1
|
Luo S, Dou Y, Shi X, Liu Y, Liu T, Hu X, Li T, Peng X, Hu H, Yan H, Chen S. Efficient and Stable Air-Processed Organic Solar Cells Enabled by an Antioxidant Additive. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407609. [PMID: 38875710 DOI: 10.1002/adma.202407609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Current high-efficiency organic solar cells (OSCs) are generally fabricated in an inert atmosphere that limits their real-world scalable manufacturing, while the efficiencies of air-processed OSCs lag far behind. The impacts of ambient factors on solar cell fabrication remain unclear. In this work, the effects of ambient factors on cell fabrication are systematically investigated, and it is unveiled that the oxidation and doping of organic light absorbers are the dominant reasons causing cell degradation when fabricated in air. To address this issue, a new strategy for fabricating high-performance air-processed OSCs by introducing an antioxidant additive (4-bromophenylhydrazine, BPH) into the precursor solutions, is developed. BPH can effectively inhibit oxygen infiltration from the ambient to the photoactive layer and suppress trap formation caused by oxidation. Compared with conventional air-processed OSCs, this strategy remarkably increases the cell power conversion efficiency (PCE) from 16.7% to 19.3% (independently certified as 19.2%), representing the top value of air-processed OSCs. Furthermore, BPH significantly improves the operational stability of the cells in air by two times with a T80 lifetime of over 500 h. This study highlights the potential of using antioxidant additives to fabricate high-efficiency and stable OSCs in air, significantly promoting the industrialization of OSCs.
Collapse
Affiliation(s)
- Siwei Luo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yunjie Dou
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoyu Shi
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yangyang Liu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianxiao Liu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaodong Hu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tongzi Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiao Peng
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Shangshang Chen
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Chen J, Zhou X, Liu X, Zheng H, Wang Y, Zhou Y. Aqueous PEIE Soaking on ZnO for Ultraviolet Light Activation-Free Organic Photovoltaic Modules. SMALL METHODS 2024:e2400345. [PMID: 38966877 DOI: 10.1002/smtd.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/15/2024] [Indexed: 07/06/2024]
Abstract
Ultraviolet (UV) light is typically needed to activate inverted organic photovoltaics (OPVs) with zinc oxide (ZnO) as electron transporting layer (ETL) for higher efficiency. However, UV light is a major cause for the degradation of organic active layers in OPVs. This is a contradiction that UV light activation enhances the efficiency but UV illumination deteriorates the stability. It is important to solve this contradiction to develop UV light activation-free OPV devices. Herein, a method of aqueous polyethylenimine ethoxylated (PEIE) soaking on ZnO is reported to realize UV light activation-free OPV devices. The S-shape in current density-voltage (J-V) characteristics of devices tested without UV light activation is eliminated through the treatment of aqueous PEIE soaking on ZnO. The treatment reduces the oxygen adsorbates, which is confirmed by Kelvin probe and X-ray photoelectron spectroscopy. A 10.08 cm2 organic photovoltaic module with the treated ZnO as ETL showed high photovoltaic performance: VOC = 5.68 V, JSC = 2.7 mA cm-2, FF = 75.1%, and POutput = 11.5 mW cm-2 tested with the UV filter (light intensity of 0.788 sun). UV light activation is not needed for the modules to obtain high efficiency.
