1
|
Amono R, Markussen T, Singh VK, Lund M, Manji F, Mor SK, Evensen Ø, Mikalsen AB. Unraveling the genomic landscape of piscine myocarditis virus: mutation frequencies, viral diversity and evolutionary dynamics in Atlantic salmon. Virus Evol 2024; 10:veae097. [PMID: 39717704 PMCID: PMC11665822 DOI: 10.1093/ve/veae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Over a decade since its discovery, piscine myocarditis virus (PMCV) remains a significant pathogen in Atlantic salmon aquaculture. Despite this significant impact, the genomic landscape, evolutionary dynamics, and virulence factors of PMCV are poorly understood. This study enhances the existing PMCV sequence dataset by adding 34 genome sequences and 202 new ORF3 sequences from clinical cardiomyopathy syndrome (CMS) cases in Norwegian aquaculture. Phylogenetic analyses, also including sequences from the Faroe Islands and Ireland revealed that PMCV sequences are highly conserved with distinct clustering by country of origin. Still, single CMS outbreaks display multiple PMCV variants, and although some clustering was seen by case origin, occasional grouping of sequences from different cases was also apparent. Temporal data from selected cases indicated increased sequence diversity in the population. We hypothesize that multiple bottlenecks and changing infection dynamics in the host population, with transfer to naïve individuals over time, represent a continuous selection pressure on the virus populations. No clear relation was found between PMCV variants and the severity of heart pathology. However, specific non-synonymous and synonymous mutations that might impact protein function and gene expression efficiency were identified. An additional factor that may impact PMCV replication is the presence of defective viral genomes, a novel finding for viruses of the order Ghabrivirales. This study provides new insights into PMCV genomic characteristics and evolutionary dynamics, highlighting the complex interplay of genetic diversity, virulence markers, and host-pathogen interactions, underscoring the epidemiological complexity of the virus. Keywords: piscine myocarditis virus; evolutionary dynamics; diversity; phylogeny; genomic sequencing; defective viral genomes.
Collapse
Affiliation(s)
- Racheal Amono
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Vikash K Singh
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States
| | - Morten Lund
- PatoGen AS, Rasmus Rønnebergs Gate 21, Ålesund 6002, Norway
| | - Farah Manji
- Mowi ASA, Post box 4102, Bergen 5835, Norway
| | - Sunil K Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences and Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Post box 2175 University Station, Brookings, SD 57007, USA
| | - Øystein Evensen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Aase B Mikalsen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| |
Collapse
|
2
|
Shepherd FK, Roach SN, Sanders AE, Liu Y, Putri DS, Li R, Merrill N, Pierson MJ, Kotenko SV, Wang Z, Langlois RA. Experimental viral spillover across 25 million year gap in Rodentia reveals limited viral transmission and purifying selection of a picornavirus. mBio 2024; 15:e0165024. [PMID: 39240101 PMCID: PMC11481857 DOI: 10.1128/mbio.01650-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
When a virus crosses from one host species to another, the consequences can be devastating. However, animal models to empirically evaluate cross-species transmission can fail to recapitulate natural transmission routes, physiologically relevant doses of pathogens, and population structures of naturally circulating viruses. Here, we present a new model of cross-species transmission where deer mice (Peromyscus maniculatus) are exposed to the natural virome of pet store mice (Mus musculus). Using RNA sequencing, we tracked viral transmission via fecal-oral routes and found the evidence of transmission of murine astroviruses, coronaviruses, and picornaviruses. Deep sequencing of murine kobuvirus revealed tight bottlenecks during transmission and purifying selection that leaves limited diversity present after transmission from Mus to Peromyscus. This work provides a structure for studying viral bottlenecks across species while keeping natural variation of viral populations intact and a high resolution look at within-host dynamics that occur during the initial stages of cross-species viral transmission.IMPORTANCEViral spillover events can have devastating public health consequences. Tracking cross-species transmission in real-time and evaluating viral evolution during the initial spillover event are useful for understanding how viruses adapt to new hosts. Using our new animal model and next generation sequencing, we develop a framework for understanding intrahost viral evolution and bottleneck events, which are very difficult to study in natural transmission settings.
