1
|
Li Y, Zhang Y, He X, Guo Z, Yang N, Bai G, Zhao J, Xu D. The Mitochondrial Blueprint: Unlocking Secondary Metabolite Production. Metabolites 2024; 14:711. [PMID: 39728492 DOI: 10.3390/metabo14120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial metabolism plays a pivotal role in regulating the synthesis of secondary metabolites, which are crucial for the survival and adaptation of organisms. These metabolites are synthesized during specific growth stages or in response to environmental stress, reflecting the organism's ability to adapt to changing conditions. Mitochondria, while primarily known for their role in energy production, directly regulate secondary metabolite biosynthesis by providing essential precursor molecules, energy, and reducing equivalents necessary for metabolic reactions. Furthermore, they indirectly influence secondary metabolism through intricate signaling pathways, including reactive oxygen species (ROS), metabolites, and redox signaling, which modulate various metabolic processes. This review explores recent advances in understanding the molecular mechanisms governing mitochondrial metabolism and their regulatory roles in secondary metabolite biosynthesis, which highlights the involvement of transcription factors, small RNAs, and post-translational mitochondrial modifications in shaping these processes. By integrating current insights, it aims to inspire future research into mitochondrial regulatory mechanisms in Arabidopsis thaliana, Solanum tuberosum, Nicotiana tabacum, and others that may enhance their secondary metabolite production. A deeper understanding of the roles of mitochondria in secondary metabolism could contribute to the development of new approaches in biotechnology applications.
Collapse
Affiliation(s)
- Yang Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Yujia Zhang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Xinyu He
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Ning Yang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Guohui Bai
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563099, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| |
Collapse
|
2
|
Mai Z, Kim K, Richardson MB, Deschênes DAR, Garza-Garcia JJO, Shahsavarani M, Perley JO, Njoku DI, Deslongchamps G, De Luca V, Qu Y. Oxidation of four monoterpenoid indole alkaloid classes by three cytochrome P450 monooxygenases from Tabernaemontana litoralis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2770-2783. [PMID: 39569755 DOI: 10.1111/tpj.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Cytochrome P450 monooxygenases (CYPs) are well known for their ability to catalyze diverse oxidation reactions, playing a significant role in the biosynthesis of various natural products. In the realm of monoterpenoid indole alkaloids (MIAs), one of the largest groups of alkaloids in nature, CYPs are integral to reactions such as hydroxylation, epoxidation, ring opening, ring rearrangement, and aromatization, contributing to the extensive diversification of these compounds. In this study, we investigate the transcriptome, metabolome, and MIA biosynthesis in Tabernaemontana litoralis (milky way tree), a prolific producer of rare pseudoaspidosperma-type MIAs. Alongside known pseudoaspidosperma biosynthetic genes, we identify and characterize three new CYPs that facilitate regio- and stereospecific oxidation of four MIA skeletons: iboga, aspidosperma, pseudoaspidosperma, and quebrachamine. Notably, the tabersonine 14,15-β-epoxidase catalyzes the formation of pachysiphine, the stereoisomer of 14,15-α-epoxytabersonine (lochnericine) found in Catharanthus roseus (Madagascar periwinkle) roots. The pseudovincadifformine 18-hydroxylase is the first CYP identified to modify a pseudoaspidosperma skeleton. Additionally, we demonstrate that the enzyme responsible for C10-hydroxylation of the iboga MIA coronaridine also catalyzes C10-hydroxylation of voaphylline, which bears a quebrachamine skeleton. With the discovery of a new MIA, 11-hydroxypseudovincadifformine, this study provides a comprehensive understanding of MIA biosynthesis and diversification in T. litoralis, highlighting its potential for further exploration.
Collapse
Affiliation(s)
- Zhan Mai
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Kyunghee Kim
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | | | | | | | | | - Jacob Owen Perley
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Destiny Ichechi Njoku
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Ghislain Deslongchamps
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
3
|
Farzana M, Richardson MB, Deschênes DAR, Mai Z, Njoku DI, Deslongchamps G, Qu Y. Parallel evolution of methyltransferases leads to vobasine biosynthesis in Tabernaemontana elegans and Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2024; 15:1451298. [PMID: 39258295 PMCID: PMC11383786 DOI: 10.3389/fpls.2024.1451298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Monoterpenoid indole alkaloids (MIA) are one of the largest and most complex alkaloid class in nature, boasting many clinically significant drugs such as anticancer vinblastine and antiarrhythmic ajmaline. Many MIAs undergo nitrogen N-methylation, altering their reactivity and affinity to the biological targets through a straightforward reaction. Remarkably, all known MIA N-methyltransferases (NMT) originate from the neofunctionalization of ancestral γ-tocopherol C-methyltransferases (γTMTs), a phenomenon seemingly unique to the Apocynaceae family. In this study, we unveil and characterize a new γTMT-like enzyme from the plant Tabernaemontana elegans (toad tree): perivine Nβ-methyltransferase (TePeNMT). TePeNMT and other homologs form a distinct clade in our phylogenetic study, setting them apart from other γTMTs and γTMT-like NMTs discovered to date. Enzyme kinetic experiments and enzyme homology modeling studies reveal the significant differences in enzyme active sites between TePeNMT and CrPeNMT, a previously characterized perivine Nβ-methyltransferase from Catharanthus roseus (Madagascar periwinkle). Collectively, our findings suggest that parallel evolution of ancestral γTMTs may be responsible for the occurrence of perivine N-methylation in T. elegans and C. roseus.
