Mogi M, Nishida H, Tsuchiya T, Kobayasi KI, Hiryu S. Discrimination of object information by bat echolocation deciphered from acoustic simulations. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231415. [PMID: 38269077 PMCID: PMC10805595 DOI: 10.1098/rsos.231415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
High-precision visual sensing has been achieved by combining cameras with deep learning. However, an unresolved challenge involves identifying information that remains elusive for optical sensors, such as occlusion spots hidden behind objects. Compared to light, sound waves have longer wavelengths and can, therefore, collect information on occlusion spots. In this study, we investigated whether bats could perform advanced sound sensing using echolocation to acquire a target's occlusion information. We conducted a two-alternative forced choice test on Pipistrellus abramus with five different targets, including targets with high visual similarity from the front, but different backend geometries, i.e. occlusion spots or textures. Subsequently, the echo impulse responses produced by these targets, which were difficult to obtain with real measurements, were computed using three-dimensional acoustic simulations to provide a detailed analysis consisting of the acoustic cues that the bats obtained through echolocation. Our findings demonstrated that bats could effectively discern differences in target occlusion spot structure and texture through echolocation. Furthermore, the discrimination performance was related to the differences in the logarithmic spectral distortion of the occlusion-related components in the simulated echo impulse responses. This suggested that the bats obtained occlusion information through echolocation, highlighting the advantages of utilizing broadband ultrasound for sensing.
Collapse
Affiliation(s)
- Yu Teshima
- Acoustic Navigation Research Center, Doshisha University, Kyoto 610-0321, Japan
- Project Team for System Development of Marine Environmental Impact Assessment / SIP Ocean Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
| | - Mayuko Mogi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0321, Japan
| | - Hare Nishida
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0321, Japan
| | - Takao Tsuchiya
- Faculty of Sciences and Engineering, Doshisha University, Kyoto 610-0321, Japan
| | - Kohta I. Kobayasi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0321, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0321, Japan
| |
Collapse
|
6
|
Milanese T, Bruschini C, Burri S, Bernasconi E, Ulku AC, Charbon E. LinoSPAD2: an FPGA-based, hardware-reconfigurable 512×1 single-photon camera system. OPTICS EXPRESS 2023; 31:44295-44314. [PMID: 38178504 DOI: 10.1364/oe.505748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
We report on LinoSPAD2, a single-photon camera system, comprising a 512×1 single-photon avalanche diode (SPAD) front-end and one or two FPGA-based back-ends. Digital signals generated by the SPADs are processed by the FPGA in real time, whereas the FPGA offers full reconfigurability at a very high level of granularity both in time and space domains. The LinoSPAD2 camera system can process 512 SPADs simultaneously through 256 channels, duplicated on each FPGA-based back-end, with a bank of 64 time-to-digital converters (TDCs) operating at 133 MSa/s, whereas each TDC has a time resolution of 20 ps (LSB). To the best of our knowledge, LinoSPAD2 is the first fully reconfigurable SPAD camera system of large format. The SPAD front-end features a pitch of 26.2 μm, a native fill factor of 25.1%, and a microlens array achieving 2.3× concentration factor. At room temperature, the median dark count rate (DCR) is 80 cps at 7 V excess bias, the peak photon detection probability (PDP) is 53% at 520 nm wavelength, and the single-photon timing resolution (SPTR) is 50 ps FWHM. The instrument response function (IRF) is around 100 ps FWHM at system level. The LinoSPAD2 camera system is suitable for numerous applications, including LiDAR imaging, heralded spectroscopy, compressive Raman sensing, and other computational imaging techniques.
Collapse
|
7
|
Kim K, Yang H, Lee J, Lee WG. Metaverse Wearables for Immersive Digital Healthcare: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303234. [PMID: 37740417 PMCID: PMC10625124 DOI: 10.1002/advs.202303234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Indexed: 09/24/2023]
Abstract
The recent exponential growth of metaverse technology has been instrumental in reshaping a myriad of sectors, not least digital healthcare. This comprehensive review critically examines the landscape and future applications of metaverse wearables toward immersive digital healthcare. The key technologies and advancements that have spearheaded the metamorphosis of metaverse wearables are categorized, encapsulating all-encompassed extended reality, such as virtual reality, augmented reality, mixed reality, and other haptic feedback systems. Moreover, the fundamentals of their deployment in assistive healthcare (especially for rehabilitation), medical and nursing education, and remote patient management and treatment are investigated. The potential benefits of integrating metaverse wearables into healthcare paradigms are multifold, encompassing improved patient prognosis, enhanced accessibility to high-quality care, and high standards of practitioner instruction. Nevertheless, these technologies are not without their inherent challenges and untapped opportunities, which span privacy protection, data safeguarding, and innovation in artificial intelligence. In summary, future research trajectories and potential advancements to circumvent these hurdles are also discussed, further augmenting the incorporation of metaverse wearables within healthcare infrastructures in the post-pandemic era.