Collapse
Affiliation(s)
- Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shanley N. Roach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Autumn E. Sanders
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Dira S. Putri
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Nathan Merrill
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Mark J. Pierson
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. Virus Evol 2024; 10:veae084. [PMID: 39444487 PMCID: PMC11498174 DOI: 10.1093/ve/veae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNVs) were identified at a 0.5% frequency threshold. Within-host populations exhibited low diversity, with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4 × 10-6 vs. 9.42 × 10-7 and 3.45 × 10-6, P < .001). Forty-five iSNVs had evidence of parallel evolution but were not over-represented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNVs across segments. A Wright-Fisher approximate Bayesian computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to genetic drift and purifying selection, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - William J Fitzsimmons
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - H Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Adam S Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
4
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608152. [PMID: 39229225 PMCID: PMC11370358 DOI: 10.1101/2024.08.15.608152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNV) were identified at a 0.5% frequency threshold. Within-host populations were subject to purifying selection with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4×10-6 vs. 9.42×10-7 and 3.45×10-6, p <0.001). Forty-five iSNV had evidence of parallel evolution, but were not overrepresented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNV across segments. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to purifying selection and genetic drift, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos G. Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Trende R, Darling TL, Gan T, Wang D, Boon AC. Barcoded SARS-CoV-2 viruses define the impact of time and route of transmission on the transmission bottleneck in a Syrian hamster model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597602. [PMID: 38915710 PMCID: PMC11195048 DOI: 10.1101/2024.06.08.597602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The transmission bottleneck, defined as the number of viruses that transmit from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, SARS-CoV-2's transmission bottleneck remains poorly characterized, in part due to a lack of quantitative measurement tools. To address this, we adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes inserted in ORF10, a non-translated ORF. We directly inoculated donor Syrian hamsters intranasally with this barcoded virus pool and exposed a paired naïve contact hamster to each donor. Following exposure, the nasal turbinates, trachea, and lungs were collected, viral titers were measured, and the number of barcodes in each tissue were enumerated to quantify the transmission bottleneck. The duration and route (airborne, direct contact, and fomite) of exposure were varied to assess their impact on the transmission bottleneck. In airborne-exposed hamsters, the transmission bottleneck increased with longer exposure durations. We found that direct contact exposure produced the largest transmission bottleneck (average 27 BCs), followed by airborne exposure (average 16 BCs) then fomite exposure (average 8 BCs). Interestingly, we detected unique BCs in both the upper and lower respiratory tract of contact animals from all routes of exposure, suggesting that SARS-CoV-2 can directly infect hamster lungs. Altogether, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission. In the future, barcoded SARS-CoV-2 will strengthen studies of immune factors that influence virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Adrianus C.M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Martin MA, Berg N, Koelle K. Influenza A genomic diversity during human infections underscores the strength of genetic drift and the existence of tight transmission bottlenecks. Virus Evol 2024; 10:veae042. [PMID: 38883977 PMCID: PMC11179161 DOI: 10.1093/ve/veae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high annual incidence of human influenza is the virus's ability to evade acquired immunity through continual antigenic evolution. Understanding the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus evolution and in predicting future ones. Several studies have analyzed longitudinal patterns of influenza A virus genetic diversity in natural human infections to assess the relative contributions of selection and genetic drift on within-host evolution. However, in these natural infections, within-host viral populations harbor very few single-nucleotide variants, limiting our resolution in understanding the forces acting on these populations in vivo. Furthermore, low levels of within-host viral genetic diversity limit the ability to infer the extent of drift across transmission events. Here, we propose to use influenza virus genomic diversity as an alternative signal to better understand within- and between-host patterns of viral evolution. Specifically, we focus on the dynamics of defective viral genomes (DVGs), which harbor large internal deletions in one or more of influenza virus's eight gene segments. Our longitudinal analyses of DVGs show that influenza A virus populations are highly dynamic within hosts, corroborating previous findings based on viral genetic diversity that point toward the importance of genetic drift in driving within-host viral evolution. Furthermore, our analysis of DVG populations across transmission pairs indicates that DVGs rarely appeared to be shared, indicating the presence of tight transmission bottlenecks. Our analyses demonstrate that viral genomic diversity can be used to complement analyses based on viral genetic diversity to reveal processes that drive viral evolution within and between hosts.
Collapse
Affiliation(s)
- Michael A Martin
- Department of Pathology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, 1462 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nick Berg
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- National Institute of Allergy and Infectious Diseases Laboratory of Viral Disease, National Institutes of Health, 33 North Drive, Bethesda, MD 20814, USA
| | - Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Ranum JN, Ledwith MP, Alnaji FG, Diefenbacher M, Orton R, Sloan E, Güereca M, Feltman E, Smollett K, da Silva Filipe A, Conley M, Russell A, Brooke C, Hutchinson E, Mehle A. Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome. Nucleic Acids Res 2024; 52:3199-3212. [PMID: 38407436 PMCID: PMC11014358 DOI: 10.1093/nar/gkae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.