Collapse
Affiliation(s)
- Maisha Farzana
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | | | | | - Zhan Mai
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | | | | | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
4
|
Li F, Shahsavarani M, Handy-Hart CJ, Côté A, Brasseur-Trottier X, Montgomery V, Beech RN, Liu L, Bayen S, Qu Y, De Luca V, Dastmalchi M. Characterization of a vacuolar importer of secologanin in Catharanthus roseus. Commun Biol 2024; 7:939. [PMID: 39097635 PMCID: PMC11298008 DOI: 10.1038/s42003-024-06624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Monoterpenoid indole alkaloid (MIA) biosynthesis in Catharanthus roseus is a paragon of the spatiotemporal complexity achievable by plant specialized metabolism. Spanning a range of tissues, four cell types, and five cellular organelles, MIA metabolism is intricately regulated and organized. This high degree of metabolic differentiation requires inter-cellular and organellar transport, which remains understudied. Here, we have characterized a vacuolar importer of secologanin belonging to the multidrug and toxic compound extrusion (MATE) family, named CrMATE1. Phylogenetic analyses of MATEs suggested a role in alkaloid transport for CrMATE1, and in planta silencing in two varieties of C. roseus resulted in a shift in the secoiridoid and MIA profiles. Subcellular localization of CrMATE1 confirmed tonoplast localization. Biochemical characterization was conducted using the Xenopus laevis oocyte expression system to determine substrate range, directionality, and rate. We can confirm that CrMATE1 is a vacuolar importer of secologanin, translocating 1 mM of substrate within 25 min. The transporter displayed strict directionality and specificity for secologanin and did not accept other secoiridoid substrates. The unique substrate-specific activity of CrMATE1 showcases the utility of transporters as gatekeepers of pathway flux, mediating the balance between a defense arsenal and cellular homeostasis.
Collapse
Affiliation(s)
- Fanfan Li
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | | | | | - Audrey Côté
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | | | - Victoria Montgomery
- Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Robin N Beech
- Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Lan Liu
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Stéphane Bayen
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Yang Qu
- Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Vincenzo De Luca
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Mehran Dastmalchi
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
5
|
Zhong Z, Wu M, Yang T, Nan X, Zhang S, Zhang L, Jin L. Integrated transcriptomic and proteomic analyses uncover the early response mechanisms of Catharanthus roseus under ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112862. [PMID: 38330691 DOI: 10.1016/j.jphotobiol.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tiancai Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaoyue Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Limin Jin
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, PR China.
| |
Collapse
|
6
|
Guo J, Gao D, Lian J, Qu Y. De novo biosynthesis of antiarrhythmic alkaloid ajmaline. Nat Commun 2024; 15:457. [PMID: 38212296 PMCID: PMC10784492 DOI: 10.1038/s41467-024-44797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The antiarrhythmic drug ajmaline is a monoterpenoid indole alkaloid (MIA) isolated from the Ayurvedic plant Rauvolfia serpentina (Indian Snakeroot). Research into the biosynthesis of ajmaline and another renowned MIA chemotherapeutic drug vinblastine has yielded pivotal advancements in the fields of plant specialized metabolism and engineering over recent decades. While the majority of vinblastine biosynthesis has been recently elucidated, the quest for comprehending ajmaline biosynthesis remains incomplete, marked by the absence of two critical enzymes. Here, we show the discovery and characterization of these two elusive reductases, alongside the identification of two physiologically relevant esterases that complete the biosynthesis of ajmaline. We show that ajmaline biosynthesis proceeds with vomilenine 1,2(R)-reduction followed by its 19,20(S)-reduction. This process is further modulated by two root-expressing esterases that deacetylate 17-O-acetylnorajmaline. Expanding upon the successful completion of the ajmaline biosynthetic pathway, we engineer the de novo biosynthesis of ajmaline in Baker's yeast.