Collapse
Affiliation(s)
- Jianping Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianmin Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinlu Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Zheng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanyuan Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Adli Azizman MS, Azhari AW, Ibrahim N, Che Halin DS, Sepeai S, Ludin NA, Md Nor MN, Ho LN. Mixed cations tin-germanium perovskite: A promising approach for enhanced solar cell applications. Heliyon 2024; 10:e29676. [PMID: 38665575 PMCID: PMC11044053 DOI: 10.1016/j.heliyon.2024.e29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Significant progress has been made over the years to improve the stability and efficiency of rapidly evolving tin-based perovskite solar cells (PSCs). One powerful approach to enhance the performance of these PSCs is through compositional engineering techniques, specifically by incorporating a mixed cation system at the A-site and B-site structure of the tin perovskite. These approaches will pave the way for unlocking the full potential of tin-based PSCs. Therefore, in this study, a theoretical investigation of mixed A-cations (FA, MA, EA, Cs) with a tin-germanium-based PSC was presented. The crystal structure distortion and optoelectronic properties were estimated. SCAPS 1-D simulations were employed to predict the photovoltaic performance of the optimized tin-germanium material using different electron transport layers (ETLs), hole transport layers (HTLs), active layer thicknesses, and cell temperatures. Our findings reveal that EA0.5Cs0.5Sn0.5Ge0.5I3 has a nearly cubic structure (t = 0.99) and a theoretical bandgap within the maximum Shockley-Queisser limit (1.34 eV). The overall cell performance is also improved by optimizing the perovskite layer thickness to 1200 nm, and it exhibits remarkable stability as the temperature increases. The short-circuit current density (Jsc) remains consistent around 33.7 mA/cm2, and the open-circuit voltage (Voc) is well-maintained above 1 V by utilizing FTO as the conductive layer, ZnO as the ETL, Cu2O as the HTL, and Au as the metal back contact. This configuration also achieves a high fill factor ranging from 87 % to 88 %, with the highest power conversion efficiency (PCE) of 31.49 % at 293 K. This research contributes to the advancement of tin-germanium perovskite materials for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Mohd Saiful Adli Azizman
- Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
- Center of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
| | - Ayu Wazira Azhari
- Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
- Center of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
| | - Naimah Ibrahim
- Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
- Center of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
| | - Dewi Suriyani Che Halin
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
- Center of Excellence for Geopolymer & Green Technology (CEGeoGTech), Universiti Malaysia Perlis, (UniMAP), 02600, Jalan Kangar-Arau, Perlis, Malaysia
| | - Suhaila Sepeai
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Norasikin Ahmad Ludin
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Mohammad Nuzaihan Md Nor
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Li Ngee Ho
- Center of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, 02600, Jalan Kangar-Arau, Perlis, Malaysia
| |
Collapse
|
5
|
He D, Li Y, Zhao F, Lin Y. Trap suppression in ordered organic photovoltaic heterojunctions. Chem Commun (Camb) 2024; 60:364-373. [PMID: 38099599 DOI: 10.1039/d3cc05559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The high trap density (generally 1016-1018 cm-3) in organic solar cells (OSCs) brings about the localization of charge carriers and reduced charge carrier lifetime, mainly due to the weak intermolecular interactions of organic semiconductors resulting in their relatively poor crystallinity, which leads to low charge carrier mobilities and intense non-radiative recombination, thus impeding the further improvement of power conversion efficiencies (PCEs). Therefore, trap suppression is crucial to boost the performance of OSCs, and improving the crystallinity of donor/acceptor materials and enhancing the molecular order in devices can contribute to the trap suppression in OSCs. In this feature article, we summarize the recent advances of trap suppression in OSCs by material design and device engineering, and further outline possible development directions for trap suppression to enhance PCEs of OSCs.
Collapse
Affiliation(s)
- Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fuwen Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
6
|
Wu X, Jiang X, Li X, Zhang J, Ding K, Zhuo H, Guo J, Li J, Meng L, Ade H, Li Y. Introducing a Phenyl End Group in the Inner Side Chains of A-DA'D-A Acceptors Enables High-Efficiency Organic Solar Cells Processed with Nonhalogenated Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302946. [PMID: 37515820 DOI: 10.1002/adma.202302946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Indexed: 07/31/2023]
Abstract
Power conversion efficiency (PCE) of organic solar cells (OSCs) processed by nonhalogenated solvents is unsatisfactory due to the unfavorable morphology. Herein, two new small molecule acceptors (SMAs) Y6-Ph and L8-Ph are synthesized by introducing a phenyl end group in the inner side chains of the SMAs of Y6 and L8-BO, respectively, for overcoming the excessive aggregation of SMAs in the long-time film forming processed by nonhalogenated solvents. First, the effect of the film forming time on the aggregation property and photovoltaic performance of Y6, L8-BO, Y6-Ph, and L8-Ph is studied by using the commonly used solvents: chloroform (CF) (rapid film forming process) and chlorobenzene (CB) (slow film forming process). It is found that Y6- and L8-BO-based OSCs exhibit a dramatic drop in PCE from CF- to CB-processed devices owing to the large phase separation, while the Y6-Ph and L8-Ph based OSCs show obviously increased PCEs Furthermore, L8-Ph-based OSCs processed by nonhalogenated solvent o-xylene (o-XY) achieved a high PCE of 18.40% with an FF of 80.11%. The results indicate that introducing a phenyl end group in the inner side chains is an effective strategy to modulate the morphology and improve the photovoltaic performance of the OSCs processed by nonhalogenated solvents.