Collapse
Affiliation(s)
- Jordan N Ranum
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mitchell P Ledwith
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fadi G Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meghan Diefenbacher
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Melissa Güereca
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M Feltman
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | | | - Michaela Conley
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MSY, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. PLoS Pathog 2024; 20:e1012131. [PMID: 38626244 PMCID: PMC11051653 DOI: 10.1371/journal.ppat.1012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 03/16/2024] [Indexed: 04/18/2024] Open
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Max S. Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands viral escape pathways from imprinted host humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585891. [PMID: 38562862 PMCID: PMC10983950 DOI: 10.1101/2024.03.20.585891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An initial virus exposure can imprint antibodies such that future responses to antigenically drifted strains are dependent on the identity of the imprinting strain. Subsequent exposure to antigenically distinct strains followed by affinity maturation can guide immune responses toward generation of cross-reactive antibodies. How viruses evolve in turn to escape these imprinted broad antibody responses is unclear. Here, we used clonal antibody lineages from two human donors recognizing conserved influenza virus hemagglutinin (HA) epitopes to assess viral escape potential using deep mutational scanning. We show that even though antibody affinity maturation does restrict the number of potential escape routes in the imprinting strain through repositioning the antibody variable domains, escape is still readily observed in drifted strains and attributed to epistatic networks within HA. These data explain how influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
|
11
|
Kieran TJ, Sun X, Maines TR, Beauchemin CAA, Belser JA. Exploring associations between viral titer measurements and disease outcomes in ferrets inoculated with 125 contemporary influenza A viruses. J Virol 2024; 98:e0166123. [PMID: 38240592 PMCID: PMC10878272 DOI: 10.1128/jvi.01661-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/16/2023] [Indexed: 02/21/2024] Open
Abstract
As use of the ferret model to study influenza A virus (IAV) pathogenicity increases, periodic assessment of data generated in this model is warranted, to identify features associated with virus replication throughout the respiratory tract and to refine future analyses. However, protocol-specific differences present between independent laboratories limit easy aggregation of virological data. We compiled viral titer and clinical data from >1,000 ferrets inoculated with 125 contemporary IAV under a consistent experimental protocol (including high- and low-pathogenicity avian, swine-origin, and human viruses, spanning H1, H2, H3, H5, H7, and H9 subtypes) and examined which meaningful and statistically supported associations were present among numerous quantitative measurements. Viral titers correlated positively between ferret nasal turbinate tissue, lung tissue, and nasal wash specimens, though the strength of the associations varied, notably regarding the particular nasal wash summary measure employed and properties of the virus itself. Use of correlation coefficients and mediation analyses further supported the interconnectedness of viral titer measurements taken at different sites throughout the respiratory tract. IAV possessing mammalian host adaptation markers in the HA and PB2 exhibited more rapid growth in the ferret upper respiratory tract early after infection, supported by quantities derived from infectious titer data to capture infection progression, compared with viruses bearing hallmarks of avian IAV. Collectively, this work identifies summary metrics most closely linked with virological and phenotypic outcomes in ferrets, supporting continued refinement of data analyzed from in vivo experimentation, notably from studies conducted to evaluate the public health risk posed by novel and emerging IAV.IMPORTANCEFerrets are frequently employed to study the pandemic potential of novel and emerging influenza A viruses. However, systematic retrospective analyses of data generated from these experiments are rarely performed, limiting our ability to identify trends in this data and explore how analyses can be refined. Using logarithmic viral titer and clinical data aggregated from one research group over 20 years, we assessed which meaningful and statistically supported associations were present among numerous quantitative measurements obtained from influenza A virus (IAV)-infected ferrets, including those capturing viral titers, infection progression, and disease severity. We identified numerous linear correlations between parameters assessing virus replication at discrete sites in vivo, including parameters capturing infection progression not frequently employed in the field, and sought to investigate the interconnected nature of these associations. This work supports continued refinement of data analyzed from in vivo experimentation, notably from studies which evaluate the public health risk posed by IAV.