Collapse
Affiliation(s)
- Jun Guo
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, China.
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada.
| |
Collapse
|
7
|
Nagy K, Darkó É, Szalai G, Janda T, Jókai Z, Ladányi M, Rady MR, Dernovics M. UPLC-ESI-QTOF-MS assisted targeted metabolomics to study the enrichment of vinca alkaloids and related metabolites in Catharanthus roseus plants grown under controlled LED environment. J Pharm Biomed Anal 2023; 235:115611. [PMID: 37542828 DOI: 10.1016/j.jpba.2023.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Enrichment of pharmaceutically important vinca alkaloids, vinblastine and vincristine, in the leaves of Madagascar periwinkle (Catharanthus roseus) plants through different pre- or postharvest treatments or cultivation conditions, e.g., exposing the plants to UV-irradiation, has been in focus for decades. Controlled LED environment in the visible light range offers the possibility of monitoring the changes in the concentration of metabolites in the vinca alkaloid-related pathway without involving UV-related abiotic stress. In the frame of our targeted metabolomics approach, 64 vinca alkaloids and metabolites were screened with the help of a UPLC-ESI-QTOF-MS instrumental setup from the leaf extracts of C. roseus plants grown in chambers under control (medium light), low light, and high blue / high red/ high far-red conditions. Out of the 14 metabolites that could be assigned either unambiguously with authentic standards or tentatively with high resolution mass spectrometry-based methods, all three dimer vinca alkaloids, that is, 3',4'-anhydrovinblastine, vinblastine and vincristine showed an at least nine-fold enrichment under high blue irradiation when compared with the control conditions: final concentrations of 961 mg kg-1 dry weight, 33.8 mg kg-1 dry weight, and 11.7 mg kg-1 dry weight could be achieved, respectively. As supported by multivariate statistical analysis, the key metabolites of the vinca alkaloid pathway were highly represented among the metabolites that were specifically stimulated by high blue light application.
Collapse
Affiliation(s)
- Katalin Nagy
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2., Martonvásár 2462, Hungary; Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., Budapest 1118, Hungary
| | - Éva Darkó
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2., Martonvásár 2462, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2., Martonvásár 2462, Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2., Martonvásár 2462, Hungary
| | - Zsuzsa Jókai
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., Budapest 1118, Hungary
| | - Márta Ladányi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., Budapest 1118, Hungary
| | - Mohamed Ramadan Rady
- Department of Plant Biotechnology, National Research Centre, 33 El Behouth st., Dokki, Giza P.O. 12622, Egypt
| | - Mihály Dernovics
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2., Martonvásár 2462, Hungary.
| |
Collapse
|
8
|
Gholizadeh F, Darkó É, Benczúr K, Hamow K, Dernovics M, Nagy K, Janda T, Rady M, Gohari G, Pál M, Le V, Szalai G. Growth light substantially affects both primary and secondary metabolic processes in Catharanthus roseus plants. PHOTOSYNTHETICA 2023; 61:451-460. [PMID: 39649484 PMCID: PMC11586840 DOI: 10.32615/ps.2023.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 12/10/2024]
Abstract
Common periwinkle (Catharanthus roseus L.) is an important medicinal plant used by the pharmaceutical industry. The present work aimed to determine the effect of low light intensity on the primary and secondary metabolic processes, using various photosynthesis and targeted and untargeted analytical techniques. Growth light had only limited effects on the photosynthetic electron transport processes, although membrane stability seemed slightly higher in plants growing under higher light conditions. The reduced growth light caused a reduction in certain primary metabolites, including amino acids and sugars, and it also reduced the contents of most of the phenolic compounds investigated in the present experiments. Interestingly, the differences in the growth light caused a much less pronounced difference in the alkaloid contents than that found in the flavonoid contents. However, besides the growth light, genotypic differences, most evident in flower colour, also affected some metabolic processes, including primary and secondary processes.