Collapse
Affiliation(s)
- Kisoo Kim
- Intelligent Optical Module Research CenterKorea Photonics Technology Institute (KOPTI)Gwangju61007Republic of Korea
| | - Hyosill Yang
- Department of NursingCollege of Nursing ScienceKyung Hee UniversitySeoul02447Republic of Korea
| | - Jihun Lee
- Department of Mechanical EngineeringCollege of EngineeringKyung Hee UniversityYongin17104Republic of Korea
| | - Won Gu Lee
- Department of Mechanical EngineeringCollege of EngineeringKyung Hee UniversityYongin17104Republic of Korea
| |
Collapse
|
8
|
Ma Y, Huang L, Sen C, Burri S, Bruschini C, Yang X, Cameron RB, Fishbein GA, Gomperts BN, Ozcan A, Charbon E, Gao L. Light-field tomographic fluorescence lifetime imaging microscopy. RESEARCH SQUARE 2023:rs.3.rs-2883279. [PMID: 37214842 PMCID: PMC10197779 DOI: 10.21203/rs.3.rs-2883279/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that enables the visualization of biological samples at the molecular level by measuring the fluorescence decay rate of fluorescent probes. This provides critical information about molecular interactions, environmental changes, and localization within biological systems. However, creating high-resolution lifetime maps using conventional FLIM systems can be challenging, as it often requires extensive scanning that can significantly lengthen acquisition times. This issue is further compounded in three-dimensional (3D) imaging because it demands additional scanning along the depth axis. To tackle this challenge, we developed a novel computational imaging technique called light field tomographic FLIM (LIFT-FLIM). Our approach allows for the acquisition of volumetric fluorescence lifetime images in a highly data-efficient manner, significantly reducing the number of scanning steps required compared to conventional point-scanning or line-scanning FLIM imagers. Moreover, LIFT-FLIM enables the measurement of high-dimensional data using low-dimensional detectors, which are typically low-cost and feature a higher temporal bandwidth. We demonstrated LIFT-FLIM using a linear single-photon avalanche diode array on various biological systems, showcasing unparalleled single-photon detection sensitivity. Additionally, we expanded the functionality of our method to spectral FLIM and demonstrated its application in high-content multiplexed imaging of lung organoids. LIFT-FLIM has the potential to open up new avenues in both basic and translational biomedical research.
Collapse
Affiliation(s)
- Yayao Ma
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Luzhe Huang
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- California Nano Systems Institute, University of California, Los Angeles, CA, USA
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Samuel Burri
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Federale de Lausanne, Neuchatel, Switzerland
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Federale de Lausanne, Neuchatel, Switzerland
| | - Xilin Yang
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- California Nano Systems Institute, University of California, Los Angeles, CA, USA
| | - Robert B. Cameron
- Department of Thoracic Surgery, University of California, Los Angeles, CA, USA
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brigitte N. Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- California Nano Systems Institute, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Federale de Lausanne, Neuchatel, Switzerland
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California Nano Systems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Wang Z, Hsiai TK, Gao L. Augmented light field tomography through parallel spectral encoding. OPTICA 2023; 10:62-65. [PMID: 37323823 PMCID: PMC10270672 DOI: 10.1364/optica.473848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Snapshot recording of transient dynamics in three dimensions (3-D) is highly demanded in both fundamental and applied sciences. Yet it remains challenging for conventional high-speed cameras to address this need due to limited electronic bandwidth and reliance on mechanical scanning. The emergence of light field tomography (LIFT) provides a new solution to these long-standing problems and enables 3-D imaging at an unprecedented frame rate. However, based on sparse-view computed tomography, LIFT can accommodate only a limited number of projections, degrading the resolution in the reconstructed image. To alleviate this problem, we herein present a spectral encoding scheme to significantly increase the number of allowable projections in LIFT while maintaining its snapshot advantage. The resultant system can record 3-D dynamics at a kilohertz volumetric frame rate. Moreover, by using a multichannel compressed sensing algorithm, we improve the image quality with an enhanced spatial resolution and suppressed aliasing artifacts.
Collapse
Affiliation(s)
- Zhaoqiang Wang
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles,California 90095, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|