Collapse
Affiliation(s)
- Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Catherine A. A. Beauchemin
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) at RIKEN, Wako, Japan
| | - Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Hodoameda P, Ebel GD, Mukhopadhyay S, Clem RJ. Extreme infectious titer variability in individual Aedes aegypti mosquitoes infected with Sindbis virus is associated with both differences in virus population structure and dramatic disparities in specific infectivity. PLoS Pathog 2024; 20:e1012047. [PMID: 38412195 PMCID: PMC10923411 DOI: 10.1371/journal.ppat.1012047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/08/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Variability in how individuals respond to pathogens is a hallmark of infectious disease, yet the basis for individual variation in host response is often poorly understood. The titer of infectious virus among individual mosquitoes infected with arboviruses is frequently observed to vary by several orders of magnitude in a single experiment, even when the mosquitoes are highly inbred. To better understand the basis for this titer variation, we sequenced populations of Sindbis virus (SINV) obtained from individual infected Aedes aegypti mosquitoes that, despite being from a highly inbred laboratory colony, differed in their titers of infectious virus by approximately 10,000-fold. We observed genetic differences between these virus populations that indicated the virus present in the midguts of low titer mosquitoes was less fit than that of high titer mosquitoes, possibly due to founder effects that occurred during midgut infection. Furthermore, we found dramatic differences in the specific infectivity or SI (the ratio of infectious units/viral genome equivalents) between these virus populations, with the SI of low titer mosquitoes being up to 10,000-fold lower than that of high titer mosquitoes. Despite having similar amounts of viral genomes, low titer mosquitoes appeared to contain less viral particles, suggesting that viral genomes were packaged into virions less efficiently than in high titer mosquitoes. Finally, antibiotic treatment, which has been shown to suppress mosquito antiviral immunity, caused an increase in SI. Our results indicate that the extreme variation that is observed in SINV infectious titer between individual Ae. aegypti mosquitoes is due to both genetic differences between virus populations and to differences in the proportion of genomes that are packaged into infectious particles.
Collapse
Affiliation(s)
- Peter Hodoameda
- Division of Biology, Kansas State University, Manhattan, Kansas United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado United States of America
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Rollie J. Clem
- Division of Biology, Kansas State University, Manhattan, Kansas United States of America
| |
Collapse
|
13
|
Farjo M, Koelle K, Martin MA, Gibson LL, Walden KKO, Rendon G, Fields CJ, Alnaji FG, Gallagher N, Luo CH, Mostafa HH, Manabe YC, Pekosz A, Smith RL, McManus DD, Brooke CB. Within-host evolutionary dynamics and tissue compartmentalization during acute SARS-CoV-2 infection. J Virol 2024; 98:e0161823. [PMID: 38174928 PMCID: PMC10805032 DOI: 10.1128/jvi.01618-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both unvaccinated and vaccinated individuals appeared largely stochastic; however, in rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of viral variants between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.IMPORTANCEWe detail the within-host evolutionary dynamics of SARS-CoV-2 during acute infection in 31 individuals using daily longitudinal sampling. We characterized patterns of mutational accumulation for unvaccinated and vaccinated individuals, and observed that temporal variant dynamics in both groups were largely stochastic. Comparison of paired nasal and saliva samples also revealed significant genetic compartmentalization between tissue environments in multiple individuals. Our results demonstrate how selection, genetic drift, and spatial compartmentalization all play important roles in shaping the within-host evolution of SARS-CoV-2 populations during acute infection.
Collapse
Affiliation(s)
- Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Michael A. Martin
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Laura L. Gibson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kimberly K. O. Walden
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J. Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Fadi G. Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heba H. Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca L. Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Shi YT, Harris JD, Martin MA, Koelle K. Transmission Bottleneck Size Estimation from De Novo Viral Genetic Variation. Mol Biol Evol 2024; 41:msad286. [PMID: 38158742 PMCID: PMC10798134 DOI: 10.1093/molbev/msad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs. These bottleneck sizes quantify the number of viral particles that establish genetic lineages in the recipient host and are important to estimate due to their impact on viral evolution. Current approaches for estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as polymorphic in the donor individual. However, these approaches have the potential to substantially underestimate true transmission bottleneck sizes. Here, we present a new statistical approach for instead estimating bottleneck sizes using patterns of viral genetic variation that arise de novo within a recipient individual. Specifically, our approach makes use of the number of clonal viral variants observed in a transmission pair, defined as the number of viral sites that are monomorphic in both the donor and the recipient but carry different alleles. We first test our approach on a simulated dataset and then apply it to both influenza A virus sequence data and SARS-CoV-2 sequence data from identified transmission pairs. Our results confirm the existence of extremely tight transmission bottlenecks for these 2 respiratory viruses.