Collapse
Affiliation(s)
- F. Gholizadeh
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - É. Darkó
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K. Benczúr
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K.Á. Hamow
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - M. Dernovics
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K. Nagy
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - T. Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - M.R. Rady
- Department of Plant Biotechnology, National Research Centre, 33 El Behouth St. (former El-Tahrir St.), Dokki, P.O. 12622 Giza, Egypt
| | - G. Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - M. Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - V.N. Le
- Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Sciences and Technology (VAST), 10072 Hanoi, Vietnam
| | - G. Szalai
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| |
Collapse
|
9
|
Kim K, Shahsavarani M, Garza-García JJO, Carlisle JE, Guo J, De Luca V, Qu Y. Biosynthesis of kratom opioids. THE NEW PHYTOLOGIST 2023; 240:757-769. [PMID: 37518950 DOI: 10.1111/nph.19162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
Mitragynine, an analgesic alkaloid from the plant Mitragyna speciosa (kratom), offers a safer alternative to clinical opioids such as morphine, owing to its more favorable side effect profile. Although kratom has been traditionally used for stimulation and pain management in Southeast Asia, the mitragynine biosynthesis pathway has remained elusive. We embarked on a search for mitragynine biosynthetic genes from the transcriptomes of kratom and other members of the Rubiaceae family. We studied their functions in vitro and in vivo. Our investigations led to the identification of several reductases and an enol methyltransferase that forms a new clade within the SABATH methyltransferase family. Furthermore, we discovered a methyltransferase from Hamelia patens (firebush), which catalyzes the final step. With the tryptamine 4-hydroxylase from the psychedelic mushroom Psilocybe cubensis, we accomplished the four-step biosynthesis for mitragynine and its stereoisomer, speciogynine in both yeast and Escherichia coli when supplied with tryptamine and secologanin. Although we have yet to pinpoint the authentic hydroxylase and methyltransferase in kratom, our discovery completes the mitragynine biosynthesis. Through these breakthroughs, we achieved the microbial biosynthesis of kratom opioids for the first time. The remarkable enzyme promiscuity suggests the possibility of generating derivatives and analogs of kratom opioids in heterologous systems.
Collapse
Affiliation(s)
- Kyunghee Kim
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | | | | - Jack Edward Carlisle
- Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Jun Guo
- Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
10
|
Bui VH, Rodríguez-López CE, Dang TTT. Integration of discovery and engineering in plant alkaloid research: Recent developments in elucidation, reconstruction, and repurposing biosynthetic pathways. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102379. [PMID: 37182414 DOI: 10.1016/j.pbi.2023.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Plants synthesize tens of thousands of bioactive nitrogen-containing compounds called alkaloids, including some clinically important drugs in modern medicine. The discovery of new alkaloid structures and their metabolism in plants have provided ways to access these rich sources of bioactivities including new-to-nature compounds relevant to therapeutic and industrial applications. This review discusses recent advances in alkaloid biosynthesis discovery, including complete pathway elucidations. Additionally, the latest developments in the production of new and established plant alkaloids based on either biosynthesis or semisynthesis are discussed.
Collapse
Affiliation(s)
- Van-Hung Bui
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Carlos Eduardo Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
11
|
Du ZY, Qu Y, Liu Z, Gaid M. Editorial: Advances in metabolism and chemodiversity - focus - plant enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1227424. [PMID: 37396642 PMCID: PMC10313118 DOI: 10.3389/fpls.2023.1227424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, Canada
| | - Zhenhua Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
12
|
An J, Guan J, Nie Y. Semi-Rational Design of L-Isoleucine Dioxygenase Generated Its Activity for Aromatic Amino Acid Hydroxylation. Molecules 2023; 28:3750. [PMID: 37175159 PMCID: PMC10180240 DOI: 10.3390/molecules28093750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Fe (II)-and 2-ketoglutarate-dependent dioxygenases (Fe (II)/α-KG DOs) have been applied to catalyze hydroxylation of amino acids. However, the Fe (II)/α-KG DOs that have been developed and characterized are not sufficient. L-isoleucine dioxygenase (IDO) is an Fe (II)/α-KG DO that specifically catalyzes the formation of 4-hydroxyisoleucine (4-HIL) from L-isoleucine (L-Ile) and exhibits a substrate specificity toward L-aliphatic amino acids. To expand the substrate spectrum of IDO toward aromatic amino acids, in this study, we analyzed the regularity of the substrate spectrum of IDO using molecular dynamics (MD) simulation and found that the distance between Fe2+, C2 of α-KG and amino acid chain's C4 may be critical for regulating the substrate specificity of the enzyme. The mutation sites (Y143, S153 and R227) were also subjected to single point saturation mutations based on polarity pockets and residue free energy contributions. It was found that Y143D, Y143I and S153A mutants exhibited catalytic L-phenylalanine activity, while Y143I, S153A, S153Q and S153Y exhibited catalytic L-homophenylalanine activity. Consequently, this study extended the substrate spectrum of IDO with aromatic amino acids and enhanced its application property.
Collapse
Affiliation(s)
- Jianhong An
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.A.); (J.G.)
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325000, China
| | - Jiaojiao Guan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.A.); (J.G.)
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.A.); (J.G.)
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
13
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|