Collapse
Affiliation(s)
- Xiangxi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Hongmei Zhuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Paleti SHK, Hultmark S, Han J, Wen Y, Xu H, Chen S, Järsvall E, Jalan I, Villalva DR, Sharma A, Khan JI, Moons E, Li R, Yu L, Gorenflot J, Laquai F, Müller C, Baran D. Hexanary blends: a strategy towards thermally stable organic photovoltaics. Nat Commun 2023; 14:4608. [PMID: 37528112 PMCID: PMC10393981 DOI: 10.1038/s41467-023-39830-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Non-fullerene based organic solar cells display a high initial power conversion efficiency but continue to suffer from poor thermal stability, especially in case of devices with thick active layers. Mixing of five structurally similar acceptors with similar electron affinities, and blending with a donor polymer is explored, yielding devices with a power conversion efficiency of up to 17.6%. The hexanary device performance is unaffected by thermal annealing of the bulk-heterojunction active layer for at least 23 days at 130 °C in the dark and an inert atmosphere. Moreover, hexanary blends offer a high degree of thermal stability for an active layer thickness of up to 390 nm, which is advantageous for high-throughput processing of organic solar cells. Here, a generic strategy based on multi-component acceptor mixtures is presented that permits to considerably improve the thermal stability of non-fullerene based devices and thus paves the way for large-area organic solar cells.
Collapse
Affiliation(s)
- Sri Harish Kumar Paleti
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia.
| | - Sandra Hultmark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Jianhua Han
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Yuanfan Wen
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Han Xu
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Si Chen
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Emmy Järsvall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Ishita Jalan
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, 65188, Sweden
| | - Diego Rosas Villalva
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Jafar I Khan
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Ellen Moons
- Department of Engineering and Physics, Karlstad University, Karlstad, 65188, Sweden
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, 11973, USA
| | - Liyang Yu
- School of Chemical Engineering, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Julien Gorenflot
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden.
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 2395 5-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Li Y, Yuan X, Kim S, Zhang Y, Xie D, Tan X, Yang C, Huang X, Huang F, Cao Y, Duan C. Revealing the Molecular Weight Effect on Highly Efficient Polythiophene Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294863 DOI: 10.1021/acsami.3c05411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polythiophenes (PTs) are promising electron donors in organic solar cells (OSCs) due to their simple structures and excellent synthetic scalability. Benefiting from the rational molecular design, the power conversion efficiency (PCE) of PT solar cells has been greatly improved. Herein, five batches of the champion PT (P5TCN-F25) with molecular weights ranging from 30 to 87 kg mol-1 were prepared, and the effect of the molecular weight on the blend film morphology and photovoltaic performance of PT solar cells was systematically investigated. The results showed that the PCEs of the devices improved first and then maintained a high value with the increase of molecular weight, and the highest PCE of 16.7% in binary PT solar cells was obtained. Further characterizations revealed that the promotion in photovoltaic performance mainly comes from finer phase separation structures and more compact molecular packing in the blend film. The best device stabilities were also achieved by polymers with high molecular weights. Overall, this study highlights the importance of optimizing the molecular weight for PTs and offers directions to further improve the PCE of PT solar cells.
Collapse
Affiliation(s)
- Youle Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiyue Yuan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Yue Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dongsheng Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiaoxin Tan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Xuelong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
9
|
Saladina M, Wöpke C, Göhler C, Ramirez I, Gerdes O, Liu C, Li N, Heumüller T, Brabec CJ, Walzer K, Pfeiffer M, Deibel C. Power-Law Density of States in Organic Solar Cells Revealed by the Open-Circuit Voltage Dependence of the Ideality Factor. PHYSICAL REVIEW LETTERS 2023; 130:236403. [PMID: 37354414 DOI: 10.1103/physrevlett.130.236403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 06/26/2023]
Abstract
The density of states (DOS) is fundamentally important for understanding physical processes in organic disordered semiconductors, yet hard to determine experimentally. We evaluated the DOS by considering recombination via tail states and using the temperature and open-circuit voltage (V_{oc}) dependence of the ideality factor. By performing Suns-V_{oc} measurements, we find that the energetic disorder increases deeper into the band gap, which is not expected for a Gaussian or exponential DOS. The linear dependence of the disorder on energy reveals the power-law DOS in organic solar cells.
Collapse
Affiliation(s)
- Maria Saladina
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Christopher Wöpke
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Clemens Göhler
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | | | | | - Chao Liu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 91058 Erlangen, Germany
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 91058 Erlangen, Germany
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 91058 Erlangen, Germany
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 91058 Erlangen, Germany
| | | | | | - Carsten Deibel
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| |
Collapse
|