Collapse
Affiliation(s)
| | | | - Michael A Martin
- Department of Biology, Emory University, Atlanta, GA, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta, GA, USA
| |
Collapse
|
15
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
16
|
Navaeiseddighi Z, Tripathi JK, Guo K, Wang Z, Schmit T, Brooks DR, Allen RA, Hur J, Mathur R, Jurivich D, Khan N. IL-17RA promotes pathologic epithelial inflammation in a mouse model of upper respiratory influenza infection. PLoS Pathog 2023; 19:e1011847. [PMID: 38060620 PMCID: PMC10729944 DOI: 10.1371/journal.ppat.1011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/19/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The upper respiratory tract (nasopharynx or NP) is the first site of influenza replication, allowing the virus to disseminate to the lower respiratory tract or promoting community transmission. The host response in the NP regulates an intricate balance between viral control and tissue pathology. The hyper-inflammatory responses promote epithelial injury, allowing for increased viral dissemination and susceptibility to secondary bacterial infections. However, the pathologic contributors to influenza upper respiratory tissue pathology are incompletely understood. In this study, we investigated the role of interleukin IL-17 recetor A (IL-17RA) as a modulator of influenza host response and inflammation in the upper respiratory tract. We used a combined experimental approach involving IL-17RA-/- mice and an air-liquid interface (ALI) epithelial culture model to investigate the role of IL-17 response in epithelial inflammation, barrier function, and tissue pathology. Our data show that IL-17RA-/- mice exhibited significantly reduced neutrophilia, epithelial injury, and viral load. The reduced NP inflammation and epithelial injury in IL-17RA-/- mice correlated with increased resistance against co-infection by Streptococcus pneumoniae (Spn). IL-17A treatment, while potentiating the apoptosis of IAV-infected epithelial cells, caused bystander cell death and disrupted the barrier function in ALI epithelial model, supporting the in vivo findings.
Collapse
Affiliation(s)
- Zahrasadat Navaeiseddighi
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Jitendra Kumar Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Delano R. Brooks
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Reese A. Allen
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Nadeem Khan
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
17
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MS, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563581. [PMID: 37961583 PMCID: PMC10634741 DOI: 10.1101/2023.10.23.563581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intra-host single nucleotide variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Department of Biology, Emory University, Atlanta, GA, 30322
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Max S.Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| |
Collapse
|
18
|
King CR, Liu Y, Amato KA, Schaack GA, Mickelson C, Sanders AE, Hu T, Gupta S, Langlois RA, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. Cell Host Microbe 2023; 31:1552-1567.e8. [PMID: 37652009 PMCID: PMC10528757 DOI: 10.1016/j.chom.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Host:pathogen interactions dictate the outcome of infection, yet the limitations of current approaches leave large regions of this interface unexplored. Here, we develop a novel fitness-based screen that queries factors important during the middle to late stages of infection. This is achieved by engineering influenza virus to direct the screen by programming dCas9 to modulate host gene expression. Our genome-wide screen for pro-viral factors identifies the cytoplasmic DNA exonuclease TREX1. TREX1 degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self-DNA. We reveal that this same process aids influenza virus replication. Infection triggers release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolizes the DNA, preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify innate immunity, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen-driven fitness-based screens to pinpoint key host regulators of infection.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clayton Mickelson
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Autumn E Sanders
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srishti Gupta
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Bacsik DJ, Dadonaite B, Butler A, Greaney AJ, Heaton NS, Bloom JD. Influenza virus transcription and progeny production are poorly correlated in single cells. eLife 2023; 12:RP86852. [PMID: 37675839 PMCID: PMC10484525 DOI: 10.7554/elife.86852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
The ultimate success of a viral infection at the cellular level is determined by the number of progeny virions produced. However, most single-cell studies of infection quantify the expression of viral transcripts and proteins, rather than the amount of progeny virions released from infected cells. Here, we overcome this limitation by simultaneously measuring transcription and progeny production from single influenza virus-infected cells by embedding nucleotide barcodes in the viral genome. We find that viral transcription and progeny production are poorly correlated in single cells. The cells that transcribe the most viral mRNA do not produce the most viral progeny and often represent aberrant infections that fail to express the influenza NS gene. However, only some of the discrepancy between transcription and progeny production can be explained by viral gene absence or mutations: there is also a wide range of progeny production among cells infected by complete unmutated virions. Overall, our results show that viral transcription is a relatively poor predictor of an infected cell's contribution to the progeny population.
Collapse
Affiliation(s)
- David J Bacsik
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences & Medical Scientist Training Program, University of WashingtonSeattleUnited States
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Andrew Butler
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences & Medical Scientist Training Program, University of WashingtonSeattleUnited States
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Duke Human Vaccine Institute, Duke University School of MedicineDurhamUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
20
|
Shi T, Harris JD, Martin MA, Koelle K. Transmission bottleneck size estimation from de novo viral genetic variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553219. [PMID: 37645981 PMCID: PMC10462048 DOI: 10.1101/2023.08.14.553219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs. These bottleneck sizes quantify the number of viral particles that establish genetic lineages in the recipient host and are important to estimate due to their impact on viral evolution. Current approaches for estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as polymorphic in the donor individual. However, allele frequencies can change dramatically over the course of an individual's infection, such that sites that are polymorphic in the donor at the time of transmission may not be polymorphic in the donor at the time of sampling and allele frequencies at donor-polymorphic sites may change dramatically over the course of a recipient's infection. Because of this, transmission bottleneck sizes estimated using allele frequencies observed at a donor's polymorphic sites may be considerable underestimates of true bottleneck sizes. Here, we present a new statistical approach for instead estimating bottleneck sizes using patterns of viral genetic variation that arose de novo within a recipient individual. Specifically, our approach makes use of the number of clonal viral variants observed in a transmission pair, defined as the number of viral sites that are monomorphic in both the donor and the recipient but carry different alleles. We first test our approach on a simulated dataset and then apply it to both influenza A virus sequence data and SARS-CoV-2 sequence data from identified transmission pairs. Our results confirm the existence of extremely tight transmission bottlenecks for these two respiratory viruses, using an approach that does not tend to underestimate transmission bottleneck sizes.
Collapse
Affiliation(s)
- Teresa Shi
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jeremy D. Harris
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Michael A. Martin
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta GA, USA
| |
Collapse
|
21
|
Ferreri LM, Carnaccini S, Olivera V, Pereda A, Rajao D, Perez DR. South American H4N2 influenza A virus improved replication in chicken trachea after low number of passages. Front Vet Sci 2023; 10:1182550. [PMID: 37323837 PMCID: PMC10264679 DOI: 10.3389/fvets.2023.1182550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction of influenza A viruses (FLUAV) into poultry from waterfowl is frequent, producing economic burden and increasing the probability of human infections. We have previously described the presence of FLUAV in wild birds in Argentina with unique evolutionary trajectories belonging to a South American lineage different from the North American and Eurasian lineages. Adaptability of this South American lineage FLUAV to poultry species is still poorly understood. In the present report, we evaluated the capacity of an H4N2 FLUAV from the South American lineage to adapt to chickens after low number of passages. We found that five mutations were acquired after five passages in 3-days-old chickens. These mutations produced a virus with better infectivity in ex vivo trachea explants but overall lower infection in lung explants. Infection of 3-week-old chickens persisted for a longer period and was detected in more tissues than the parental virus, suggesting adaptation of the H4N2 influenza A virus to chicken.
Collapse
Affiliation(s)
- Lucas M. Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Instituto de Virologia CICVyA, Instituto Nacional de Technologia Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Valeria Olivera
- Instituto de Virologia CICVyA, Instituto Nacional de Technologia Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Ariel Pereda
- Programa Nacional de Sanidad Animal, Instituto Nacional de Technología Agropecuária (INTA), Castelar, Buenos Aires, Argentina
| | - Daniela Rajao
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
22
|
Farjo M, Brooke CB. When influenza viruses don't play well with others. Nature 2023; 616:668-669. [PMID: 37019958 DOI: 10.1038/d41586-023-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
23
|
Terbot JW, Johri P, Liphardt SW, Soni V, Pfeifer SP, Cooper BS, Good JM, Jensen JD. Developing an appropriate evolutionary baseline model for the study of SARS-CoV-2 patient samples. PLoS Pathog 2023; 19:e1011265. [PMID: 37018331 PMCID: PMC10075409 DOI: 10.1371/journal.ppat.1011265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Over the past 3 years, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread through human populations in several waves, resulting in a global health crisis. In response, genomic surveillance efforts have proliferated in the hopes of tracking and anticipating the evolution of this virus, resulting in millions of patient isolates now being available in public databases. Yet, while there is a tremendous focus on identifying newly emerging adaptive viral variants, this quantification is far from trivial. Specifically, multiple co-occurring and interacting evolutionary processes are constantly in operation and must be jointly considered and modeled in order to perform accurate inference. We here outline critical individual components of such an evolutionary baseline model-mutation rates, recombination rates, the distribution of fitness effects, infection dynamics, and compartmentalization-and describe the current state of knowledge pertaining to the related parameters of each in SARS-CoV-2. We close with a series of recommendations for future clinical sampling, model construction, and statistical analysis.
Collapse
Affiliation(s)
- John W Terbot
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Parul Johri
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Schuyler W Liphardt
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Vivak Soni
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Susanne P Pfeifer
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Brandon S Cooper
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Jeffrey M Good
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Jeffrey D Jensen
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| |
Collapse
|
24
|
Fitzmeyer EA, Gallichotte EN, Ebel GD. Scanning barcodes: A way to explore viral populations. PLoS Pathog 2023; 19:e1011291. [PMID: 37079527 PMCID: PMC10118115 DOI: 10.1371/journal.ppat.1011291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Affiliation(s)
- Emily A. Fitzmeyer
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
25
|
King CR, Liu Y, Amato KA, Schaack GA, Hu T, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527556. [PMID: 36798235 PMCID: PMC9934597 DOI: 10.1101/2023.02.07.527556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Intracellular pathogens interact with host factors, exploiting those that enhance replication while countering those that suppress it. Genetic screens have begun to define the host:pathogen interface and establish a mechanistic basis for host-directed therapies. Yet, limitations of current approaches leave large regions of this interface unexplored. To uncover host factors with pro-pathogen functions, we developed a novel fitness-based screen that queries factors important during the middle-to-late stages of infection. This was achieved by engineering influenza virus to direct the screen by programing dCas9 to modulate host gene expression. A genome-wide screen identified the cytoplasmic DNA exonuclease TREX1 as a potent pro-viral factor. TREX1 normally degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self DNA. Our mechanistic studies revealed that this same process functions during influenza virus infection to enhance replication. Infection triggered release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolized the mitochondrial DNA preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify host innate sensing during RNA virus infection, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen driven fitness-based screens to pinpoint key host regulators of intracellular pathogens.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A. Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A. Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Sims A, Tornaletti LB, Jasim S, Pirillo C, Devlin R, Hirst JC, Loney C, Wojtus J, Sloan E, Thorley L, Boutell C, Roberts E, Hutchinson E. Superinfection exclusion creates spatially distinct influenza virus populations. PLoS Biol 2023; 21:e3001941. [PMID: 36757937 PMCID: PMC9910727 DOI: 10.1371/journal.pbio.3001941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 02/10/2023] Open
Abstract
Interactions between viruses during coinfections can influence viral fitness and population diversity, as seen in the generation of reassortant pandemic influenza A virus (IAV) strains. However, opportunities for interactions between closely related viruses are limited by a process known as superinfection exclusion (SIE), which blocks coinfection shortly after primary infection. Using IAVs, we asked whether SIE, an effect which occurs at the level of individual cells, could limit interactions between populations of viruses as they spread across multiple cells within a host. To address this, we first measured the kinetics of SIE in individual cells by infecting them sequentially with 2 isogenic IAVs, each encoding a different fluorophore. By varying the interval between addition of the 2 IAVs, we showed that early in infection SIE does not prevent coinfection, but that after this initial lag phase the potential for coinfection decreases exponentially. We then asked how the kinetics of SIE onset controlled coinfections as IAVs spread asynchronously across monolayers of cells. We observed that viruses at individual coinfected foci continued to coinfect cells as they spread, because all new infections were of cells that had not yet established SIE. In contrast, viruses spreading towards each other from separately infected foci could only establish minimal regions of coinfection before reaching cells where coinfection was blocked. This created a pattern of separate foci of infection, which was recapitulated in the lungs of infected mice, and which is likely to be applicable to many other viruses that induce SIE. We conclude that the kinetics of SIE onset segregate spreading viral infections into discrete regions, within which interactions between virus populations can occur freely, and between which they are blocked.
Collapse
Affiliation(s)
- Anna Sims
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Seema Jasim
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chiara Pirillo
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Ryan Devlin
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Jack C. Hirst
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joanna Wojtus
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Luke Thorley
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Edward Roberts
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
27
|
Lowen AC, Ferreri LM. Exclusion of latecomers yields a patchwork of viral subpopulations within hosts. PLoS Biol 2023; 21:e3001994. [PMID: 36848649 PMCID: PMC9910647 DOI: 10.1371/journal.pbio.3001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Viruses arriving late to an individual cell are blocked from replicating, an effect called superinfection exclusion. A study in PLOS Biology indicates that this exclusion at the level of individual cells gives rise to a heterogenous landscape of infection within a host.
Collapse
Affiliation(s)
- Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
28
|
Blois S, Goetz BM, Bull JJ, Sullivan CS. Interpreting and de-noising genetically engineered barcodes in a DNA virus. PLoS Comput Biol 2022; 18:e1010131. [PMID: 36413582 PMCID: PMC9725130 DOI: 10.1371/journal.pcbi.1010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/06/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
The concept of a nucleic acid barcode applied to pathogen genomes is easy to grasp and the many possible uses are straightforward. But implementation may not be easy, especially when growing through multiple generations or assaying the pathogen long-term. The potential problems include: the barcode might alter fitness, the barcode may accumulate mutations, and construction of the marked pathogens may result in unintended barcodes that are not as designed. Here, we generate approximately 5,000 randomized barcodes in the genome of the prototypic small DNA virus murine polyomavirus. We describe the challenges faced with interpreting the barcode sequences obtained from the library. Our Illumina NextSeq sequencing recalled much greater variation in barcode sequencing reads than the expected 5,000 barcodes-necessarily stemming from the Illumina library processing and sequencing error. Using data from defined control virus genomes cloned into plasmid backbones we develop a vetted post-sequencing method to cluster the erroneous reads around the true virus genome barcodes. These findings may foreshadow problems with randomized barcodes in other microbial systems and provide a useful approach for future work utilizing nucleic acid barcoded pathogens.
Collapse
Affiliation(s)
- Sylvain Blois
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Benjamin M. Goetz
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - James J. Bull
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ganti K, Bagga A, Carnaccini S, Ferreri LM, Geiger G, Joaquin Caceres C, Seibert B, Li Y, Wang L, Kwon T, Li Y, Morozov I, Ma W, Richt JA, Perez DR, Koelle K, Lowen AC. Influenza A virus reassortment in mammals gives rise to genetically distinct within-host subpopulations. Nat Commun 2022; 13:6846. [PMID: 36369504 PMCID: PMC9652339 DOI: 10.1038/s41467-022-34611-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) genetic exchange through reassortment has the potential to accelerate viral evolution and has played a critical role in the generation of multiple pandemic strains. For reassortment to occur, distinct viruses must co-infect the same cell. The spatio-temporal dynamics of viral dissemination within an infected host therefore define opportunity for reassortment. Here, we used wild type and synonymously barcoded variant viruses of a pandemic H1N1 strain to examine the within-host viral dynamics that govern reassortment in guinea pigs, ferrets and swine. The first two species are well-established models of human influenza, while swine are a natural host and a frequent conduit for cross-species transmission and reassortment. Our results show reassortment to be pervasive in all three hosts but less frequent in swine than in ferrets and guinea pigs. In ferrets, tissue-specific differences in the opportunity for reassortment are also evident, with more reassortants detected in the nasal tract than the lower respiratory tract. While temporal trends in viral diversity are limited, spatial patterns are clear, with heterogeneity in the viral genotypes detected at distinct anatomical sites revealing extensive compartmentalization of reassortment and replication. Our data indicate that the dynamics of viral replication in mammals allow diversification through reassortment but that the spatial compartmentalization of variants likely shapes their evolution and onward transmission.
Collapse
Affiliation(s)
- Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anish Bagga
- Emory College of Arts and Sciences, Atlanta, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lucas M Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Yonghai Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Liping Wang
- Department of Veterinary Pathobiology, and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
- St. Jude Center of Excellence for Influenza Research and Response (SJ-CEIRR), Memphis, TN, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- St. Jude Center of Excellence for Influenza Research and Response (SJ-CEIRR), Memphis, TN, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- The Center for Research on Influenza Pathogenesis and Transmission (CRIPT CEIRR), New York, NY, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA.
| |
Collapse
|